
Symmetries of Symmetry Breaking Constraints

George Katsirelos
NICTA, Sydney, Australia

george.katsirelos@nicta.com.au

Toby Walsh
NICTA and UNSW, Sydney, Australia

toby.walsh@nicta.com.au

Abstract
Symmetry is an important feature of many con-
straint programs. We show that any symmetry act-
ing on a set of symmetry breaking constraints can
be used to break symmetry. Different symmetries
pick out different solutions in each symmetry class.
We use these observations in two methods for elim-
inating symmetry from a problem. These methods
are designed to have many of the advantages of
symmetry breaking methods that post static sym-
metry breaking constraint without some of the dis-
advantages. In particular, the two methods prune
the search space using fast and efficient propa-
gation of posted constraints, whilst reducing the
conflict between symmetry breaking and branch-
ing heuristics. Experimental results show that the
two methods perform well on some standard bench-
marks.

1 Introduction
Symmetry occurs in many problems. For instance, certain
workers in a staff rostering problem might have the same
skills and availability. If we have a valid schedule, we may
be able to permute these workers and still have a valid sched-
ule. We typically need to factor such symmetry out of the
search space to be able to find solutions efficiently. One pop-
ular way to deal with symmetry is to add constraints which
eliminate symmetric solutions (see, for instance, [1; 2; 3;
4; 5; 6; 7]). A general method is to add constraints which
limit search to the lexicographically least solution in each
symmetry class. Such symmetry breaking is usually simple
to implement and is often highly efficient and effective [8;
9]. Even for problems with many symmetries, a small number
of symmetry breaking constraints can often eliminate much
or all of the symmetry.

One problem with posting symmetry breaking constraints
is that they pick out particular solutions in each symmetry
class, and branching heuristics may conflict with this choice.
In this paper, we consider two methods for posting symmetry
breaking constraints that tackle this conflict. The two meth-
ods exploit the observations that any symmetry acting on a
set of symmetry breaking constraints can be used to break
symmetry, and that different symmetries pick out different

solutions. The first method is model restarts which was pro-
posed in [10]. We periodically restart search with a new
model which contains a different symmetry of the symmetry
breaking constraints. The second method posts a symmetry of
the symmetry breaking constraint dynamically during search.
The symmetry is incrementally chosen to be consistent with
the branching heuristic. Our experimental results show that
both methods are effective at reducing the conflict between
branching heuristics and symmetry breaking.

2 Background
A constraint satisfaction problem (CSP) consists of a set of
variables, each with a domain of values, and a set of con-
straints specifying allowed combinations of values for sub-
sets of variables. A solution is an assignment to the variables
satisfying the constraints. We write sol(C) for the set of all
solutions to the constraints C. A common method to find a
solution of a CSP is backtracking search. Constraint solvers
typically prune the backtracking search space by enforcing a
local consistency property like domain consistency. A con-
straint is domain consistent iff for each variable, every value
in its domain can be extended to an assignment satisfying the
constraint. We make a constraint domain consistent by prun-
ing values for variables which cannot be in any satisfying as-
signment. During the search for a solution, a constraint can
become entailed. A constraint is entailed when any assign-
ment of values from the respective domains satisfies the con-
straint, For instance, X1 < Xn is entailed iff the largest value
in the domain of X1 is smaller than the smallest value in the
domain of Xn. A constraint is dis-entailed when its negation
is entailed. For instance, X < Y is dis-entailed if and only if
the smallest value in the domain of X is larger than or equal
to the largest value in the domain of Y .

CSPs can contain symmetry. We consider two common
types of symmetry (see [11] for more discussion). A variable
symmetry is a permutation of the variables that preserves so-
lutions. Formally, a variable symmetry is a bijection σ on the
indices of variables such that if X1 = d1, . . . , Xn = dn is a
solution then Xσ(1) = d1, . . . , Xσ(n) = dn is also. A value
symmetry, on the other hand, is a permutation of the values
that preserves solutions. Formally, a value symmetry is a bi-
jection θ on the values such that if X1 = d1, . . . , Xn = dn is
a solution then X1 = θ(d1), . . . , Xn = θ(dn) is also. Sym-
metries can more generally act on both variables and values.

Our methods also work with such symmetries. As the inverse
of a symmetry and the identity mapping are symmetries, the
set of symmetries of a problem forms a group under compo-
sition. We will use a simple running example which has a
small number of variable and value symmetries. This exam-
ple demonstrates that we can use symmetry itself to pick out
different solutions in each symmetry class.
Running Example. The all interval series problem (prob007
in CSPLib.org [12]) asks for a permutation of 0 to n − 1
so that neighbouring differences form a permutation of 1 to
n−1. We model this as a CSP with Xi = j iff the ith number
is j, and auxiliary variables for the neighbouring differences.
One solution for n = 11 is:

X1, X2, . . . , X11 = 3, 7, 4, 6, 5, 0, 10, 1, 9, 2, 8 (a)

This model has a number of different symmetries. First, there
is a variable symmetry σrev that reverses any solution:

X1, X2, . . . , X11 = 8, 2, 9, 1, 10, 0, 5, 6, 4, 7, 3 (b)

Second, there is a value symmetry θinv that inverts values. If
we subtract all values in (a) from 10, we generate a second
(but symmetric) solution:

X1, X2, . . . , X11 = 7, 3, 6, 4, 5, 10, 0, 9, 1, 8, 2 (c)

Third, we can do both. By reversing and inverting (a), we
generate a fourth (but symmetric) solution:

X1, X2, . . . , X11 = 2, 8, 1, 9, 0, 10, 5, 4, 6, 3, 7 (d)

The model thus has four symmetries in total: σid (the identity
mapping), σrev , θinv , and θinv ◦ σrev . ♣

3 Symmetry breaking
One common way to deal with symmetry is to add con-
straints to eliminate symmetric solutions [1]. Two important
properties of symmetry breaking constraints are soundness
and completeness. A set of symmetry breaking constraint
is sound iff it leaves at least one solution in each symmetry
class, and complete iff it leaves exactly one solution.
Running Example. Consider again the all interval series
problem. To eliminate the reversal symmetry σrev , we can
post the constraint:

X1 < X11 (1)

This eliminates solution (b) as it is the reversal of (a). To
eliminate the value symmetry θinv , we can post:

X1 ≤ 5, X1 = 5⇒ X2 < 5 (2)

This eliminates solution (c) as it is the inversion of (a). Fi-
nally, to eliminate the third symmetry θinv ◦ σrev where we
both reverse and invert the solution, we can post:

〈X1, . . . , X6〉 ≤lex 〈10−X11, . . . , 10−X6〉 (3)

This eliminates solution (a) as it is the reversal and inversion
of (d). Note that of the four symmetric solutions given ear-
lier, only (d) with X1 = 2 and X11 = 7 satisfies all these
symmetry breaking constraints. The other three solutions are
eliminated. Thus (1) to (3) are a sound and complete set of
symmetry breaking constraints. ♣

We now show that any symmetry acting on a set of sym-
metry breaking constraints itself breaks the symmetry in a
problem. Different symmetries pick out different solutions
in each symmetry class. To prove this, we need to consider
the action of a symmetry on a symmetry breaking constraint.
Symmetry has been defined acting on assignments. We lift
this definition to constraints. The action of a variable sym-
metry on a constraint changes the variables on which the con-
straint acts. More precisely, a variable symmetry σ applied
to the constraint C(Xj , . . . , Xk) gives C(Xσ(j), . . . , Xσ(k)).
The action of a value symmetry is also easy to compute. A
value symmetry θ applied to the constraint C(Xj , . . . , Xk)
gives C(θ(Xj), . . . , θ(Xk)).
Running Example. To illustrate how we can break symmetry
with the symmetry of a set of symmetry breaking constraints,
we consider symmetries of (1), (2) and (3).

If we apply σrev to (1), we get an ordering constraint that
again breaks the reversal symmetry:

Xσrev(1) < Xσrev(11)

This simplifies to:

X11 < X1

If we apply σrev to (2), we get constraints that again breaks
the inversion symmetry:

X11 ≤ 5, X11 = 5⇒ X10 < 5

Finally, if we apply σrev to (3), we get a constraint that again
breaks the combined reversal and inversion symmetry:

〈X11, . . . , X6〉 ≤lex 〈10−X1, . . . , 10−X6〉
Note that of the four symmetric solutions given earlier, only
(c) satisfies σrev of (1), (2) and (3).

We can also break symmetry with any other symmetry of
the symmetry breaking constraints. For instance, if we apply
θinv ◦ σrev to (1), we get a constraint that again breaks the
reversal symmetry:

10−X11 < 10−X1

This simplifies to:

X1 < X11

If we apply θinv ◦ σrev to (2), we get constraints that again
breaks the inversion symmetry:

10−X11 ≤ 5, 10−X11 = 5⇒ 10−X10 < 5

This simplifies to:

X11 ≥ 5, X11 = 5⇒ X10 > 5

Finally, if we apply θinv ◦σrev to (3), we get a constraint that
again breaks the combined reversal and inversion symmetry:

〈10−X11, . . . , 10−X6〉 ≤lex 〈X1, . . . , X6〉
Note that of the four symmetric solutions given earlier, only
(a) satisfies θinv ◦ σrev of (1), (2) and (3). ♣

The running example illustrates that we can break sym-
metry with a symmetry of a set of symmetry breaking con-
straints. We now prove that this holds in general:

Any symmetry acting on a set of symmetry breaking
constraints itself breaks symmetry.

More precisely, if a set of symmetry breaking constraints is
sound, then any symmetry of these constraints is also sound.
Similarly, if a set of symmetry breaking constraints is com-
plete, then any symmetry of these constraints is also com-
plete.
Observation 1. Given a set of symmetries Σ of C, if S is a
sound (complete) set of symmetry breaking constraints for Σ
then σ(S) for any σ ∈ Σ is also a sound (complete) set of
symmetry breaking constraints for Σ.
Proof: (Soundness) Consider s ∈ sol(C ∪ S). Then
s ∈ sol(C) and s ∈ sol(S). Hence σ(s) ∈ sol(C).
Since s ∈ sol(S), it follows that σ(s) ∈ sol(σ(S)). Thus,
σ(s) ∈ sol(C ∪ σ(S)). Hence, there is at least one solution,
σ(s) in every symmetry class of C ∪ σ(S). That is, σ(S) is a
sound set of symmetry breaking constraints for Σ.

(Completeness) Consider s ∈ sol(C ∪ σ(S)). By a similar
argument to soundness, σ−1(s) ∈ sol(C ∪ S). Hence, there
is at most one solution in every symmetry class of C ∪ σ(S).
That is, σ(S) is a complete set of symmetry breaking con-
straints for Σ. 2

Different symmetries of the symmetry breaking constraints
pick out different solutions in each symmetry class. Thus,
if the branching heuristic is going towards a particular so-
lution, there is a symmetry of the symmetry breaking con-
straints which does not conflict with this.
Observation 2. Given a symmetry group Σ, a sound set S
of symmetry breaking constraints for Σ, and any complete
assignment A, then there exists a symmetry σ in Σ such that
A satisfies σ(S).
Proof: Since the set of symmetry breaking constraints S is
sound, it leaves at least one solution (call it B) in the same
symmetry class as A. That is, B satisfies S. Since A and B
are in the same symmetry class, there exists a symmetry σ
in Σ with σ(A) = B. Σ forms a group so also contains the
inverse symmetry σ−1. Since B satisfies S and σ(A) = B,
it follows that σ(A) satisfies S. Hence σ−1(σ(A)) satisfies
σ−1(S). That is, A satisfies σ−1(S). 2

4 Model restarts
We start with a simple application of these observations.
To tackle conflict between branching heuristics and symme-
try breaking constraints, Heller et al. propose using model
restarts [10]. In this method, backtracking search is restarted
periodically, using a new model which contains different
symmetry breaking constraints. By posting different sym-
metry breaking constraints, we hope at some point for the
branching heuristic and symmetry breaking not to conflict.
Our observations that any symmetry acting on a set of sym-
metry breaking constraints can be used to break symmetry,
and that different symmetries pick out different solutions,
provide us with precisely the tools we need to perform model
restarts to any domain (and not just to interchangeable vari-
ables and values as in [10]). When we restart search, we
simply post a different symmetry of the symmetry breaking
constraints. We experimented with several possibilities. The

simplest is to choose a symmetry at random from the sym-
metry group. We also tried various heuristics like using the
symmetry most consistent or most inconsistent with previous
choices of the branching heuristic. However, we observed the
best performance of model restarts with a random choice of
symmetry so we only report results here with such a choice.

Running Example. Consider again the all interval series
problem and posting symmetries of the symmetry breaking
constraints (1), (2) and (3). The following table gives the
amount of search needed to find an all interval series of size
n = 11 using a branching heuristic that branches in order
on the variables introduced to represent neighbouring differ-
ences in the series, trying values in numerical order. This
would seem to be a good branching heuristic since it can find
a solution without backtracking.

Symmetry posted Branches Time to solve/s
of (1) to (3)

σid 1 0.00
σrev 222,758 13.74
θinv 425,765 24.99

θinv ◦ σrev 170,425 10.23

It is clear from this table that the different symmetries of
the symmetry breaking constraints interact differently with
the branching heuristic. In particular, the identity symme-
try does not conflict in any way as the branching heuristic
goes directly to the following solution at the end of the first
branch:

X1, X2, . . . , X11 = 0, 10, 1, 9, 2, 8, 3, 7, 4, 6, 5

This solution is consistent with σid of (1), (2) and (3).
The other symmetries of the symmetry breaking constraint

conflict with the branching heuristic. In particular, the fol-
lowing symmetry breaking constraints conflict with this so-
lution: σrev of (1) as X11 = 5 > X1 = 0, θinv of (1) as
10 − X1 = 10 > 10 − X11 = 5 and θinv ◦ σrev of (3) as
10 − X11 = 5 > X1 = 0. As a result, posting these sym-
metries of the symmetry breaking constraints increases the
search needed to find a solution.

Model restarts will help overcome this conflict. Suppose
we restart search every 100 branches and choose to post a
random symmetry of (1), (2) and (3). Let t be the average
number of branches to find a solution. There is 1

4 chance that
the first restart will post σid of (1), (2) and (3). In this situa-
tion, we find a solution after 1 branch. Otherwise we post one
of the other symmetries of (1), (2) and (3). We then explore
100 branches, reach the cutoff and fail to find a solution. As
each restart is independent, we restart and explore on aver-
age another t more branches. Hence:

t =
1
4

1 +
3
4

(100 + t)

Solving for t gives t = 301. Thus, using model restarts with
a random symmetry of the symmetry breaking constraints, we
take just 301 branches on average to find an all interval series
of size n = 11. ♣

Note that posting random symmetries of the symmetry
breaking constraints is not equivalent to fixing the symmetry

breaking and randomly branching. As we saw in the example,
different symmetries of the symmetry breaking constraints
interact in different ways with the problem constraints. Al-
though the problem constraints are themselves initially sym-
metrical, branching decisions quickly break the symmetries.

5 Posting constraints dynamically
We now consider a more sophisticated use of the observa-
tions that any symmetry acting on a set of symmetry break-
ing constraints itself breaks symmetry, and that different sym-
metries pick out different solutions in each symmetry class.
We will incrementally and dynamically post a symmetry of
the symmetry breaking constraints which is consistent with
the branching decisions made so far. Thus, if the branching
heuristic is smart or lucky enough to branch immediately to a
solution, symmetry breaking will not interfere with this.

Running Example. Consider again the all interval series
problem. Suppose we begin by trying X1 = 10. Since the Xi

are all different, X11 ∈ [0, 9]. Hence, the symmetry breaking
constraint X11 < X1 is entailed. This is σrev of (1). It is
also θinv of (1). We do not yet need to commit to which of
these two symmetries of the symmetry breaking constraints
we will post. We are sure, however, that we are not posting
σid or θinv ◦ σrev of the constraints (1) to (3). These two
symmetries would requireX1 > X11, and this is dis-entailed.
We therefore post X11 < X1 and continue search. ♣

In the example, we posted symmetry breaking constraint
once they are entailed. When there are only a few symme-
tries, we can easily implement this with non-backtrackable
variables and reification. Suppose we reify the two ordering
constraints:

B1 ⇔ (X1 < X11), B2 ⇔ (X11 < X1)

We then make the Boolean variables, B1 and B2 non-
backtrackable so that, once they are instantiated, their value
remains on backtracking. We assume that our solver posts the
conclusion of an implication when its hypothesis is entailed.
Suppose X1 < X11 is entailed. Then B1 will be set true. As
B1 is non-backtrackable, X1 < X11 will be posted. Unfor-
tunately, posting symmetry breaking constraints like this as
soon as they are entailed may be a little eager.

Running Example. Consider again the all interval series
problem. As before, suppose the branching heuristic has set
X1 = 10, and we have posted the entailed symmetry break-
ing constraint X11 < X1. Now X1 ≥ 5 is also entailed. This
is θinv of the first inequality in (2). If we post this, we com-
mit to breaking symmetry with θinv of (1) to (3). However,
this would rule out breaking symmetry with σrev of (1) to (3)
which are also still consistent with the branching decisions so
far.

Suppose we next branch on X11 = 5. The assignments to
X1 and X11 are only consistent with θinv of (2) and of (3).
In fact, both of these constraints are now entailed. However,
X1 = 10 and X11 = 5 are not consistent with posting σrev
of (3). This would require that:

〈X11, . . . , X6〉 ≤lex 〈10−X1, . . . , 10−X6〉

This is dis-entailed. Hence, our branching decisions have
committed us to break symmetry with θinv of (1) to (3). We
therefore post these constraints. If search continues, we will
discover the unique solution consistent with symmetry break-
ing and the initial branching decisions:

X1, X2, . . . , X11 = 10, 0, 9, 1, 8, 2, 7, 3, 6, 4, 5
♣

There is a tradeoff between posting symmetry breaking
constraints early (so propagation prunes the search space) and
late (so we do not conflict with future branching decisions).
We propose the following rule for when to post symmetry
breaking constraints. The rule only posts symmetry break-
ing constraints once the branching heuristic has forced their
choice. It would, however, be interesting to explore other
more eager or lazy rules. Suppose S is a set of symmetry
breaking constraints for Σ, and we have posted T , a symme-
try of a subset of S. A symmetry σ ∈ Σ is consistent with
T iff T is entailed by σ(S) and inconsistent otherwise. A
symmetry σ ∈ Σ is eliminated by posting some symmetry
breaking constraint c iff σ is consistent with T but inconsis-
tent with T ∪ {c}. The forced symmetry rule is defined as
follows:

Given a set of symmetry breaking constraints, if
during backtracking search a symmetry of one of
these constraints is entailed, this symmetry is con-
sistent with previously posted symmetry breaking
constraints, and all symmetries eliminated by this
entailed constraint are inconsistent with the current
state then we post the entailed constraint.

We first show that this rule is sound.
Observation 3. Given a set of symmetries Σ of C, if S is
a sound set of symmetry breaking constraints for Σ then the
forced symmetry rule using S is a sound symmetry breaking
method.
Proof: The rule only permits constraints of a particular sym-
metry to be posted. By Observation 1, this is sound. 2

In general, this rule may not be complete even when given
a complete set of symmetry breaking constraints. However, it
is easy to modify the rule so that it is complete. Whenever we
reach a solution, we simply pick a consistent symmetry and
post all the symmetry breaking constraints associated with
this symmetry. We can also define a common property of
many symmetry breaking constraints for which the unmodi-
fied rule is complete. A set of symmetry breaking constraints
S for the symmetries Σ of C is proper iff S is sound and
complete for Σ and every non-identity symmetry in Σ maps
any solution of S ∪C onto a different solution. With a proper
set of symmetry breaking constraints, each solution within a
symmetry class is associated with a different symmetry. For
instance, constraints (1) to (3) form a proper set of symmetry

We new prove that with a proper set of symmetry breaking
constraints, the forced symmetry rule is a sound and complete
symmetry breaking method. That is, it will find exactly one
solution in each symmetry class.
Observation 4. Given a set of symmetries Σ of C, if S is a
proper set of symmetry breaking constraints for Σ then the
forced symmetry rule is both sound and complete.

Proof: (Soundness) Immediate as a proper set is sound.
(Completeness) Consider the first solution visited. As the

set of symmetry breaking constraints is proper, only one sym-
metry of these constraints will be entailed. All other symme-
tries are inconsistent with the current state and are eliminated.
The forced symmetry rule therefore post this symmetry of
the symmetry breaking constraints. By Observation 1, as the
symmetry breaking constraints are complete, this eliminates
all other solutions in the same symmetry class. 2

Finally, we observe that with certain symmetry breaking
constraints, the forced symmetry rule is equivalent to posting
symmetry breaking constraints as soon as they are entailed.
For symmetry breaking constraints like X1 < X11, as soon
as the constraint or its negation is entailed, all variable sym-
metries are either consistent or they are eliminated.

6 Interchangeable variables and values
To test these two symmetry breaking methods, we consider
a common type of symmetry where variables and values par-
tition into interchangeable sets [13; 14]. This is sometimes
called piecewise variable and value symmetry. We chose this
class of symmetry other the many other types of symmetry
studied in the past as it was used in the previous experimen-
tal study of model restarts [10]. Suppose that the n variables
partition into a disjoint sets and variables within each set are
interchangeable. Similarly, suppose that the m values parti-
tion into b disjoint sets and values within each set are inter-
changeable. We will order variable indices so that Xp(i) to
Xp(i+1)−1 is the ith partition of variables for 1 ≤ i ≤ a, and
value indices so that dq(j) to dq(j+1)−1 is the jth partition of
values for 1 ≤ j ≤ b.

Flener et al. [14] proved that we can eliminate the expo-
nential number of symmetries due to such interchangeability
with a polynomial number of symmetry breaking constraints:

Xp(i) ≤ . . . ≤ Xp(i+1)−1

GCC([Xp(i), . . . , Xp(i+1)−1], [d1, . . . , dm], [Oi1, . . . , O
i
m])

(O1
q(j), . . . , O

a
q(j)) ≥lex . . . ≥lex (O1

q(j+1)−1, . . . , O
a
q(j+1)−1)

Where i ∈ [1, a] and j ∈ [1, b], and GCC counts the number
of occurrences of the values in each equivalence class of vari-
ables. That is, Oij = |{k|Xk = dj , p(i) ≤ k < p(i + 1)}|.
The signature of dk is (O1

k, . . . , O
a
k), the number of occur-

rences of dk in each variable partition. The signature is in-
variant to the permutation of variables within each equiva-
lence class. By ordering variables within each equivalence
class, we prevent permutation of interchangeable variables.
Similarly, by ordering the signatures, we prevent permutation
of interchangeable values.

We will post symmetries of these symmetry breaking con-
straints. We consider symmetries that act along two degrees
of freedom: the order of interchangeable variables within a
variable partition, and the order of the signatures of inter-
changeable values within a value partition. Let σ be some
permutation of the indices of interchangeable variables. Then
we can break the symmetry of variable interchangeability
with the following symmetry of the variable ordering con-
straints:

Xσ(p(i)) ≤ . . . ≤ Xσ(p(i+1)−1)

Similarly let θ be some permutation of the indices of inter-
changeable values. Then we can break the symmetry of value
interchangeability with this symmetry of the signature order-
ing constraints:

(O1
θ(q(j)), . . . , O

a
θ(q(j))) ≥lex . . . ≥lex (O1

θ(q(j+1)−1), . . .)

7 Experiments
We used model restarts and the forced symmetry rule to
post symmetries dynamically of the symmetry breaking con-
straints of Flener et al. [14]. Problems are coded into Gecode
2.2.0. We evaluated the two methods on the same two bench-
mark domains used in previous studies of symmetry break-
ing for interchangeable variables and values [15]. Experi-
ments were run on an 2-way Intel Xeon with 6MB of cache
and 4 cores in each processor running at 2GHz. All in-
stances were terminated after 10 minutes. We used smallest
domain as a variable ordering heuristic in each experiment.
For value ordering heuristic, we used lexicographical, anti-
lexicographical and random orderings.

Our experiments are designed to test two hypotheses. The
first hypothesis is that these two methods are less prone to
conflict between branching heuristics and symmetry break-
ing. The second hypothesis is that these two methods explore
a smaller search tree than dynamic methods like SBDS. This
is due to both the propagation of the posted symmetry break-
ing constraints and the need to limit SBDS to just generators
to make it computationally tractable. We limit our compari-
son of dynamic methods to comparison against SBDS. Whilst
there is a specialized dynamic symmetry breaking method
for interchangeable variables and values, experiments in [10]
show that this is several orders of magnitude slower than
static methods. In addition, dominance detection methods
like SBDD are shown to be three orders of magnitude slower
than static methods in [10]. Finally, we used SBDS to break
just generators of the symmetry group as breaking the full
symmetry group quickly ran out of memory. We used SBDS
with two different sets of generators: one set has a genera-
tor that exchanges each pair of consecutive variables/values
in each partition; the other has a generator that exchanges the
first two variables/values in each partition and one that rotate
all variables/values. We got similar results with both and thus
here report only results for the first set, denoted SBDS-pair in
Table 1.

The first set of experiments uses random graph coloring
problems generated in the same way as the previous exper-
imental study in [15]. There is a variable for each vertex
and not-equals constraints between variables corresponding
to connected vertices. All values in this model are inter-
changeable. In addition, we introduce variable symmetry by
partitioning variables into interchangeable sets of size at most
8. We randomly connect the vertices within each partition
with either a complete graph or an empty graph, and choose
each option with equal probability. Similarly, between any
two partitions there is equal probability that the partitions
are completely connected or independent. Results for graphs
with 40 vertices are shown in the top half of Table 1.

The second set of experiments uses a more structured
benchmark which is again taken from a previous experimen-

#
St

at
ic

po
st

in
g

D
yn

am
ic

po
st

in
g

SB
D

S-
pa

ir
M

od
el

R
es

ta
rt

s
L

ex
A

nt
ile

x
R

an
do

m
L

ex
/A

nt
ile

x
R

an
do

m
L

ex
/A

nt
ile

x
R

an
do

m
L

ex
R

an
do

m
op

t
t/

b
op

t
t/

b
op

t
t/

b
op

t
t/

b
op

t
t/

b
op

t
t/

b
op

t
t/

b
op

t
t/

b
op

t
t/

b
G

ra
ph

C
ol

or
in

g
1

13
0.

11
-

-
13

11
9.

64
13

0.
18

13
1.

99
13

*
0

15
*

0.
24

13
1.

14
13

5.
13

38
7

-
42

4
K

31
5

47
46

13
25

3
K

14
60

6
K

20
87

13
K

2
14

6.
29

14
24

.4
14

16
.1

14
12

.3
6

14
20

.7
14

*
0.

01
20

*
0.

01
14

5.
22

14
23

.2
2

25
K

13
8

K
76

K
25

K
46

K
79

18
K

13
71

9
K

13
K

54
K

3
16

0.
32

40
*

1.
31

-
-

16
0.

52
22

*
7.

03
16

*
0.

01
16

*
0.

01
16

27
.0

1
16

6.
18

73
0

25
14

K
-

80
1

15
16

K
67

46
K

64
92

K
38

K
12

K
5

13
25

4.
93

-
-

-
-

13
*

11
9.

44
27

*
0.

08
14

*
0.

01
16

*
0.

01
13

11
7.

9
13

20
8.

4
10

01
K

-
-

13
68

K
11

50
K

15
71

0
K

12
50

5
K

41
0

K
69

3
K

6
8

0.
03

-
-

-
-

8
0.

07
27

*
13

1.
05

8
4.

13
8

4.
25

8
0.

74
8

0.
77

60
-

-
53

15
35

K
40

K
40

K
19

80
17

94
7

17
0.

11
-

-
-

-
17

0.
18

-
-

17
*

0.
01

17
*

0.
01

17
20

.6
7

17
10

0.
77

17
0

-
-

18
5

-
-

46
97

K
45

22
K

59
K

28
4

K
9

8
*

0.
01

16
*

44
5.

43
8

*
25

.8
8

8
*

0.
05

21
*

17
0.

18
8

*
0.

01
8

*
0.

02
8

*
1.

83
8

*
5.

61
38

50
K

22
20

K
45

50
K

15
48

K
13

94
K

13
79

5
K

13
71

0
K

33
61

K
34

63
K

10
10

0.
03

10
2.

17
10

36
8.

25
10

0.
08

10
1.

77
10

37
9.

12
10

38
5.

92
10

2.
75

-
-

31
55

27
13

64
K

56
42

19
36

29
K

36
29

K
65

03
-

11
18

16
6.

89
-

-
-

-
18

35
3.

8
-

-
18

*
0

18
*

0.
01

18
29

6.
81

-
-

51
1

K
-

-
77

2
K

-
-

89
98

K
86

91
K

61
9

K
-

12
15

34
.7

-
-

-
-

15
23

.9
1

15
44

.5
1

15
*

0.
01

15
*

0.
21

15
*

57
4.

25
15

43
6.

82
11

5
K

-
-

50
K

91
K

59
53

K
58

74
K

84
7

K
65

4
K

13
14

*
0.

01
-

-
-

-
14

*
0.

04
27

*
0.

04
14

*
0

14
*

0.
02

14
21

1.
28

-
-

16
52

K
-

-
12

31
K

10
83

K
66

80
K

62
83

K
52

8
K

-
14

12
*

0.
02

-
-

-
-

12
*

0.
04

25
*

2.
58

12
*

0
12

*
0.

02
12

3.
56

12
14

0.
81

20
03

K
-

-
12

36
K

11
76

K
77

54
K

69
53

K
79

58
38

6
K

15
11

0.
04

-
-

-
-

11
0.

06
26

*
39

6.
35

11
*

0
11

*
0.

02
-

-
11

27
.9

7
33

-
-

33
15

01
K

54
83

K
52

20
K

-
41

K

C
on

ce
rt

H
al

lS
ch

ed
ul

in
g

1
28

94
2.

2
28

94
7.

56
28

94
2.

76
28

94
2.

66
28

94
3.

88
17

65
*

54
2.

37
18

04
*

56
8.

56
28

94
12

8.
28

28
94

13
4.

08
21

28
17

K
41

86
21

84
37

33
91

2
K

10
75

K
14

9
K

16
9

K
2

22
45

1.
99

22
45

12
.3

6
22

45
3.

79
22

45
3.

6
22

45
11

.3
6

21
94

*
41

7.
05

21
94

*
17

3.
82

22
45

13
6.

87
22

45
89

.8
2

18
36

32
K

57
16

35
85

14
K

12
58

K
14

93
K

16
5

K
12

7
K

3
26

39
20

.9
3

26
39

71
.3

7
26

39
27

.9
2

26
39

25
.5

3
26

39
46

.3
7

16
85

*
16

7.
32

18
73

*
42

3.
7

25
87

*
15

.9
2

26
39

*
19

2.
82

15
K

13
1

K
31

K
16

K
36

K
82

7
K

12
59

K
54

4
K

59
5

K
5

36
34

3.
86

36
34

18
.2

8
36

34
7.

9
36

34
4.

99
36

34
12

.0
1

32
86

*
10

8.
68

34
87

*
47

1.
78

36
34

16
6.

03
36

34
12

8.
15

37
97

44
K

13
K

39
30

11
K

12
01

K
15

43
K

20
6

K
17

1
K

7
32

62
1.

46
32

62
8.

88
32

62
2.

88
32

62
2.

59
32

62
6.

61
32

24
*

59
4.

55
32

24
*

23
2.

49
32

62
10

9.
35

32
62

11
4.

58
11

02
19

K
34

44
23

15
59

41
10

88
K

13
59

K
11

5
K

13
9

K
8

32
88

3.
61

32
88

17
.4

2
32

88
5.

22
32

88
4.

55
32

88
13

.2
9

16
58

*
47

5.
48

17
25

*
30

8.
22

32
88

19
9.

97
32

88
15

6.
35

26
06

36
K

57
81

28
08

12
K

92
8

K
11

99
K

19
9

K
16

9
K

9
34

34
16

.3
6

34
34

57
.8

1
34

34
24

.3
6

34
34

20
.2

2
34

34
49

.1
6

23
35

*
10

5.
84

23
35

*
43

.5
1

34
34

48
6.

67
34

34
*

11
2.

34
14

K
12

2
K

32
K

14
K

50
K

94
3

K
13

62
K

44
1

K
62

8
K

10
28

47
4.

69
28

47
19

.4
1

28
47

7.
52

28
47

6.
07

28
47

13
.3

6
26

49
*

15
3.

95
26

47
*

47
3.

14
28

47
23

1.
1

28
47

24
1.

09
48

88
50

K
13

K
50

30
12

K
11

77
K

16
26

K
29

7
K

33
2

K
11

32
95

5.
31

32
95

33
.0

7
32

95
10

.1
6

32
95

7.
91

32
95

34
.5

6
32

95
*

24
1.

42
32

95
*

16
1.

71
32

95
25

0.
43

32
95

26
1.

13
34

51
62

K
12

K
52

56
36

K
67

2
K

79
3

K
22

3
K

27
3

K
12

11
97

11
.1

11
97

38
.4

3
11

97
15

.0
5

11
97

13
.4

5
11

97
27

.6
7

89
5

*
11

2.
34

95
8

*
41

9.
76

11
97

47
9.

43
11

97
24

1.
41

10
K

74
K

21
K

10
K

28
K

73
6

K
89

0
K

47
5

K
27

1
K

13
25

65
2.

84
25

65
18

.0
3

25
65

5.
25

25
65

4.
14

25
65

13
.4

5
25

65
*

10
1.

34
25

65
*

17
3.

93
25

65
15

6.
49

25
65

13
0.

58
24

11
43

K
72

66
32

58
14

K
99

3
K

11
87

K
18

6
K

17
0

K
14

32
35

6.
91

32
35

25
.8

4
32

35
9.

57
32

35
8.

21
32

35
15

.6
9

23
85

*
15

7.
02

23
85

*
46

.4
3

32
35

34
9.

81
32

35
37

3.
23

56
50

50
K

12
K

57
25

13
K

81
9

K
11

68
K

32
4

K
39

8
K

15
32

34
17

.9
5

32
34

63
.2

8
32

34
24

.3
2

32
34

24
.7

1
32

34
44

.6
4

21
68

*
25

2.
34

23
31

*
54

.6
1

32
14

*
44

9.
52

32
34

*
28

1.
55

15
K

13
8

K
32

K
19

K
41

K
11

22
K

16
22

K
59

2
K

73
3

K

Ta
bl

e
1:

St
at

ic
vs

D
yn

am
ic

po
st

in
g

of
sy

m
m

et
ry

br
ea

ki
ng

co
ns

tr
ai

nt
s

on
G

ra
ph

C
ol

or
in

g
an

d
C

on
ce

rt
H

al
lS

ch
ed

ul
in

g.
“o

pt
”

is
th

e
qu

al
ity

of
th

e
so

lu
tio

n
fo

un
d

(*
in

di
ca

te
s

op
tim

al
ity

w
as

no
tp

ro
ve

d)
,“

t”
is

th
e

ru
nt

im
e

in
se

co
nd

s,
“b

”
is

th
e

nu
m

be
ro

fb
ac

kt
ra

ck
s.

T
he

be
st

m
et

ho
d

fo
ra

pr
ob

le
m

in
st

an
ce

is
in

bo
ld

fo
nt

.

tal study [15]. In the concert hall scheduling problem, we
have n applications to use one of m identical concert halls.
Each application has a start and end time as well as an offer
for the hall. We accept applications so that their intervals do
not overlap and the profit (the sum of the offers of accepted
applications) is maximized. We randomly generate instances
so that applications are split into partitions of size at most 8
and within each partition all applications have the same start
and end time and offer. Our model assigns Xi = j if the ith
application is accepted and placed in hall j, and Xi = m+ 1
if it is rejected. Variables corresponding to applications in the
same partition are interchangeable. Values divide into two
partitions: the values 1 to m are interchangeable, while the
value m + 1 is in a separate partition. Results for instances
with 40 applications and 10 halls are shown in the bottom half
of Table 1.

The results support both our hypotheses. Both methods
are less prone to conflict between symmetry breaking and the
branching heuristic. With both SBDS and our forced sym-
metry rule for dynamically posting symmetry breaking con-
straints, we obtained the same results with the lexicographical
and the (inverse) anti-lexicographical value ordering heuris-
tic. With model restarts, results with the lexicographical
and the anti-lexicographical value ordering heuristic are suf-
ficiently similar that we only report the former. Our second
hypothesis, that the two methods explore a smaller search tree
than SBDS is also confirmed. SBDS was unable to prove op-
timality in all but one instance. In addition, on the harder
graph coloring instances, both methods tend to outperform
the static method. It is hard, however, to choose between
the two methods. The model restarts method offers slightly
better performance on the graph coloring instances, whilst
our method of dynamically posting static symmetry break-
ing constraints offers better performance on the concert hall
scheduling instances.

8 Other related work
Closest in spirit to our forced symmetry rule for dynami-
cally posting symmetry breaking constraints is SBDS [16;
17; 18]. SBDS can work with any type of branching decision
but for simplicity we assume that branching decisions are of
the form V ar = val. All current implementations of SBDS
make this assumption. If we have a symmetry σ, the partial
assignment A and have explored and rejected V ar = val
then on backtracking, SBDS posts:

σ(A)→ σ(V ar 6= val)

This ensures that we never explore the symmetric state to
the one that has just been excluded. Our forced symmetry
rule also posts static symmetry breaking dynamically dur-
ing search. However, the two methods differ along three
important dimensions. First, SBDS posts symmetry break-
ing constraints when backtracking and exploring the second
branch of the search tree; the forced symmetry rule, on the
other hand, can post symmetry breaking constraints down ei-
ther branch. Second, SBDS posts symmetries of the current
nogood; the forced symmetry rule, on the other hand, can
post any type of symmetry breaking constraint. Here, for in-
stance, it posts ordering constraints on the signatures. Third,

whilst neither method conflicts with the branching heuristic if
the branching heuristic goes directly to a solution, the forced
symmetry rule may conflict with the branching heuristic later
in search. Constraint propagation on constraints posted by the
forced symmetry rule can prune values that branching might
have taken.

There are a number of other related methods. Jefferson
et al, have proposed GAPLex, a hybrid method that also
combines together static and dynamic symmetry breaking
[19]. However, GAPLex is limited to dynamically posting
lexicographical ordering constraints, and to searching with
a fixed variable ordering. As a consequence, GAPLex per-
forms poorly when there are large numbers of symmetries. In
addition, GAPLex is unable to profit from effective dynamic
variable ordering heuristics. Puget has also proposed “Dy-
namic Lex”, a hybrid method that dynamically posts static
symmetry breaking constraints during search which works
with dynamic variable ordering heuristics [20]. This method
adds lexicographical ordering symmetry breaking constraints
dynamically during search that are compatible with the cur-
rent partial assignment. In this way, the first solution found
during tree search is not pruned by symmetry breaking. Un-
fortunately Dynamic Lex needs to compute the stabilizers of
the current partial assignment. This requires a potentially
expensive graph isomorphism problem to be solved at each
node of the search tree. Whilst Dynamic Lex works with dy-
namic variable ordering heuristics, it assumes that values are
tried in order. Finally Dynamic Lex is limited to posting lex-
icographical ordering constraints. This is problematic when
there are many symmetries. A direct comparison of our meth-
ods with Dynamic Lex would be interesting but poses some
challenges. For instance, Heller et al. [10] do not compare
model restarts with Dynamic Lex, arguing:

“It is not clear how this method [Dynamic Lex] can
be generalized, though, and for the case of piece-
wise variable and value symmetry, no method with
similar properties is known yet.”

9 Conclusions

We proved that any symmetry acting on a set of symmetry
breaking constraints itself breaks symmetry, and that differ-
ent symmetries pick out different solutions in each symmetry
class. These observations can be used to reduce the conflict
between symmetry breaking and branching heuristics. We
have studied two methods for breaking symmetry that tackle
this conflict. The first method uses model restarts which was
proposed in [10]. We periodically restart search with a new
model which contains a random symmetry of the symmetry
breaking constraints. The second method posts a symmetry of
the symmetry breaking constraint dynamically during search.
The symmetry is incrementally chosen to be consistent with
the branching heuristic. The two methods benefit from prop-
agation of the posted symmetry breaking constraints, whilst
reducing the conflict between symmetry breaking and branch-
ing heuristics. Experimental results demonstrated that the two
methods perform well on some standard benchmarks.

Acknowledgements
This research is funded by the Department of Broadband,
Communications and the Digital Economy, and the ARC
through Backing Australias Ability and the ICT Center of Ex-
cellence program.

References
[1] Puget, J.F.: On the satisfiability of symmetrical con-

strained satisfaction problems. In Komorowski, J.,
Ras, Z., eds.: Proceedings of ISMIS’93. LNAI 689,
Springer-Verlag (1993) 350–361

[2] Shlyakhter, I.: Generating effective symmetry-breaking
predicates for search problems. In: Proceedings of LICS
workshop on Theory and Applications of Satisfiability
Testing (SAT 2001). (2001)

[3] Flener, P., Frisch, A., Hnich, B., Kiziltan, Z., Miguel,
I., Pearson, J., Walsh, T.: Breaking row and column
symmetry in matrix models. In: 8th International Con-
ference on Principles and Practices of Constraint Pro-
gramming (CP-2002), Springer (2002)

[4] Law, Y., Lee, J.: Symmetry Breaking Constraints
for Value Symmetries in Constraint Satisfaction. Con-
straints 11(2–3) (2006) 221–267

[5] Walsh, T.: Symmetry breaking using value precedence.
In: Proceedings of the 17th ECAI, European Confer-
ence on Artificial Intelligence, IOS Press (2006)

[6] Walsh, T.: Breaking value symmetry. In: 13th In-
ternational Conference on Principles and Practices of
Constraint Programming (CP-2007), Springer-Verlag
(2007)

[7] Walsh, T.: Breaking value symmetry. In: Proceedings
of the 23rd National Conference on AI, Association for
Advancement of Artificial Intelligence (2008)

[8] Frisch, A., Hnich, B., Kiziltan, Z., Miguel, I., Walsh, T.:
Global constraints for lexicographic orderings. In: 8th
International Conference on Principles and Practices of
Constraint Programming (CP-2002), Springer (2002)

[9] Frisch, A., Hnich, B., Kiziltan, Z., Miguel, I., Walsh,
T.: Propagation algorithms for lexicographic ordering
constraints. Artificial Intelligence 170(10) (2006) 803–
908

[10] Heller, D., Panda, A., Sellmann, M., Yip, J.: Model
restarts for structural symmetry breaking. In: 14th In-
ternational Conference on the Principles and Practice of
Constraint Programming. (2008) 539–544

[11] Cohen, D., Jeavons, P., Jefferson, C., Petrie, K., Smith,
B.: Symmetry definitions for constraint satisfaction
problems. Constraints 11(2–3) (2006) 115–137

[12] Gent, I., Walsh, T.: CSPLib: a benchmark library for
constraints. Technical report, Technical report APES-
09-1999 (1999) A shorter version appears in the Pro-
ceedings of the 5th International Conference on Princi-
ples and Practices of Constraint Programming (CP-99).

[13] Sellmann, M., Hentenryck, P.V.: Structural symmetry
breaking. In: Proceedings of 19th IJCAI, International
Joint Conference on Artificial Intelligence (2005)

[14] Flener, P., Pearson, J., Sellmann, M., Hentenryck, P.V.:
Static and dynamic structural symmetry breaking. In:
Proceedings of 12th International Conference on Princi-
ples and Practice of Constraint Programming (CP2006),
Springer (2006)

[15] Law, Y.C., Lee, J., Walsh, T., Yip, J.: Breaking symme-
try of interchangeable variables and values. In: 13th
International Conference on Principles and Practices
of Constraint Programming (CP-2007), Springer-Verlag
(2007)

[16] Backofen, R., Will, S.: Excluding symmetries in
constraint-based search. In Jaffar, J., ed.: Proceedings of
the 5th International Conference on Principles and Prac-
tice of Constraint Programming. Number 1713 in Lec-
ture Notes in Computer Science, Springer-Verlag (1999)
73–87

[17] Gent, I., Smith, B.: Symmetry breaking in constraint
programming. In Horn, W., ed.: Proceedings of ECAI-
2000, IOS Press (2000) 599–603

[18] Backofen, R., Will, S.: Excluding symmetries in
constraint-based search. Constraints 7(3-4) (2002) 333–
349

[19] Jefferson, C., Kelsey, T., Linton, S., Petrie, K.: Gaplex:
Generalised static symmetry breaking. In: Proceedings
of 6th International Workshop on Symmetry in Con-
straint Satisfaction Problems (SymCon-06), held along-
side CP-06. (2006)

[20] Puget, J.F.: Symmetry breaking using stabilizers. In
Rossi, F., ed.: Proceedings of 9th International Confer-
ence on Principles and Practice of Constraint Program-
ming (CP2003), Springer (2003)

