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Abstract
Dealing with large numbers of symmetries is often
problematic. One solution is to focus on just sym-
metries that generate the symmetry group. Whilst
there are special cases where breaking just the
symmetries in a generating set is complete, there
are also cases where no irredundant generating set
eliminates all symmetry. However, focusing on just
generators improves tractability. We prove that it is
polynomial in the size of the generating set to elim-
inate all symmetric solutions, but NP-hard to prune
all symmetric values. Our proof considers row and
column symmetry, a common type of symmetry in
matrix models where breaking just generator sym-
metries is very effective. We show that propagat-
ing a conjunction of lexicographical ordering con-
straints on the rows and columns of a matrix of de-
cision variables is NP-hard.

1 Introduction
A number of general methods have been proposed to elim-
inate symmetry from a problem. For example, we can
post lexicographical ordering constraints to exclude symme-
tries of each solution [Crawford et al., 1996; Puget, 2006;
Walsh, 2006]. As a second example, SBDS dynamically
posts constraints on backtracking to eliminate symmetries
of the explored search nodes [Backofen and Will, 1999;
Gent and Smith, 2000]. One problem with such methods is
that they typically need to post as many symmetry breaking
constraints as there are symmetries. As problems can have an
exponential number of symmetries, this can be costly. One
option is to break only a subset of the problem’s symme-
tries. Crawford et al. suggested breaking just those symme-
tries which generate the group [Crawford et al., 1996]. This
is attractive as the size of the generator set is logarithmic in
the size of the group, and many algorithms in computational
group theory work on generators. Crawford et al. observed
that whilst using just the generators may leave some sym-
metry, it eliminated all symmetry on a particular pigeonhole
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problem they proposed. However, it is worth noting that not
all sets of generators of this pigeonhole problem eliminate all
symmetry. Aloul et al. also suggested breaking only those
symmetries corresponding to generators of the group [Aloul
et al., 2002]. They demonstrated experimentally that break-
ing just those generator symmetries found by a graph auto-
morphism program was effective on some SAT benchmarks
[Aloul et al., 2003].

In this paper we focus on the generating sets of variable
or value symmetries. We investigate first the completeness
and tractability of breaking generator symmetries compared
to breaking all symmetries. We show that while it is always
tractable to post constaints that break generator symmetries,
there are cases when this may not be sufficient to eliminate
all symmetry despite the fact that eliminating all symmetry in
these cases is tractable. Second, we address the tractability
of pruning all generator symmetric values. That is, we con-
sider the tractability of making domain consistent a symmetry
breaking constraint that eliminates all generator symmetries.
We show that even if posting constraints that break the gen-
erator symmetries is tractable, there exists a set of generators
such that pruning all generator symmetric values is NP-hard.

One frequently occurring example of symmetry is row and
column interchangeability in matrix models [Flener et al.,
2002; Walsh, 2003]. In that case, it is tractable to post con-
straints that break all generator symmetries. However, we
show that pruning all generator symmetric values in such a
model is NP-hard. This solves the open challenge stated by
Frisch and al. [Frisch et al., 2002] seven years ago:

“Global constraints for lexicographic orderings si-
multaneously along both rows and columns of a
matrix would also present a significant challenge.”

We prove that propagating completely a global constraint that
lexicographically orders both the rows and columns of a ma-
trix of variables is NP-hard.

2 Background
Constraint satisfaction problem. A constraint satisfaction
problem (CSP) consists of a set of variables X, each with a
finite domain of values, and a set of constraints. The domain
of a variable X is denoted D(X). A constraint C is defined
over a set of variables scope(C) ⊆ X and it specifies allowed



combinations of values for the variables scope(C). Each al-
lowed combination of values for the variables scope(C) is
called a solution of C. A solution of a CSP is an assign-
ment of a value to each variable that is also a solution of all
its constraints. Backtracking search solvers construct partial
assignments, enforcing a local consistency to prune the do-
mains of the variables so that values which cannot appear in
any extension of the current partial assignment to a solution
are removed. We consider one of the most common local
consistencies: domain consistency (DC). A value X = a
is domain consistent in a constraint C iff the current partial
assignment can be extended to a solution of C that includes
X = a. Such a solution of C is called a support of X = a.
A constraint is domain consistent iff all the values of vari-
ables in scope(C) are domain consistent. A CSP is domain
consistent iff every constraint is domain consistent.

Symmetry in CSP. We will consider two types of symme-
try. A variable symmetry is a permutation of the variables
that preserves solutions. Formally, it is a bijection σ on the
indices of variables such that if X1 = d1, . . . , Xn = dn
is a solution then Xσ(1) = d1, . . . , Xσ(n) = dn is also.
A value symmetry is a permutation of the values that pre-
serves solutions. Formally, it is a bijection θ on the val-
ues such that if X1 = d1, . . . , Xn = dn is a solution then
X1 = θ(d1), . . . , Xn = θ(dn) is also. As the inverse of a
symmetry and the identity mapping are symmetries, the set
of symmetries of a problem forms a group under composi-
tion. One method to deal with symmetry is to add constraints
which eliminate some but not all of the symmetric solutions
[Puget, 1993]. For example, Crawford et al. proposed a gen-
eral method that posts lexicographical ordering constraints to
eliminate all but the lexicographically least solution in each
symmetry class [Crawford et al., 1996].

Consider a group of symmetries, Σ. For simplicity sym-
metries will be described as permutations that act on integers
1 to n (i.e. variable indices or domain values). Given a sub-
set S ⊆ Σ, we write 〈S〉 for the group generated by taking
products of elements from S as well as their inverses. A gen-
erating set G of a group Σ has Σ = 〈G〉. The elements of a
generating set are called generators. A generating set is irre-
dundant iff no strict subset also generates the group. A spe-
cial type of generating set is a strong generating set. Subsets
of a strong generating set generate all subgroups in a stabi-
lizer chain. A stabilizer chain is defined in terms of a base,
a permutation of 1 to n which we denote [b1, . . . , bn]. The
corresponding stabilizer chain is the sequence of subgroups
G0, . . . , Gn defined by:

G0 = Σ, Gi = {σ ∈ Σ | ∀j ≤ i.σ(bj) = bj}
A strong generating set S is a generating set whose elements
can generate each subgroup in the stabilizer chain. That is,
Gi = 〈S ∩ Gi〉. A strong generating set is irredundant iff
no strict subset is a strong generating set. As is the case for
generating sets, the size of a strong generating set is at most
log2 |G|, as a strong generator set can be computed from a
generator set in polynomial time. Computer algebra systems
like GAP contain efficient polynomial methods for comput-
ing strong generating sets based on the Scheier-Sims algo-

rithm. Many operations on groups like membership testing
are efficiently reducible to the computation of a strong gen-
erating set. Focusing symmetry breaking on a generating set
has the advantage that it becomes tractable to eliminate all
symmetric solutions.

3 Breaking generator symmetry
Strong generating sets are attractive as they make symmetry
breaking more tractable Because the size of a (strong) gen-
erating set is always polynomial in the size of the CSP in-
stance, it is polynomial to break (strong) generator symme-
tries. We simply post a lexicographical ordering constraint
for each generator symmetry. Interestingly, breaking all sym-
metries in a generating set can even break all problem sym-
metries as we show in Example 1.

Example 1 Consider interchangeable variables X1 to X4.
We describe this symmetry by the complete symmetry group
S4. An irredundant generating set for S4 is the identity map-
ping, the pair swap (1, 2) and the rotation (2, 3, 4, 1). To
break the symmetry (1, 2), we can post X1 ≤ X2. To break
the symmetry (2, 3, 4, 1), we can post [X1, X2, X3, X4] ≤lex

[X2, X3, X4, X1]. However, these two symmetry breaking
constraints do not eliminate all symmetry. For instance, they
permit both X1 = X3 = 0, X2 = X4 = 1 and its symmetry
X1 = X2 = 0, X3 = X4 = 1. There is an alternative irre-
dundant generating set (which is also an irredundant strong
generating set) which breaks all symmetry. Consider the base
[4, 3, 2, 1]. A strong generating set for this base is the set of
permutations {(1, 2), (2, 3), (3, 4)}. We can break these three
symmetries with X1 ≤ X2 ≤ X3 ≤ X4. These eliminate all
variable interchangeability.

We might wonder if there is always an irredundant (strong)
generating set which eliminates all symmetry. With row and
column interchangeability in matrix models, it is not hard to
see that no irredundant generating set eliminates all symme-
try. However, in this case, we also know that breaking all
symmetries is intractable [Bessiere et al., 2004]. We show
next that, even when breaking all symmetries is tractable,
there exist cases where no irredundant generating set or ir-
redundant strong generating set eliminates all symmetry.

Observation 1 There exist variable and value symmetries
for which symmetry breaking constraints based on any irre-
dundant generating set or on any irredundant strong gener-
ating set fail to break all symmetry, even when breaking all
symmetries is polynomial.

Proof: Consider the cyclic group C4. Irrespective of the
base, there are just two possible irredundant strong gener-
ating sets. These sets are also the only possible irredun-
dant set of generators. They contain the identity and ei-
ther the rotation symmetry (2, 3, 4, 1) or its inverse. Note
that no element of C4 other than the identity mapping leaves
any value unchanged. Hence, subgroups in the stabilizer
chain contain just the identity mapping. A lexicographical
ordering constraint [Frisch et al., 2002; 2006] breaking this
rotational symmetry will not eliminate all variable symme-
try. Consider, for example: X1X2X3X4 ≤lex X2X3X4X1.
This breaks the rotation symmetry (2, 3, 4, 1). However, it



admits both X1 = X2 = X3 = 0, X4 = 1 and two
of its rotations: X1 = X2 = X4 = 0, X3 = 1 and
X1 = X3 = X4 = 0, X2 = 1. Similarly, a lexico-
graphical ordering constraint breaking this rotational symme-
try will not eliminate all value symmetry. Consider, for ex-
ample: X1X2X3X4 ≤lex θ(X1)θ(X2)θ(X3)θ(X4) where
θ is the rotational symmetry (2, 3, 4, 1). This simplifies to
X1 < 4. This admits both X1 = X2 = X3 = X4 = 1
and two of its rotations: X1 = X2 = X3 = X4 = 2 and
X1 = X2 = X3 = X4 = 3. 2

Breaking just the symmetries in a generating set does not
eliminate all symmetry in general. However, there are some
special cases where it does. For instance, with interchange-
able values, breaking just the linear number of generator sym-
metries which swap adjacent values is enough [Walsh, 2007].

4 Pruning generator symmetric values
We now consider a common type of symmetry where break-
ing just the symmetries in a generating set has proven to be
very effective in practice. Many problems are naturally mod-
elled by a matrix of decision variables in which (some sub-
set of) the rows and columns are interchangeable [Flener et
al., 2002; Walsh, 2003]. For example, a simple but effective
model of the balanced incomplete block design (BIBD) prob-
lem (prob028 from CSPLib.org [Gent and Walsh, 1999]) has
a matrix of 0/1 variables in which the rows and the columns
are freely interchangeable. It is infeasible to break all sym-
metry in this problem, as this was shown in [Bessiere et al.,
2004] to be NP-hard. In contrast, breaking only the sym-
metries of a generating set which permute neighbouring rows
and columns [Flener et al., 2002] is polynomial. For instance,
we can use a linear number of LEX constraints to break all
generator symmetries.

In order to improve the number of symmetric values
pruned, [Carlsson and Beldiceanu, 2002] proposed a prop-
agator for the LEXCHAIN constraint. This is the conjunction
of all LEX constraints over the rows (columns) of the model.
Enforcing domain consistency on a single LEXCHAIN con-
straint takes polynomial time and achieves stronger prun-
ing compared to a set of LEX constraints. In fact, a sin-
gle LEXCHAIN constraint removes all symmetric values in
a model where only the rows (columns) of a matrix are inter-
changeable.

We might wonder whether two LEXCHAIN constraints are
enough to prune all symmetric or all generator symmetric val-
ues in a matrix model where both rows and columns are in-
terchangeable. Example 3 in [Flener et al., 2002], shows that
two LEXCHAIN constraints are not enough to prune all sym-
metric values in a matrix model with row and column inter-
changeability. In example 2, we show that two LEXCHAIN
constraints are not enough even to prune all generator sym-
metric values.

Example 2 Consider a 2 by 2 matrix of 0/1 de-
cision variables in which rows and columns are
completely interchangeable. Suppose our back-
tracking search method assigns X2,2 = 0. The
constraints LEXCHAIN([X11, X12], [X21, X22]) and
LEXCHAIN([X11, X21], [X12, X22]) break the two generator

symmetries. Both of them are domain consistent, while the
value 1 ∈ D(X11) is a generator symmetric value. 2

In order to prune all generator symmetric values we have
therefore to enforce domain consistency on the conjunction
of the two LEXCHAIN constraints over the rows and columns.
We use DOUBLELEX to denote the global constraint that rep-
resents this conjunction.
Definition 1 Let M be a matrix of decision variables such
that rows and columns of M are fully interchangeable. The
DOUBLELEX constraint holds iff the rows and columns of M
are lexicographically ordered.
In spite of the encouraging result that the LEXCHAIN
constraint has a polynomial domain consistency algorithm
we will show that enforcing domain consistency on the
DOUBLELEX constraint is NP -hard. This shows that it is
NP -hard to eliminate all the generator symmetric values in a
matrix model with interchangeable rows and columns.

Theorem 1 Enforcing domain consistency on the
DOUBLELEX constraint is NP-hard.

Proof: We present a reduction from an instance of 1-in-
3SAT on positive clauses with n variables and m clauses to a
partially instantiated instance of the DOUBLELEXconstraint.
Throughout, we use the following example to illustrate the
reduction:

c1 = (x1 ∨ x2 ∨ x3), c2 = (x1 ∨ x2 ∨ x4)

The presentation is simpler if we reduce to a constraint that
orders the columns in lexicographic order and the rows in re-
verse lexicographic order. This modification does not change
the generality of the reduction, as for each assignment that
orders the rows in reverse lexicographic order, we can get an
assignment that orders them in lexicographic order simply by
renumbering.

The matrix is partially filled with 0s and 1s. This partial
instantiation can be extended to a complete solution of the
constraint iff the 1-in-3 SAT problem has a solution. We will
refer to a CSP variable as a cell in the matrix and vice versa.
We will also use labels for some CSP variables instead of
the coordinates of the matrix to emphasize that some CSP
variables encode a particular SAT variable.

Before we describe the reduction we introduce some nota-
tion. The central notion of the proof is the notion of a pair of
lexicographically “wrongly” ordered rows (columns). Infor-
mally, a pair of rows is “wrongly” ordered if the fixed cells
after some position k require that the unfixed cells before k
need to order the rows in strict lexicographic order to sat-
isfy the constraint. This means that the sub-rows starting
from position k are inversely (wrongly) ordered. Consider,
for example, the two rows, R1, R2 such that R1 = (001) and
R2 = ({0, 1}00). These two rows are “wrongly” ordered at
position 3, as R1[3] >lex R2[3]. However, the value of the
second row at position 1 is unfixed and can be used to ensure
that these rows are lexicographically ordered. If we set R2

to 1 then R1 = (001) <lex R2 = (100) and the “wrongly”
ordered rows are fixed. More formally, given a partial in-
stantiation of the matrix of Boolean variables, a pair of rows
(columns) R1 and R2 is ordered “wrongly” if there exists a
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Figure 1: (a) The first gadget for x1, which participates in clauses c1 and c2, (b) a particular instantiation of the first gadget,
illustrating the pairs of wrongly ordered rows and columns that it generates. All gray cells contain the value 0. Cells that are
framed with a thick line are not fixed in the construction. All other cells are fixed to 1.

position k such that R1[j] < R2[j] does not hold for any
j < k, R1[k] > R2[k] and the set J = {j|j < k, (R1[j] =
0 ∨ R1[j] ∈ {0, 1}) ∧ (R2[j] ∈ {0, 1}) is non-empty. The
notation R1[j] = 0 means that the cell is fixed to 0, while
R1[j] ∈ {0, 1} (R2[j] ∈ {0, 1}) means that R1[j] (R2[j]) is
unset. Non emptiness of J ensures that each “wrongly” or-
dered pair of rows (columns) has at least one position before
the “wrong” point k where the pair of rows (columns) can be
lexicographically ordered.

We show the construction for our running example in fig-
ures 1 and 3. Note that all gray cells in these figures are fixed
to 0. We do not put the value 0 explicitly in each gray cell to
avoid clutter. A white cell is either explicitly fixed to 1, or it
has a bold outline and is unfixed.

The matrix of CSP variables includes special sub-matrices
of two types that we will call gadgets. First, we consider gad-
gets as stand alone sub-matrices. We prove here properties of
these gadgets that relate to row symmetry and only prove the
properties that relate to column symmetry when we discuss
the complete construction.

Gadget 1 We encode a propositional variable xi that partic-
ipates in p clauses as a (2p+ 4)× (4p+ 4 + r) sub-matrix,
for some given r. The gadget has 4p + 4 free cells. Two of
these cells are indicator cells, called ti and fi, correspond-
ing to xi being true and false, respectively. The indicator
ti is at position (p + 1, r + 3 + 2p) and fi is at position
(2p + 3, 4p + 4 + r). There exist 2p more free cells, called
dependents of ti and fi, t

ck
i , f

ck
i , respectively, for k ∈ [1, p].

The cell tck
i is at position (k, r + 3 + 2(k − 1)) and f ck

i is at
(p + 2 + k, r + 4 + 2p + 2(k − 1)). Finally, the last 2p + 2
free cells form a switcher in the cells (2, 1)–(2p+ 3, 1) of the
first column.

The rest of the cells are fixed as follows. The cell (1, 1) is
1 and (1, 2p + 4) is 0. The entire second column is 1. The
columns 3–r+2 are 0. The row after each dependent tck

i , f
ck
i

is completed by two 0-cells followed by 1-cells. The row after
each indicator is completed with 1-cells. Finally, the cells
(p+ 2, r+ 3 + 2p)–(4p+ 4 + r) and (2p+ 4, 4p+ 4 + r) are

1. This means that the the row above the indicator ti contains
1s starting at the position of the indicator and similarly for
fi. The rest of the cells are fixed to 0.

The instantiation of the first gadget for variable x1 of our
example and r = 0 is shown in figure 1(a).

The intent in this construction is that if ti is 1, it should
force its dependents tck

i , k = 1, . . . , p to also be 1 and the
same for fi and its dependents f ck

i , k = 1, . . . , p. Addition-
ally, the dependents tck

i should get different values from the
dependents f ck

i . The construction of this gadget ensures that
the first of these two conditions holds for at least one of ti, fi.
Interaction with the rest of the construction ensures the sec-
ond condition. This guarantees that a complete assignment to
all the gadgets that correspond to propositional variables can
be mapped to a well-formed assignment of the Boolean vari-
ables (i.e., no Boolean variable is required to be both true and
false). Finally, the free parameter r can be used to insert a
number of 0-columns in the construction to ensure that many
instances of this gadget can be stacked without unintended
interactions.

We show the following properties for gadget 1.

Property 1 Any instantiation of the switcher consists of con-
secutive 0s followed by 1s.

This property is enforced by the LEXCHAIN constraint on
the rows.

Property 2 At least one of ti, fi has to be set to 1.

The switcher ensures this property. Setting an indicator cell
ti(fi) to 0 creates a pair of “wrongly” ordered rows. If ti(fi)
is 0 then the switcher has to have a step from 0s to 1s in the
corresponding row to order these “wrongly” ordered rows.
As the switcher can have at most one step (due to property
1), it can order at most one pair of “wrongly” ordered rows.
Therefore, the other indicator has to take the value 1.

Property 3 Any number of 0-columns can be inserted before
gadget 1.



This property follows from the fact that the extra columns
do not affect row ordering (as they just add a sequence of 0s
to every row) or column ordering (as the added columns are
the lexicographically smallest possible).
Property 4 For at least one of the indicators ti, fi, if the
indicator is 1, its dependents are also 1.

To show this, we observe first that the switcher may be used
to order a wrongly ordered pair of rows either above the row
that contains ti or below it. In the first case, the cell ti has
to contain the value 1 forcing tck

i , k = 1, . . . , p to take the
value 1. In the second case, fi has to be one as well as all its
dependents f ck

i , k = 1, . . . , p. Therefore, one of ti and fi has
a “cascade effect” in a valid assignment.
Property 5 A dependent cell is 1 if and only if a pair of
wrongly ordered columns is created .

This property is illustrated in Figure 1(b).
Property 6 Gadget 1 for a variable that participates in p
clauses creates at least p disjoint wrongly ordered pairs of
columns.

This is a consequence of property 5 and of the cascade ef-
fect of the gadget (property 4). We use this property later to
communicate the assignment to the rest of the matrix.

In the description of the second gadget, we necessarily de-
pend on the particular placement of the dependents tck

i , f
ck
i ,

which depends on the number of occurrences of each vari-
able, as well as the specific ordering of the variables. There-
fore, we use the notation col(tck

i ) to indicate the column in
which tck

i is placed in the final construction.
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Figure 2: The second gadget. All gray cells contain the value
0. Cells that are framed with a thick line are not fixed in the
construction. All other cells are fixed to 1.

Gadget 2 We encode a positive clause ck with three sub-
matrices of 6 rows each. We denote each of the three sub-
matrices as instantiations of the same gadget g2. Specif-
ically, if ck ≡ xa ∨ xb ∨ xc, the three sub-matrices are
g2(0, tck

a , t
ck

b , t
ck
c ), g2(2, f ck

a , fck

b , f ck
c ), g2(4, f ck

a , f ck

b , f ck
c ).

The gadget g2(r, a, b, c) for cells a, b, c is a sub-matrix
with 6 rows and 7 free cells. This sub-matrix covers all the
columns of the final construction, so we do not specify them
here. Instead, we refer to the maximum column of the final
construction as maxg . Four of the free cells form a switcher
in column 2n + r of the gadget, similar to gadget 1. The
switcher is in rows 2–5. The other three free cells are in posi-
tion (2, col(a) + 1), (4, col(b) + 1) and (6, col(c + 1)). The

cells (1, col(a) + 2)–(2,maxg), (3, col(b) + 2)–(4,maxg),
(5, col(c) + 2)–(6,maxg) are fixed to 1. The cell (1, 2n+ r)
is fixed to 1. The entire column 2n + r + 1 is also fixed to 1.
The rest of the cells are fixed to 0.

An instance of g2(a, b, c) is shown in figure 2.

Property 7 At most one of the cells a, b, c of an instance of
g2 gets the value 1.

To show this property, observe that setting any of a, b, c
to 1, creates a pair wrongly ordered rows. The switcher can
only fix one such pair (by an analogue of property 1). These
pairs cannot be fixed in any other position before the switcher,
as they are all fixed to 0, so the gadget ensures this property
holds in any assignment.

Property 8 In an instance of g2, assigning any of a, b or c to
0 does not create wrongly ordered columns.

This holds by the construction of the gadget.

Complete construction. Recall that we reduce from a 1-
in-3 SAT formula on n variables and m positive clauses. For
reference, the entire construction for our example is shown in
figure 3. We create non-overlapping gadgets of the first type
for each SAT variable xi, i = 1, . . . , n and gadgets of the sec-
ond type (consisting of three sub-gadgets g2) for each clause
ci, i = 1, . . . ,m and stack them together in the entire matrix.
Specifically, the type 1 gadget for variable x1 is constructed
with parameter r1 = 2(n−1+m), starting at row sr1 = 1 and
column sc1 = 1 and ending at row er1 = 2p1 + 4 + sr1 − 1 and
column ec1 = 4p+4+r1−sc1−1. The starting row of the rest
of the type 1 gadgets is defined inductively as sri = eri−1 + 1
and the starting column in closed form sci = 2(i− 1).

The type 2 gadgets are stacked on top of the type 1 gadgets.
As the size of gadgets is fixed, we can specify their starting
positions in closed form: The top row of the last type 1 gadget
is ern, so the type 2 gadget for clause ci is at scri = ern + 1 +
18(i− 1). The starting column for all type 2 gadgets is 0.

Finally, the entire construction uses a header to split the
matrix into partially interchangeable columns and to isolate
communication between different gadgets of the same type.
The header consists of n rows at the top of the matrix, starting
at row scrm + 1. The cells (scrm + 18 + i, sci + ri + 3)–
(scrm + 18 + i, ecn), for i ∈ 1, . . . , n are 1. The rest of the
cells of the header are 0.

Essentially the set of 1s at the ith row stacked above the
type 2 gadgets covers the “body” of the type 1 gadget of vari-
ables i–n, i.e. the part of the gadget after the 0-columns re-
quired by the parameter ri. This header plays a similar role
to the parameter r of gadget type 1, which prevents inter-
action among stacked type 1 gadgets, creating partitions of
partially interchangeable rows. In figure 3, we use thick lines
to highlight the effect of these separators – creating strictly
lexicographically ordered rows and columns.

Property 9 Columns of different type 1 gadgets are not in-
terchangeable. Rows of different gadgets of any type are not
interchangeable.
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Figure 3: The construction for the running example: c1 = (x1 ∨ x2 ∨ x3), c2 = (x1 ∨ x2 ∨ x4).
Black lines are strictly lexicographically ordered columns and rows that are used to separate the gadgets from each other.



We now see that each type 1 gadget encodes a proposi-
tional variable and each type 2 gadget encodes a 1-in-3 posi-
tive clause. Each variable gadget has free cells placed so that
each free cell interacts with exactly one 1-in-3 positive clause.

Property 10 If a dependent cell tck
i (f ck

i ) of the type 1 gad-
get of variable i creates a wrongly ordered pair of columns,
this pair can be fixed only by the first (any of the second or
third) g2 sub-matrix of the type 2 gadget of clause ck

It is clear that this property holds, by the alignment of the
free cells.

Note now that by property 6, any assignment that fills in
the free cells of this matrix, creates at least 3m wrongly or-
dered pairs of columns. By property 10, at most 3m wrongly
ordered pairs of columns may be fixed by sub-matrices of
gadget 2. This means that the assignment to the free cells of
type 1 gadgets creates exactly 3m wrongly ordered pairs of
columns. Combining this with properties 2 and 4, we get that
either all of the tck

i or all of the f ck
i cells will be 1 and never

a mix. This shows that this matrix encodes a well-formed as-
signment to the propositional variables: if all the dependents
of ti are 1, then xi is true, otherwise it is false.

It remains to show that this assignment satisfies all the
clauses. Consider first that exactly 3m pairs of wrongly or-
dered columns are created by type 1 gadgets and fixed by type
2 gadgets. This means that there exists a 1-to-1 mapping be-
tween these. This means that the first sub-matrix of a type 2
gadget fixes a wrongly ordered pair of columns that was cre-
ated by an assignment of one of the clause’s variables to true,
while the second and third sub-matrices fix pairs generated by
assignments of the clause’s variables to false. Since this map-
ping is 1-to-1, the variables used are distinct in each of the
three sub-matrices. In other words, this construction guar-
antees that at least one variable of each clause is true and at
least two variables are false, which are exactly the conditions
required for 1-in-3 satisfiability.

The constructed DOUBLELEX constraint thus has a solu-
tion iff the 1-in-3 SAT formula is satisfiable. Hence, it is
NP-hard to enforce domain consistency on the DOUBLELEX
constraint [Bessiere et al., 2004]. 2

5 Conclusions
Breaking just the symmetries in a generating set is an efficient
and tractable way to deal with large numbers of symmetries.
However, pruning all symmetric values remains NP-hard. In
fact, our proof shows that it is intractable to propagate com-
pletely a conjunction of lexicographical ordering constraints
on the rows and columns of a matrix model. Such ordering
constraints have been frequently and effectively used to break
row and column symmetry.
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