Analogical Proof Planning

Toby Walsh
Department of Artificial Intelligence
Edinburgh University
80 South Bridge, Edinburgh
T.Walsh@uk.ac.ed

September 6, 1998

Abstract

Proof planning is a powerful technique for theorem proving. Proof plans
are descriptions of common proof strategies; each consists of a sequence of
more primitive methods. This paper explores how the methods developed in
one domain can be “creatively” applied to new problems and new (some-
times analogous) domains.

1 Introduction

More than 150 years ago, Lady Lovelace wrote “The Analytical Engine has no
pretensions to originate anything” (her italics) [Tur63]. Since the Analytical
Engine is, in principle, a universal Turing machine, her comment could be applied
to all computers. Al, especially traditional symbolic Al, continues to face such
criticism. Indeed, Karl Popper has argued “.. there is no such thing as a logical
method of having new ideas, or a logical reconstruction of this process ...” [Pop59].
Some of the reasons for such critical attitudes towards (symbolic) Al include the
brittleness, domain specificity, and predictability of (symbolic) AT programs. The
aim of this paper is to show that symbolic Al programs can, if written well and
given appropriate representations, behave in ways that appear “creative”; that
is, they can behave with less brittleness, more domain independence, and more
unpredictability than is generally assumed.

This paper focuses on mathematical creativity. Although problem solving in
mathematics is usually well defined, there is considerable scope for creativity.
For example, in the 18th century Euler discovered a novel method for summing
an arithmetic series; that is, he discovered a new method for re-expressing an



arithmetic series in terms of its first term, the difference between successive terms,
and the number of terms in the series.

Consider the arithmetic series,
S =a + (a+d) + (a+2d) + ..+ (a+nd

That is, an arithmetic series of n + 1 terms whose first term is ¢ and in which
the difference between successive terms is the constant d. Euler’s insight was to
invert this series,

S = (a+nd) +..+ (a+2d) + (a+d) + a
Adding these two series together gives,

25 = a + (a+d)
a+nd) + (a+(n—1)d)

+ (a+2d) + ..+ (a+nd) +
+ (a+(n—2)d) + ..+ a

Reordering this expression by collecting together those pairs of terms which are
n+ 1 terms apart (vertically adjacent in the above equation), gives n + 1 terms,

each equal to 2a + nd. Thus,
2S = (n+1)(2a+nd)

That is,

s — n;1(2a+nd)

Remarkably, Euler was just seven years old when he found this proof. The aim
of this research is to try to reproduce such behaviour on a computer.

This paper is structured as follows. Section 2 introduces proof planning, a tech-
nique for describing proof strategies. Section 3 illustrates this idea by means
of an example. In sections 4 to 6, problem solving strategies developed in one
domain are mapped across onto new and analogous domains. Finally, section 7
gives some conclusions.

2 Proof Planning

To be able to discuss mathematical problem solving, we need a way of describing
proofs, and proofs strategies. Proof plans have been developed in Alan Bundy’s
DReaM group (Discovery and Reasoning in Mathematics) as a way of specifying
high-level proof strategies [Bun88|. Proof planning has been successfully applied
to many different domains including inductive theorem proving, database integ-
rity maintenance, and hardware configuration.



Proof plans are built in terms of methods, meta-level descriptions of compound
proof steps. Methods encode discrete proof “chunks” (eg. a useful strategy in
equation solving is to collect together occurrences of the unknown); every method
has some preconditions, a set of conditions necessary for the method to apply
(eg. unknown occurs more than once), and some postconditions that describe
the result of the method (eg. unknown now only occurs once). Each method
also has an input and output; these are schematic representations of the goal
formula before and after application of the method. A particular method can
capture many different proof “chunks” as it includes parameters that need to be
instantiated to give an object-level proof (eg. the number of occurrences of the
unknown).

A proof planner, called Clam, has been implemented in PROLOG that puts
methods together to give proof plans [BvHFHS90]. Each proof plan built by
Clam is tailored to the particular theorem being proved, with the preconditions
of methods at the end of the plan being satisfied by the postconditions of methods
earlier in the plan. For reasons of efficiency and brevity, methods are often only
partial specifications of problem solving strategies; proof plans therefore need
to be executed to create an object-level proof. Each method has an associated
tactic, a program which tries to perform the associated object-level reasoning.
The execution of tactics can occasionally fail; this gives proof planning a certain
unpredictability.

Proof planning moves the search for a proof from the object-level to the meta-
level, often resulting in great reductions in search. Proof planning can be thought
of as a creative process since, for every new problem, methods are put together
in a new way which is tailored to the problem at hand. In section 3, I'll look at
proof planning within a single domain, whilst in sections 4 and 5 I’ll look at how
proof planning can map across onto new and analogous domains.

3 An Example

To illustrate some of the ideas behind proof planning, I’'ll give an example of
building a proof plan to sum a series. That is, as in the Euler example, finding
an expression for the sum of a series just in terms of primitive arithmetic opera-
tions like addition and multiplication. Such a closed form expression should not
involve summation either explicitly (ie. it should not contain expressions men-
tioning “3>”) or implicitly (eg. it should not contain symbols like “ 4+ ... + 7).
Many of the methods used in this (and the next two sections) for summing series
are described in more detail in [WNB92]. For the sake of simplicity, I'll consider
just finite series. By Dirichlet’s theorem, most of the methods could, however,
also be used for summing absolutely convergent infinite series.



By repeated application of the rule,
d(u+v) du dv

dx = A T de
The derivative of a sum can be shown to be the sum of the derivatives,

d du

L = 2
Thus, one trick for summing a series is to find the sum of the integral of the series
and then differentiate the result. For example, consider the series,

S; = 1+2z2+32*+..+(n+1)a"
n
= > (i+1)a
i=0
The integrate method transforms this series as follows,
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The sum inside the derivative is a geometric progression, a well known standard
result; it can be easily solved by the standard form method (see next section)
giving,
d xn-l—l -1

Differentiating this expression is now a purely algorithmic task. The proof plan
for summing this series is thus the integrate method followed by the standard
form method. Note how this simple two step proof plan is able to describe a
complex and much longer proof.

Using PROLOG style notation, the integrate method can be represented by the
following frame:

Name: integrate(X,Pos)

Input: Goal

Preconditions: | exp_at(Goal,Pos,sum(I,A,B,U)),
integrate(U,X,V),

I\=X,

simplify(U,V)

Postconditions: | replace(Pos,Goal,

dif (X,sum(I,A,B,V)) , NewGoal)
Output: NewGoal




The name of the method, integrate (X,Pos) includes two parameters, X and Pos
which are the variable of integration and the position in the goal formula of the
series to be summed. The input Goal is the theorem we wish to prove. In the
previous example, this theorem is,

ds.s = Y (i+1).a’
i=0

In proving this theorem, we actually find a witness for s; that is, a closed form
sum for the series!, 3" (i + 1).2".

The precondition exp_at (Goal,Pos,sum(I,A,B,U)) finds a subexpression of the
Goal at position Pos which is a series to be summed. The expression sum(I,A,B,U)
is the internal representation for the sum of terms of the form U for I=A to I=B.
That is,

When we sum the series,

d(i+1).a"

1=0
This precondition will instantiate I to i, A to 0, B to n and U to (: + 1).z".

The precondition integrate(U,X,V) then integrates the individual terms, U in
this series; V is the result of the integration, whilst X is the variable of integra-
tion. In our example, V is instantiated to 2'™!, and X to x. The precondition
I \= X, checks that the variable of integration is not also the (bound) variable
of summation.

The precondition simplify(U,V) restricts the application of the method to those
sums in which the integral of the terms in the series, V are “simpler” to sum
than the original terms, U. In our example, V (which is instantiated to z*™') is
considered a simpler expression than U (which is instantiated to (¢ +1).2*). Tt is
possible to give a formal account of this intuitive concept in terms of a Knuth-
Bendix term order (see [WNB92] for more details). Without this precondition, the
integrate method would always be applicable; this would cause much unnecessary
search. The motivation behind this precondition is that we only want to use this
method when it makes the series easier to sum.

The postcondition replace(Pos,Goal,dif (X,sum(I,A,B,V)) ,NewGoal) substi-
tutes the derivative of the new series for the original series, giving the transformed

INote that this theorem has a trivial proof as one witness for s is simply the expression
S (i +1).2'. However, this is not closed form since it involves the non-primitive operation
of summation. At the meta-level, we therefore impose the extra condition that the witness for
s be closed form.



goal, NewGoal. The expression dif (X,sum(I,A,B,V) is the internal representa-
tion for the derivative,

4 B
x> V)
I=A
In our example, this will be instantiated to,

Loe

1=0

As explained in the last section, proof planning can occasionally be unpredictable
because, for reasons of efficiency, methods are often only partial specifications of
problem solving strategies. Consider, for example:

where 7 is 3.1415, and e is 2.7183. The proof plan built for this problem is
entirely analogous to the previous one for S;. It includes the rather novel task of
differentiating with respect to m. That, is:

st % = ALy e i

This occurs because the preconditions to the integrate method merely check that
we don’t differentiate with respect to the (bound) index of summation. Actually,
differentiating (and integrating) with respect to the constant 7 gives the correct
answer since the series could be generalised (replacing 7 with z), summed and
then specialised (replacing x with 7).

4 Mapping between Domains

Methods are often general purpose proof strategies; many can therefore be mapped
(sometimes with changes) onto new domains. In this section, I'll give an example
of one method, the standard form method which was developed for summing
series, but that can be easily mapped across to several other domains.

The standard form method uses rippling, a method itself developed for another
domain, inductive theorem proving [BvHSI90]. Rippling is based upon the obser-
vation that we frequently want to transform one expression into something very
similar. Consider for example, the following subgoal from the last section:



We can compare this goal with the standard result for the sum of the geometric
progression:

The metaphor is a Scottish loch; the reflection of the mountains in the loch
represent the goal, whilst the mountains themselves represent what we know, the
standard result. The reflection is not perfect because of the extra “4+1” which
appears in the goal. Such an expression is called a wavefront; we represent it

with a box:
3
x
i=0
The underlined expression within the box represents that part of the reflection
which mirrors the mountain exactly. If we delete everything in the box which is
not underlined, we get a perfect reflection. The wavefront in the box is like a
ripple on the surface of the loch which prevents a perfect reflection. The standard
form method moves this wavefront upwards (that is, higher up the expression)
till it is out of the way leaving behind (some function of) the standard result.

The standard form method annotates the goal with the wavefronts which are to
be moved out of the way by the rippling method. In this case, the standard form
method adds the following annotations:

To move this wavefront upwards and out of the way, we need various rules for
manipulating exponentials and sums; these are called wave rules:

.’E = .’E..’Ei

2 [ru] = [sXu

Notice how each of these rules, when viewed left to right, moves the wavefronts
(the boxes) higher up and towards the outside of the expression. The rippling
method uses these wave rules to move the wavefront on the sum upwards even-
tually leaving a function of the sum of a geometric progression.

53 = Zn:l'
=0

3




We can now replace Y 2 by the standard result for the sum of a geometric
progression, giving the answer:
xn+1 -1

53:.1‘.

z—1

The standard form method can be mapped across to work in many other domains:
products, derivatives, integrals ... For instance, to transform the standard form
method from sums to integrals we merely need to replace the wave rules for ma-
nipulating sums by some (not completely analogous) wave rules for manipulating
integrals and to replace the standard results for summing series by some standard
results for integration. This transformed standard form method can cope with a
wide variety of integrals. As an example, it builds the following proof:

a+1
L, = /edx

— [
= e./exdx

T

= €.

This proof is entirely analogous in strucuture to that for the last series, Ss.
However, since some of the rules for manipulating integrals are very different to
those for manipulating sums, the transformed standard form method can produce
proofs of a very different structure to those produced by the original standard
form method for summing series. In mapping the standard form method between
domains, we merely needed to change the rules used. As I’ll show in the next
section, the mapping between domains can be more complicated than this.

5 Mapping between Analogical Domains

Analogy plays an important role in mathematical creativity [Pol65]. Mapping
methods onto analogical domains therefore seems an interesting exercise. Unlike
much analogical reasoning [Gen89, Kli71] this involves the mapping not of object-
level terms but of meta-level methods. Consider, for example, the telescope
method for summing series. In this method, one term in the series cancels against
a successive term by subtraction, leaving just the two end terms. For example:

i=1

n

1
(i +1) i
- (%—%H(%—%H(%— =)




Now, like Euler, we can reorder this series to give:

- 1 1 1 1 1 1 1 1 1
Ly~ 1te TGt e H G T
11
T 1 n+1
. n
on+1

The telescope method can be mapped onto an analogous method for calculating
products in which one term in a product is cancelled against a successive term
by division, leaving just the end terms of the product. For example,

- 1 !
H(l—f‘—.) - H .
i=1 v i=1 !
B g%_ n—1 n n+1
1723 . m—=1"n
Reordering this product gives:
L 1 23 n—1n
1+-) = 1l-.-. ... . —. 1
£(+¢> 23 n1n" "
= n+1

In this analogical mapping, addition maps onto multiplication, subtraction onto
division, and the summation operator onto the product operator:

+ = x
_:>/

2. = 1l

The cancellation of repeated addition by subtraction thus maps onto cancellation
of repeated multiplication by division. The mapping of the telescope method from
sums to products thus requires both the mapping of rules used by the method
(cf. the mapping of the standard form method) and the mapping of object-level
terms within the (preconditions and postconditions of the) method:

Name: telescope

Input: Goal

Preconditions: | exp_at(Goal,Pos,sum(I,A,B,U)),
rewrite (U,V(I) - V(I+1))
Postconditions: | replace (Pos,Goal,V(A)-V(B+1) ,NewGoal)
Output: NewGoal




maps onto

4

Name: telescope

Input: Goal

Preconditions: | exp_at(Goal,Pos,prod(I,A,B,U)),
rewrite(U,V(I) / V(I+1))
Postconditions: | replace (Pos,Goal,V(A)/V(B+1) ,NewGoal)
Output: NewGoal

The precondition, rewrite (U,V(I) - V(I+1)) determines whether the terms in

the series being summed can be rewritten into an appropriate difference. Note

that Vis a higher-order variable. If this is so, the postcondition, replace (Pos,Goal,V(A)-V(B+1) ,NewGo
replaces the series by the expression V(A)-V(B+1) where A and B are the lower

and upper limits of the series.

Similarly, the precondition, rewrite (U,V(I) / V(I+1)) determines if the terms
in the product can be rewritten into an appropriate fraction. If this is so, the
postcondition, replace (Pos,Goal,V(A) /V(B+1) ,NewGoal) replaces the series by
the expression V(A) /V(B+1) where A and B are the lower and upper limits of the
product.

6 Another Analogical Mapping

As a final illustration of this idea of mapping between analogical domains, I’ll
show how the method of integration by parts can be mapped onto an analogical
method for summation. This mapping highlights how summation is very much
the discrete analog of the continuous notion of integration. The mapping calls
upon the upper difference operator, A which was implicitly used in the telescope
method. The upper difference operator is defined by,

Av(x) = ve+1)—ov(x)

This is the discrete analog of the (continuous) differentiation operator,

d vz o) — ()
ac v = i, 51

Integration by parts uses the identity,

d(uw) = wdv+vdu

10



Integrating both sides and subtracting gives,

/udv = u.v—/vdu (1)
The integration by parts method uses this equation to transform one integral,
Judv into a (hopefully) simpler integral, [ v du.

Now, an analogous equation can be found for summation and the upper difference
operator. Let E be the shift operator. That is,

Ev(z) = ov(z+1)
By expanding out terms,
Auv = uANv+Ev. Au
Summing both sides and subtracting gives,
uAv = uwv—>Y Ev.Au (2)

Aside from the shift operation, this is directly analogous to (1). We can there-
fore map the integration by parts method onto an analogous summation by
parts method. In this analogical mapping, integration maps onto summation
and derivatives onto upper differences:

/dx:>2
4 — A

This requires both the mapping of rules used by the method (as in the map-
ping of the standard form method) and the mapping of object-level terms within
the preconditions and postconditions of the method (as in the mapping of the
telescope method).

As an example of a proof constructed by the summation by parts method, con-
sider,

Where H,, is the m-th Harmonic number,

Hm:Z.

mo1
1:1Z

And where we will extend the concept of closed form sum to include functions of
such Harmonic numbers.

11



Let u = H; and Av = 1.

1 _i(i—1
Thus, Au = 5 and v = (2 ).

Hence,
Si = Yo,
i=0
_ lz(z - 1).Hi]”+1 - z": i(i+1) 1
2 N A R
_n (n2—i— 1) H. - é%
_ n.(n2+ 1) Hy - n. n4+ 1)
_ n.(n2—|— 1) (Hyor %)

This proof is entirely analogous to that built by the integration by parts method
for the integral,

I, = /1nx In(z) dz
_ [22 ln(;c)r_/’””_2 L
2 1 1 2
= n;ln(n)—/lngdx
— %2 In(n) — lx;]j
_ 1 (n®. In(n) — n; + %)

Note how In(z) in integration is analogous to H; in summation. This is because
In(x) behaves very similarly in the domain of integration to H; in the domain sum-
mation; for example, [ % dz equals In(z) whilst Z% equals H;. Thus, the analogy
must also map logarithms in integration onto Harmonic numbers in summation.
It would be very interesting to see how much further this analogy between in-
tegration and summation can be taken, and, in particular, to see how many
other methods from the domain of integration can be mapped onto methods for
summation.

7 Conclusions

The application of old methods to new problems and new domains generates
behaviour which might be thought of as “creative”. Mapping methods onto new

12



(and possibly analogous) domains seems a powerful technique for generating new
problem solving strategies. Some of the advantages of this approach include:

Great applicability. Methods can describe very general reasoning strategies;
they can therefore be transformed to work in a wide range of different
domains. For example, the standard from method can sum series, and be
transformed to calculate products, derivatives and integrals.

Ability to fail. Since methods are often only partial specifications of proof
strategies, they can fail, sometimes in interesting ways. This also allows
analogies to break in a natural way.

Implicitness. The mapping between domains need not be supplied explicitly.
For example, in transforming the standard form method from sums to in-
tegrals, we merely replace the rules for manipulating sums by some new
rules for manipulating integrals; the standard form method is sufficiently
powerful in its control of the reasoning to “handle” the mapping between
the domains implicitly.
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