
Analogical Proof PlanningToby WalshDepartment of Arti�cial IntelligenceEdinburgh University80 South Bridge, EdinburghT.Walsh@uk.ac.edSeptember 6, 1998AbstractProof planning is a powerful technique for theorem proving. Proof plansare descriptions of common proof strategies; each consists of a sequence ofmore primitive methods. This paper explores how the methods developed inone domain can be \creatively" applied to new problems and new (some-times analogous) domains.1 IntroductionMore than 150 years ago, Lady Lovelace wrote \The Analytical Engine has nopretensions to originate anything" (her italics) [Tur63]. Since the AnalyticalEngine is, in principle, a universal Turing machine, her comment could be appliedto all computers. AI, especially traditional symbolic AI, continues to face suchcriticism. Indeed, Karl Popper has argued \... there is no such thing as a logicalmethod of having new ideas, or a logical reconstruction of this process ..." [Pop59].Some of the reasons for such critical attitudes towards (symbolic) AI include thebrittleness, domain speci�city, and predictability of (symbolic) AI programs. Theaim of this paper is to show that symbolic AI programs can, if written well andgiven appropriate representations, behave in ways that appear \creative"; thatis, they can behave with less brittleness, more domain independence, and moreunpredictability than is generally assumed.This paper focuses on mathematical creativity. Although problem solving inmathematics is usually well de�ned, there is considerable scope for creativity.For example, in the 18th century Euler discovered a novel method for summingan arithmetic series; that is, he discovered a new method for re-expressing an1



arithmetic series in terms of its �rst term, the di�erence between successive terms,and the number of terms in the series.Consider the arithmetic series,S = a + (a+ d) + (a+ 2d) + ::: + (a+ nd)That is, an arithmetic series of n + 1 terms whose �rst term is a and in whichthe di�erence between successive terms is the constant d. Euler's insight was toinvert this series,S = (a+ nd) + ::: + (a+ 2d) + (a+ d) + aAdding these two series together gives,2S = a + (a+ d) + (a+ 2d) + ::: + (a+ nd) +(a+ nd) + (a+ (n� 1)d) + (a+ (n� 2)d) + ::: + aReordering this expression by collecting together those pairs of terms which aren+ 1 terms apart (vertically adjacent in the above equation), gives n+ 1 terms,each equal to 2a+ nd. Thus,2S = (n + 1)(2a+ nd)That is, S = n+ 12 (2a+ nd)Remarkably, Euler was just seven years old when he found this proof. The aimof this research is to try to reproduce such behaviour on a computer.This paper is structured as follows. Section 2 introduces proof planning, a tech-nique for describing proof strategies. Section 3 illustrates this idea by meansof an example. In sections 4 to 6, problem solving strategies developed in onedomain are mapped across onto new and analogous domains. Finally, section 7gives some conclusions.2 Proof PlanningTo be able to discuss mathematical problem solving, we need a way of describingproofs, and proofs strategies. Proof plans have been developed in Alan Bundy'sDReaM group (Discovery and Reasoning in Mathematics) as a way of specifyinghigh-level proof strategies [Bun88]. Proof planning has been successfully appliedto many di�erent domains including inductive theorem proving, database integ-rity maintenance, and hardware con�guration.2



Proof plans are built in terms of methods, meta-level descriptions of compoundproof steps. Methods encode discrete proof \chunks" (eg. a useful strategy inequation solving is to collect together occurrences of the unknown); every methodhas some preconditions, a set of conditions necessary for the method to apply(eg. unknown occurs more than once), and some postconditions that describethe result of the method (eg. unknown now only occurs once). Each methodalso has an input and output; these are schematic representations of the goalformula before and after application of the method. A particular method cancapture many di�erent proof \chunks" as it includes parameters that need to beinstantiated to give an object-level proof (eg. the number of occurrences of theunknown).A proof planner, called Clam, has been implemented in PROLOG that putsmethods together to give proof plans [BvHFHS90]. Each proof plan built byClam is tailored to the particular theorem being proved, with the preconditionsof methods at the end of the plan being satis�ed by the postconditions of methodsearlier in the plan. For reasons of e�ciency and brevity, methods are often onlypartial speci�cations of problem solving strategies; proof plans therefore needto be executed to create an object-level proof. Each method has an associatedtactic, a program which tries to perform the associated object-level reasoning.The execution of tactics can occasionally fail; this gives proof planning a certainunpredictability.Proof planning moves the search for a proof from the object-level to the meta-level, often resulting in great reductions in search. Proof planning can be thoughtof as a creative process since, for every new problem, methods are put togetherin a new way which is tailored to the problem at hand. In section 3, I'll look atproof planning within a single domain, whilst in sections 4 and 5 I'll look at howproof planning can map across onto new and analogous domains.3 An ExampleTo illustrate some of the ideas behind proof planning, I'll give an example ofbuilding a proof plan to sum a series. That is, as in the Euler example, �ndingan expression for the sum of a series just in terms of primitive arithmetic opera-tions like addition and multiplication. Such a closed form expression should notinvolve summation either explicitly (ie. it should not contain expressions men-tioning \P") or implicitly (eg. it should not contain symbols like \ + ::: + ").Many of the methods used in this (and the next two sections) for summing seriesare described in more detail in [WNB92]. For the sake of simplicity, I'll considerjust �nite series. By Dirichlet's theorem, most of the methods could, however,also be used for summing absolutely convergent in�nite series.3



By repeated application of the rule,d(u+v)dx = dudx + dvdxThe derivative of a sum can be shown to be the sum of the derivatives,ddx(Xu) = X dudxThus, one trick for summing a series is to �nd the sum of the integral of the seriesand then di�erentiate the result. For example, consider the series,S1 = 1 + 2:x+ 3:x2 + ::: + (n+ 1):xn= nXi=0(i+ 1):xiThe integrate method transforms this series as follows,S1 = nXi=0(i+ 1):xi= nXi=0 dxi+1dx= ddx( nXi=0 xi+1)The sum inside the derivative is a geometric progression, a well known standardresult; it can be easily solved by the standard form method (see next section)giving, S1 = ddx(x:xn+1 � 1x� 1 )Di�erentiating this expression is now a purely algorithmic task. The proof planfor summing this series is thus the integrate method followed by the standardform method. Note how this simple two step proof plan is able to describe acomplex and much longer proof.Using PROLOG style notation, the integrate method can be represented by thefollowing frame:Name: integrate(X,Pos)Input: GoalPreconditions: exp_at(Goal,Pos,sum(I,A,B,U)),integrate(U,X,V),I \= X,simplify(U,V)Postconditions: replace(Pos,Goal,dif(X,sum(I,A,B,V)),NewGoal)Output: NewGoal4



The name of the method, integrate(X,Pos) includes two parameters, X and Poswhich are the variable of integration and the position in the goal formula of theseries to be summed. The input Goal is the theorem we wish to prove. In theprevious example, this theorem is,9s : s = nXi=0(i + 1):xiIn proving this theorem, we actually �nd a witness for s; that is, a closed formsum for the series1, Pni=0(i + 1):xi.The precondition exp_at(Goal,Pos,sum(I,A,B,U)) �nds a subexpression of theGoal at position Pos which is a series to be summed. The expression sum(I,A,B,U)is the internal representation for the sum of terms of the form U for I=A to I=B.That is, BXI=AUWhen we sum the series, nXi=0(i+ 1):xiThis precondition will instantiate I to i, A to 0, B to n and U to (i+ 1):xi.The precondition integrate(U,X,V) then integrates the individual terms, U inthis series; V is the result of the integration, whilst X is the variable of integra-tion. In our example, V is instantiated to xi+1, and X to x. The preconditionI \= X, checks that the variable of integration is not also the (bound) variableof summation.The precondition simplify(U,V) restricts the application of the method to thosesums in which the integral of the terms in the series, V are \simpler" to sumthan the original terms, U. In our example, V (which is instantiated to xi+1) isconsidered a simpler expression than U (which is instantiated to (i+1):xi). It ispossible to give a formal account of this intuitive concept in terms of a Knuth-Bendix term order (see [WNB92] for more details). Without this precondition, theintegrate method would always be applicable; this would cause much unnecessarysearch. The motivation behind this precondition is that we only want to use thismethod when it makes the series easier to sum.The postcondition replace(Pos,Goal,dif(X,sum(I,A,B,V)),NewGoal) substi-tutes the derivative of the new series for the original series, giving the transformed1Note that this theorem has a trivial proof as one witness for s is simply the expressionPni=0(i + 1):xi. However, this is not closed form since it involves the non-primitive operationof summation. At the meta-level, we therefore impose the extra condition that the witness fors be closed form. 5



goal, NewGoal. The expression dif(X,sum(I,A,B,V) is the internal representa-tion for the derivative, ddX ( BXI=AV )In our example, this will be instantiated to,ddx( nXi=0 xi+1)As explained in the last section, proof planning can occasionally be unpredictablebecause, for reasons of e�ciency, methods are often only partial speci�cations ofproblem solving strategies. Consider, for example:S2 = nXi=0 i:e�:iwhere � is 3.1415, and e is 2:7183. The proof plan built for this problem isentirely analogous to the previous one for S1. It includes the rather novel task ofdi�erentiating with respect to �. That, is:]]]] S2 = dd� ( nXi=0 e�:i) ]]]]This occurs because the preconditions to the integratemethod merely check thatwe don't di�erentiate with respect to the (bound) index of summation. Actually,di�erentiating (and integrating) with respect to the constant � gives the correctanswer since the series could be generalised (replacing � with x), summed andthen specialised (replacing x with �).4 Mapping between DomainsMethods are often general purpose proof strategies; many can therefore be mapped(sometimes with changes) onto new domains. In this section, I'll give an exampleof one method, the standard form method which was developed for summingseries, but that can be easily mapped across to several other domains.The standard form method uses rippling, a method itself developed for anotherdomain, inductive theorem proving [BvHSI90]. Rippling is based upon the obser-vation that we frequently want to transform one expression into something verysimilar. Consider for example, the following subgoal from the last section:S3 = nXi=0 xi+16



We can compare this goal with the standard result for the sum of the geometricprogression: nXi=0 xiThe metaphor is a Scottish loch; the re
ection of the mountains in the lochrepresent the goal, whilst the mountains themselves represent what we know, thestandard result. The re
ection is not perfect because of the extra \+1" whichappears in the goal. Such an expression is called a wavefront; we represent itwith a box: nXi=0 x i+1The underlined expression within the box represents that part of the re
ectionwhich mirrors the mountain exactly. If we delete everything in the box which isnot underlined, we get a perfect re
ection. The wavefront in the box is like aripple on the surface of the loch which prevents a perfect re
ection. The standardform method moves this wavefront upwards (that is, higher up the expression)till it is out of the way leaving behind (some function of) the standard result.The standard form method annotates the goal with the wavefronts which are tobe moved out of the way by the rippling method. In this case, the standard formmethod adds the following annotations:S3 = nXi=0 x i+1To move this wavefront upwards and out of the way, we need various rules formanipulating exponentials and sums; these are called wave rules:x i+1 ) x:xiX x:u ) x:P uNotice how each of these rules, when viewed left to right, moves the wavefronts(the boxes) higher up and towards the outside of the expression. The ripplingmethod uses these wave rules to move the wavefront on the sum upwards even-tually leaving a function of the sum of a geometric progression.S3 = nXi=0 x i+1= nXi=0 x:xi= x: nXi=0 xi7



We can now replace P xi by the standard result for the sum of a geometricprogression, giving the answer:S3 = x:xn+1 � 1x� 1The standard form method can be mapped across to work in many other domains:products, derivatives, integrals ... For instance, to transform the standard formmethod from sums to integrals we merely need to replace the wave rules for ma-nipulating sums by some (not completely analogous) wave rules for manipulatingintegrals and to replace the standard results for summing series by some standardresults for integration. This transformed standard form method can cope with awide variety of integrals. As an example, it builds the following proof:I1 = Z e x+1 dx= Z e:ex dx= e:Z ex dx= e:exThis proof is entirely analogous in strucuture to that for the last series, S3.However, since some of the rules for manipulating integrals are very di�erent tothose for manipulating sums, the transformed standard form method can produceproofs of a very di�erent structure to those produced by the original standardform method for summing series. In mapping the standard form method betweendomains, we merely needed to change the rules used. As I'll show in the nextsection, the mapping between domains can be more complicated than this.5 Mapping between Analogical DomainsAnalogy plays an important rôle in mathematical creativity [Pol65]. Mappingmethods onto analogical domains therefore seems an interesting exercise. Unlikemuch analogical reasoning [Gen89, Kli71] this involves the mapping not of object-level terms but of meta-level methods. Consider, for example, the telescopemethod for summing series. In this method, one term in the series cancels againsta successive term by subtraction, leaving just the two end terms. For example:nXi=1 1i:(i + 1) = nXi=1 1i � 1i + 1= (11 � 12) + (12 � 13) + (13 � :::: � 1n) + ( 1n � 1n + 1)8



Now, like Euler, we can reorder this series to give:nXi=1 1i:(i+ 1) = 11 + (12 � 12) + (13 � 13) + :::: + (1n � 1n)� 1n+ 1= 11 � 1n+ 1= nn+ 1The telescope method can be mapped onto an analogous method for calculatingproducts in which one term in a product is cancelled against a successive termby division, leaving just the end terms of the product. For example,nYi=1(1 + 1i ) = nYi=1 i+ 1i= 21 :32 : :::3 : :::: :n� 1:::: : nn� 1 :n+ 1nReordering this product gives:nYi=1(1 + 1i ) = 1:22 :33 : :::: :n� 1n� 1 :nn:n + 1= n + 1In this analogical mapping, addition maps onto multiplication, subtraction ontodivision, and the summation operator onto the product operator:+ =) �� =) =X =) YThe cancellation of repeated addition by subtraction thus maps onto cancellationof repeated multiplication by division. The mapping of the telescope method fromsums to products thus requires both the mapping of rules used by the method(cf. the mapping of the standard formmethod) and the mapping of object-levelterms within the (preconditions and postconditions of the) method:Name: telescopeInput: GoalPreconditions: exp_at(Goal,Pos,sum(I,A,B,U)),rewrite(U,V(I) - V(I+1))Postconditions: replace(Pos,Goal,V(A)-V(B+1),NewGoal)Output: NewGoal 9



kmaps onto+Name: telescopeInput: GoalPreconditions: exp_at(Goal,Pos,prod(I,A,B,U)),rewrite(U,V(I) / V(I+1))Postconditions: replace(Pos,Goal,V(A)/V(B+1),NewGoal)Output: NewGoalThe precondition, rewrite(U,V(I) - V(I+1)) determines whether the terms inthe series being summed can be rewritten into an appropriate di�erence. Notethat V is a higher-order variable. If this is so, the postcondition, replace(Pos,Goal,V(A)-V(B+1),NewGoal)replaces the series by the expression V(A)-V(B+1) where A and B are the lowerand upper limits of the series.Similarly, the precondition, rewrite(U,V(I) / V(I+1)) determines if the termsin the product can be rewritten into an appropriate fraction. If this is so, thepostcondition, replace(Pos,Goal,V(A)/V(B+1),NewGoal) replaces the series bythe expression V(A)/V(B+1) where A and B are the lower and upper limits of theproduct.6 Another Analogical MappingAs a �nal illustration of this idea of mapping between analogical domains, I'llshow how the method of integration by parts can be mapped onto an analogicalmethod for summation. This mapping highlights how summation is very muchthe discrete analog of the continuous notion of integration. The mapping callsupon the upper di�erence operator, 4 which was implicitly used in the telescopemethod. The upper di�erence operator is de�ned by,4 v(x) = v(x+ 1)� v(x)This is the discrete analog of the (continuous) di�erentiation operator,ddx v(x) = lim�x!0 v(x+ �x)� v(x)�xIntegration by parts uses the identity,d(u:v) = u:dv + v:du10



Integrating both sides and subtracting gives,Z u dv = u:v � Z v du (1)The integration by parts method uses this equation to transform one integral,R u dv into a (hopefully) simpler integral, R v du.Now, an analogous equation can be found for summation and the upper di�erenceoperator. Let E be the shift operator. That is,Ev(x) = v(x+ 1)By expanding out terms, 4 u:v = u:4 v + Ev:4 uSumming both sides and subtracting gives,Xu:4 v = u:v �XEv:4 u (2)Aside from the shift operation, this is directly analogous to (1). We can there-fore map the integration by parts method onto an analogous summation byparts method. In this analogical mapping, integration maps onto summationand derivatives onto upper di�erences:Z dx =) Xddx =) 4This requires both the mapping of rules used by the method (as in the map-ping of the standard form method) and the mapping of object-level terms withinthe preconditions and postconditions of the method (as in the mapping of thetelescope method).As an example of a proof constructed by the summation by parts method, con-sider, S4 = nXi=0 i:HiWhere Hm is the m-th Harmonic number,Hm = mXi=1 1iAnd where we will extend the concept of closed form sum to include functions ofsuch Harmonic numbers. 11



Let u = Hi and 4v = i.Thus, 4u = 1i+1 and v = i:(i�1)2 .Hence, S4 = nXi=0 i:Hi= " i:(i� 1)2 :Hi#n+10 � nXi=0 i:(i + 1)2 : 1i + 1= n:(n+ 1)2 :Hn+1 � nXi=0 i2= n:(n+ 1)2 :Hn+1 � n:(n+ 1)4= n:(n+ 1)2 :(Hn+1 � 12)This proof is entirely analogous to that built by the integration by parts methodfor the integral, I2 = Z n1 x: ln(x) dx= "x22 : ln(x)#n1 � Z n1 x22 :1x dx= n22 : ln(n)� Z n1 x2 dx= n22 : ln(n)� "x24 #n1= 12 :(n2: ln(n)� n22 + 12)Note how ln(x) in integration is analogous to Hi in summation. This is becauseln(x) behaves very similarly in the domain of integration toHi in the domain sum-mation; for example, R 1x dx equals ln(x) whilst P 1i equals Hi. Thus, the analogymust also map logarithms in integration onto Harmonic numbers in summation.It would be very interesting to see how much further this analogy between in-tegration and summation can be taken, and, in particular, to see how manyother methods from the domain of integration can be mapped onto methods forsummation.7 ConclusionsThe application of old methods to new problems and new domains generatesbehaviour which might be thought of as \creative". Mapping methods onto new12
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