
Two Encodings of DNNF Theories
Jean Christoph Jung1 and Pedro Barahona2 and George Katsirelos3 and Toby Walsh4

Abstract. The paper presents two new compilation schemes of De-
composable Negation Normal Form (DNNF) theories into Conjunc-
tive Normal Form (CNF) and Linear Integer Programming (MIP), re-
spectively. We prove that the encodings have useful properties such
as unit propagation on the CNF formula achieves domain consistency
on the DNNF theory. The approach is evaluated empirically on ran-
dom as well as real-world CSP-problems.

1 Introduction
The graphical structures used in knowledge compilation (for an
overview see [9]) have found significant applications in several ar-
eas, including truth maintenance systems [8], diagnosis [7] and ver-
ification. By far the most common use has been the application of
BDDs [4] to verification.

Here, our purpose is three-fold: first, we show that these knowl-
edge compilation structures can be used in constraint programming
as compact representations of ad-hoc constraints; second, that we
can then decompose these constraints into either CNF or MIP and
use these decompositions in hybrid solvers; and third, that it is worth
investigating compilation of constraints expressed extentionally into
more expressive forms, such as DNNF. This may be easier and more
fruitful than compilation of arbitrary formulas.

The rest of the paper is structured as follows. First we define sev-
eral knowledge compilation forms and constraints in sections 1.1
and 1.2, respectively. Then we introduce encodings of these forms
into CNF and prove some useful properties in section 2. Finally, we
present an initial empirical evaluation of these encodings in section 3
before we conclude.

1.1 Propositional Theories
First we define the languages NNF, DNNF and BDD along the lines of
[9].

Definition 1 Let P be a set of propositional variables. The language
NNF is defined as the set of rooted, directed acyclic graphs (DAG)
where each leaf node is labeled with true, false or a propositional
literal (from P) and each internal node is labeled with ∧ or ∨ and
has arbitrarily, but finitely many children.

We can restrict this language by requiring some properties, such as
decomposability and decision. Decomposability is the property that
for every and-node, any two children do not share any variable. A
formula has the property Decision if every node is a decision node,

1 Universidade Nova de Lisboa, email: j.jung@fct.unl.pt
2 Universidade Nova de Lisboa, email: pb@di.fct.unl.pt
3 NICTA, Sydney, email: george.katsirelos@nicta.com.au
4 NICTA and UNSW, Sydney, email: tw@cse.unsw.edu.au

i.e., every node is true, false or an or-node of the form (p ∧ α) ∨
(¬p∧β), where p is a propositional variable and α and β are decision
nodes. These conditions, fulfilled or not fulfilled, give rise to several
subclasses of NNF. In particular, we want to deal with the classes
DNNF and certain forms of BDD.

Definition 2 The language DNNF is the subset of NNF that fulfills
the decomposability condition. The language BDD is the subset of
NNF where the root of each sentence is a decision node. FBDD is the
intersection of the classes DNNF and BDD. OBDD is the subclass of
FBDD where on each path from the root to the sinks (true and false)
the variables occur in a fixed order.

These languages are as expressive as NNF, despite the restrictions
that are imposed. However, they are exponentially less succinct [9].
This means that there exist infinite families of formulas such that
the smallest FBDD(OBDD) is exponential in the size of the formula,
whereas there exists a polynomially sized DNNF(FBDD) representa-
tion. On the other hand, every FBDD(OBDD) is also a DNNF(FBDD)
and therefore the converse does not hold.

Figure 1 shows an example for a DNNF formula. In particular, the
children of the and-nodes c1, c2 are variable disjoint.

Figure 1. Example for a DNNF formula

∨ r

∧ c1 ∧ c2

¬s p q

1.2 Constraints
We denote variables by uppercase letters X,X1, . . . , Xn. The do-
main dom(X) of a variable X is the set of allowed values for X .
We deal here only with finite domains and denote domain elements
with lowercase letters. A constraint C on a sequence of variables
X1, . . . , Xk (the scope of C) is defined as a subset of the Cartesian
product of the domains of the variables, i.e. C ⊆ D(X1) × . . . ×
D(Xk). Every c ∈ C is called support of C. A tuple (d1, . . . , dk)
satisfies a constraint C if (d1, . . . , dk) ∈ C.

A constraint satisfaction problem (CSP) consists of a set of vari-
ables, corresponding (finite) domains and a set of constraints. The
goal is to find an assignment of values to all the variables that
satisfies all constraints. A constraint can be given implicitly, e.g.,

alldifferent, that restricts a set of variables to take pairwise
different values, or explicitly as set of allowed tuples.

A constraint is generalized arc consistent (GAC) if for each vari-
able X in its scope and every d ∈ dom(X) there is a satisfying
assignment with X = d.

2 Encodings
2.1 CNF encoding
Given a DNNF theory ∆, we can define a CNF encoding of ∆. Note
that every formula ∆ corresponds directly to a DAG. We will use the
name ∆ for both for the formula and for the DAG. Applying unit
propagation on this CNF encoding enforces GAC on the constraint
described by ∆.

Intuitively, we create a set of clauses that propagate unsatisfiability
through the graph, i.e., if we know something to be false this will be
propagated in the graph. This can be done very easily upwards: If
the children of an or-node are known to be false, then the or-node is
also false. If one child of an and-node is known false, the and-node
is also false. We need one more rule to propagate also downwards in
the DAG, so that if it is known there is no model for the formula that
evaluates any of the ancestors of a node c to true, then we infer there
exists no model that sets c to true. For every node c of the graph, we
create a corresponding propositional variable, which we also refer to
as c. We do not introduce any variables for the leaf nodes, but instead
we use the attached literal or true or false. We summarize the rules
in Definition 3.

Definition 3 The CNF-encoding CNF(∆) is the set of all clauses that
are created by the following rules:

1. for every or-node c = c1 ∨ . . . ∨ ck:
¬c1 ∧ . . . ∧ ¬ck → ¬c ≡ [c1, . . . , ck,¬c]

2. for every and-node c = c1 ∧ . . . ∧ ck:
¬c1 ∨ . . . ∨ ¬ck → ¬c ≡

∧k
i=1[ci,¬c]

3. for every node c with parents p1, . . . , pk:
¬p1 ∧ . . . ∧ ¬pk → ¬c ≡ [p1, . . . , pk,¬c]

4. for the root r of ∆:
[r]

We consider again Figure 1. As indicated there, we introduce the
variables r, c1 and c2 for the root and the and-nodes, respectively.
Table 1 shows the clauses that are created by Definition 3. In the
following we prove some important properties of this encoding.

Table 1. CNF encoding of the DNNF in Figure 1

case clauses
1 [c1, c2,¬r]
2 [s,¬c1], [¬p,¬c1], [¬p,¬c2], [¬q,¬c2]
3 [c1, c2,¬p]
4 [r]

Theorem 1 The size of the CNF encoding of an DNNF theory ∆,
CNF(∆), is polynomial in the size of ∆.

Proof. By Definition 3 we create one clause for every node (case
3), for every and-node at most k clauses, where k is the maximal out-
degree of an and-node, and one clause for every or-node. Obviously
this is in O(k · |∆|), because the length of the formula |∆| bounds
the number of nodes.

Theorem 2 ∆ is satisfiable iff CNF(∆) is satisfiable.

Proof. We prove first the direction “⇒”. Assume ∆ is satisfiable.
Then there is a model M of ∆. Corresponding to the model we can
define a sub-tree of ∆ that represents M in the following way:

treeM (c) =



{c} ∪ treeM (ci) c = c1 ∨ . . . ∨ ck
and M |= ∆(ci)

{c} ∪
⋃k

i=1 treeM (ci) c = c1 ∧ . . . ∧ ck
{c} c is a literal
∅ otherwise

(1)

We have to consider if the function is well-defined, because the
definition refers to the semantic of the formula in the first case: It is
not obvious that there exists an i with M |= ci. Surely, if we assume
M |= c, then we can find such an i. We observe that the function is
initially called with the root of ∆ and we know that M is a model
for ∆. By the definition of (1) we have that M |= c for every c that
treeM is called with.

Now we define an interpretation I and show that I is a model for
CNF(∆).

cI =

{
1 c ∈ treeM (root(∆))

0 otherwise
(2)

To show that I models CNF(∆) we look at every clause of the
encoding and show that I is a model for every clause.

Case 1. For every node c = c1 ∨ . . . ∨ ck clauses of the form
l = [c1, . . . , ck,¬c] are generated. Then we have:

I |= l iff ∃i.I |= ci or I |= ¬c
iff ∃i.cIi = 1 or cI = 0

iff ∃i.ci ∈ treeM (root(∆)) or c /∈ treeM (root(∆))

iff c ∈ treeM (root(∆))⇒ ∃i.ci ∈ treeM (root(∆))

which is obviously fulfilled by the definition of treeM .
Cases 2 and 3. For clauses produced by these cases in Definition

3 we can argue similarly to case 1.
Case 4. For the unit clause [root(∆)] it is trivially fulfilled. This

closes the first part of the proof.
For the other direction we assume CNF(∆) is satisfiable and let

M be a model. We show that M is also a model for ∆. For this we
use the following lemma:

Lemma 1 Let M be a model of CNF(∆), c be a node in ∆ (thus
also the corresponding propositional variable) and tc the sub-DAG
of ∆ rooted at c. Then it holds M |= c implies M |= tc.

Proof by induction on the DAG. The induction base is immediate,
because c coincides with tc for leaf nodes. In the induction step we
have to distinguish two cases. First, let c be first an or-node c =
c1∨ . . .∨ ck and assumeM |= c. Note that we have a corresponding
clause [c1, . . . , ck,¬c] in the encoding. Now we have:

M |= CNF(∆) ⇒ M |= [c1, . . . , ck,¬c]
M|=c⇒ M |= [c1, . . . , ck]

⇒ ∃i.M |= ci
I.H.⇒ M |= tci

⇒ M |= tc

If, on the other hand, c is an and-node we can argue likewise,
which finishes the proof of the Lemma. For M is a model for the
encoding, by clause (4) of Definition 3 M is also a model for the
propositional variable attached to the root of ∆. Applying Lemma 1
yields M |= ∆.

Theorem 3 Unit propagation on CNF(∆) achieves GAC on ∆.

The proof follows very closely the argumentation in [18]: A propo-
sitional variable p is arc-inconsistent with ∆ iff all models M of ∆
evaluate p to 0. Let p be arc-inconsistent and assume ¬p is not im-
plied by the clauses. By the rules (3) of Definition 3 we can find an
ancestor p′ which is not implied to be false. Continuing this argu-
ment gives us a path s from p to the root of ∆. Reasoning in the
other direction, i.e., using rules (1) and (2), we find a model for ∆ in
which p is true. More precisely, if we are at an and-node we go to all
the children and if we are at an or-node we choose one. Of course, if
we are at an or-node x that is in s we choose the ancestor of x in s. In
this way we make sure that p appears in the model. The fact that we
can construct a model which evaluates p to 1 gives us the contradic-
tion with our assumption that p is arc-inconsistent. So ¬p is implied
by CNF(∆).

2.2 MIP encoding
SAT solvers are a very powerful tool to use in Constraint Program-
ming. Another class of performant tools is the class of programs that
solve (mixed) integer programs (MIP), i.e., linear equalities and in-
equalities with integer coefficients. Also MIP is a powerful way to
model problems. Here we show a way to model DNNF theories using
MIP with the intuition that each solution to the MIP corresponds to
a model of the DNNF and vice versa. As for the CNF encoding we
introduce a propositional variable for each inner node. For each pos-
itive literal p we use a corresponding binary variable xp and for each
negative literal ¬p the term 1− xp.

Definition 4 The MIP-encoding MIP(∆) is the set of all constraints
that are created by the following rules:

1. for every or-node c = c1 ∨ . . . ∨ ck:
c ≤

∑k
i=1 ci

2. for every and-node c = c1 ∧ . . . ∧ ck:
k · c ≤

∑k
i=1 ci

3. for the root r of ∆:
r = 1

The (in-)equalities are quite intuitive and mimic exactly the prop-
erties of a model of the theory: The model evaluates the root to true
(last equation). If an or-node is true in the model, there must be a
reason for this, i.e., the or-node has at least one successor that is also
true (first inequality). If an and-node is true in the model then all its
successors should be evaluated to true (second inequality). With this
idea in mind we can prove the following theorem.

Theorem 4 The constraints of MIP(∆) admit a solution iff ∆ is sat-
isfiable.

Proof. Assume first we have a solution of MIP(∆). A solution
S assigns a value S(c) to every variable c. Using S we define an
interpretation I that models ∆. Note that the range of I contains only
the original propositional variables (not the variables added during
the encoding).

cI =

{
1 S(c) = 1

0 otherwise
(3)

We prove first an analogon to Lemma 1.

Lemma 2 Let S be a solution of MIP(∆), c be a node in ∆ (thus
also the corresponding propositional variable) and tc the sub-DAG
of ∆ rooted at c. Then it holds S(c) = 1 implies I |= tc.

The proof is by induction on the structure of the DNNF. For the
induction base assume that c is a leaf node. Obviously S(c) = 1
implies cI = 1 which is equivalent to I |= tc. In the induction step
we distinguish two cases. Let c first be an and-node: c = c1∧. . .∧ck.
Then we have S(c) = 1 implies S(ci) = 1 (by the inequality for
and-nodes in Definition 4). Applying the hypothesis yields I |= tci

for all i ∈ {1, . . . , k}, hence I |= tc. Likewise we can argue for
or-nodes. This finishes the proof of the lemma.

For sure, the variable corresponding to the root of ∆ is 1 in the
solution. Lemma 2 yields now I |= ∆.

For the other direction assume that ∆ evaluates to 1 under some
interpretation I . We extend I to the variables corresponding in-
ner nodes of ∆ by using the obvious rules, e.g., cI = 1 iff c =
c1 ∧ . . . ∧ ck and cIi = 1 for all i between 1 and k. Clearly, I can be
interpreted as a solution for the MIP encoding of δ, because the ap-
plied rules respect the constraints 1 and 2 of Definition 4. Moreover,
since I |= ∆ the variable corresponding to the root evaluates to 1, so
all conditions are fulfilled.

3 Experiments

We conducted experiments to evaluate both the size of the encod-
ings that we propose as well as the time needed to solve random
instances using these encodings, using RSat 2.0 [17]. In order to
compare against a realistic baseline, we also used the CSP solver
Gecode [11] to solve these problems.

3.1 Problem generation

We generated a set of non-binary random instances, each described
by the 5-tuple 〈n, d, a, p1, p2〉 where n is the number of variables, d
is the uniform domain size, a is the uniform constraint arity, p1 is the
density of the constraint graph and p2 is the looseness of each of the
constraints. The probabilities are treated as proportions, which means
that of the

(
n
a

)
possible a-ary constraints exactly p1 ·

(
n
a

)
are created.

Likewise, for each constraint exactly p2 ·da tuples (supports) are cre-
ated. We tried to generate hard problems, so that satisfiability cannot
be shown without backtracking. One way to describe the hardness of
problems is in terms of the constrainedness parameter κ [13]. Their
experiments show that in many problems the phase transition typi-
cally occurs for κ ranging from 0.75 to 1. Equation 4 (which is from
[6]) gives the definition of κ in the case of random CSPs generated
with both uniform degree and domain size. Using this equation we
can calculate density and looseness of a CSP as a function of n, a, d
and κ such that the generated problem is in the transition phase with
a high probability.

κ =
−p1 ·

(
n
a

)
· log2(p2)

n · log2(d)
(4)

3.2 The compilation

Previous approaches use a compilation of constraints to OBDDs [16],
[10]. We want to show that it is worth thinking about a compila-
tion to DNNF, because the size of the encoding can be much smaller.
So we compared a CNF encoding of the OBDD encoding of a CSP
with the CNF encoding of the DNNF encoding of this problem. We
used direct domain encoding, i.e., for every variable X and every
value v in the domain of X , we introduce a propositional variable
(X = v). We include in both CNF encodings the clauses that encode
the domain:

∨
v∈dom(X)(X = v) and (X 6= v1 ∨ X 6= v2) for all

v1, v2 ∈ dom(X), v1 6= v2. We compile each constraint of the CSP
separately to a OBDD and DNNF, respectively. In case of OBDD we fix
a variable and a value ordering according to which we successively
create the OBDD. For example let the current branching variable be
(X = 1). Then we split the table into two parts: one where we delete
the X-column and take only the rows with X = 1 (this will repre-
sent the high successor of the node), and one where we take only the
columns with X 6= 1 (which will correspond to the low successor).
We create recursively OBDDs for the two sub-tables and create a node
with the mentioned successors. We use caching in the sense that for
every table at most one node is created. The obtained OBDD is trans-
lated to CNF by the Tseitin transformation [10]. Note that UP yields
GAC on the constraint also for this transformation.

In every step of DNNF compilation we choose a variable which we
branch on. For example, let X be the next branching variable and
dom(X) = {v1, . . . , vk}. Additionally let C be the current table.
Then we create k DAGs X = vi ∧ DNNF(C|(X = vi)) for each
i ∈ {1, . . . , k} where | denotes the projection of C to a (variable,
value)-pair. The roots of these DAGs are connected by a k-ary or-
node. The obtained DNNF is translated into CNF using the rules from
Definition 3.

We are free to choose any variable ordering, static or dynamic, in
both OBDD compilation and DNNF compilation. Note that value or-
dering does not have influence on the size because all solutions are
encoded not just one. We can conceive the OBDD and DNNF data
structure as representation of the search space for one constraint.
Hence, for minimizing the data structures we can basically apply
arbitrary known variable heuristics that try to minimize the search
space. In particular, we used the following heuristics:

• Lexicographical ordering lex.
• minimal domain minDom: The static variable ordering that orders

the variables increasingly according to their domain size. Ties are
broken by lexicographical ordering.

• most constrained variable mostCon: The same as minDom with
the only difference that it is dynamic, i.e., the domain size at the
time of branching is taken into account.

• FORCE [1]: A static heuristic that orders variables such that vari-
ables that are close to each other in the constraint graph, are also
close to each other in the ordering.

3.3 Results

We created 100 instances of problems 〈30, 5, 4, p1, p2〉 where we
chose p2 uniformly distributed between 0.05 and 0.6 and calculated
p1 according to Equation (4), where κ was set to 0.95 in order to get
close to a phase transition.

For each of these problems, we can create a SAT instance which
is the conjunction of the CNF encodings of the OBDD(DNNF) repre-
sentation of each constraint. We will refer to them as CNF encodings

of the OBDD(DNNF) representations of the instances, even though the
OBDD(DNNF) does not represent the entire problem. As variable or-
dering we use in both cases lex. Additionally, we compare with a
recently proposed family of SAT mappings, namely k-AC [3], in par-
ticular with 0-AC and 3-AC. We chose 3-AC, as the authors say it is
usually the best to choose k = a−1, and 0-AC, because the mapping
is quite similar to ours.

We compare finding the first solution to these problems using
Gecode with the built-in extensional constraint against using a
SAT solver on the CNF encoding of the OBDD (DNNF) representation
of the instances.

We report first on the size of the CNF encodings. In table 2 we
compare the number of variables and number of clauses as well as
the total size of the two CNF encodings. The size of the CNF is
the sum of the sizes of all the clauses. This is generally accepted
as a realistic indicator of performance, as unit propagation is in the
worst case linear in the size of the CNF. Our second measure for the
quality of an encoding is the number of solved instances St within
t seconds. In particular we report on S1, S10 and S100. As you can
see in Table 2, the total size of the DNNF is smallest, but the en-
coding introduces more variables than OBDD and 3-AC. Despite our
expectations based on the size of the CNF encoding, we see that per-
formance using the DNNF encoding of the problems is slower than
using the OBDD encoding. We observed that the SAT solver in case
of the OBDD representation explores more nodes per time than in case
of the DNNF representation, hence the average case performance of
unit propagation is better for OBDD. We conjecture that the reason
for this discrepancy for the average case behaviour between the two
CNF encodings is that the DNNF encoding introduces large clauses
which need to be examined more times before they cause any unit
propagation and cannot be handled by the specialized routines for
binary and ternary clauses that many SAT solvers employ. However,
in this series of experiments the 3-AC mapping outperforms all other
approaches with respect to solved instances.

Table 2. Size of the CNF encodings.

encoding # vars # clauses Size S1 S10 S100

Gecode - - - 40 63 87
DNNF 10696 28660 79249 27 46 72
OBDD 7238 42329 126881 30 54 81
0-AC 11292 66960 178401 21 35 58
3-AC 150 22410 111033 70 92 100

In contrast to randomly generated problems, real-world constraint
satisfaction problems usually have an internal structure that can be
exploited by the solvers. As a reference for real-world problems we
compiled a huge instance of a configuration problem (Renault from
CLib [21]) into DNNF and OBDD, respectively. However, we added
some random constraints to connect the constraint graph and make
it a hard problem. We used the same approach as in [20], i.e., added
10 constraints with random scope and tightness, and looked for a
constraint that is hard to solve with Gecode (more than 1 second).
Table 3 shows the results with respect to the variable ordering we
used. We included also the time that the SAT solver needed to solve
the instance (for comparison: Gecode found the first model after 1.6
seconds).

We observe that the heuristics maxCon and minDom perform on
DNNF at least as well as minDom on OBDDs with respect to the num-
ber of variables. Note that far less clauses are needed and that the
size of the DNNF encoding is only half the size of the OBDD encod-

Table 3. Size of the CNF encodings.

encoding heuristic # vars # clauses Size time (s)
DNNF lex 24639 74792 196659 0.22
DNNF maxCon 13551 40838 112175 0.11
DNNF minDom 14664 44091 120704 0.14
DNNF FORCE 17305 52634 131965 0.15
OBDD minDom 14535 85845 254672 0.30
0-AC - 118132 1099156 2801392 8.54

(a-1)-AC - 432 214366845 2 · 109 -

ing. Comparing with the lexicographical order we can see that it is
worth to think about other heuristics to construct the DNNF, because
we gain almost factor 2 in number of variables. The FORCE heuris-
tic is slightly outperformed by the others. With respect to the k-AC
heuristics we observe that, in contrast to our first experiments, they
are by far outperformed. Note that we only calculated the sizes for
the (a− 1)-AC mapping, because it took to long to compute the en-
coding itself. The reason for the extreme growth of size is that the
mapping depends exponentially on the degree of the constraint and
the Renault instance contains some tables over 10 or more variables.
A DNNF encoding shrinks if the constraint is very tight or very loose.

4 Related Work

BDDs have been used before to represent constraints and enforce
GAC on them [14, 5]. In these, generalized arc consistency is main-
tained by a specialized algorithm. More recently, decompositions
to CNF of knowledge compilation structures which enforce GAC
by unit propagation have been proposed. In [2], Bacchus proposed
a decomposition into CNF of deterministic finite automata. DFAs
are roughly equivalent to multi-valued BDD in which long edges are
not allowed. Eén and Sörensson [10] explored expressing pseudo
boolean constraints as both BDDs and sorting networks and subse-
quently decomposing them into CNF. Further, [12, 3] show ways to
map CSP problems to SAT problems, but [12] is restricted to binary
constraints.

The closest work to our own is that of [18], where the authors pro-
pose a CNF decomposition of the grammar constraint. In fact, this
decomposition is very similar to the one that we propose in section 2.
Implicitly, the decomposition of the grammar constraint uses an in-
termediate form that is an And/Or graph. This graph can be seen as
a DNNF in which the gates are arranged in layers and each layer may
contain only and-gates or only or-gates, alternating between the two.
Our approach is more general in two ways: first, we can decompose
any DNNF, not only And/Or graphs; second, the DNNF may be gen-
erated in any way, not only as an intermediate result of a grammar
constraint.

Other works that propose MIP encodings of graphical structures
are [15, 19]. In particular, the encoding of Bayesian networks into
MIP in [19] is similar to our MIP encoding.

5 Conclusion

We introduced two new decompositions of DNNF theories, one into
CNF and the other into MIP. We evaluated these decompositions
empirically on random problems and showed that performance can
be comparable to using a CSP solver or an OBDD decomposition.
On the other hand, the resulting encoding was smaller with DNNF.
Our results suggest, first, that random constraints are not necessarily
amenable to compilation to DNNF; and second, that we can improve

on our current results by evaluating more sophisticated approaches
of compiling constraints into DNNF. On the example of the Renault
instance we showed that the compilation into DNNF on a structured
problem can outperform the compilation into OBDD as well as re-
cently proposed mappings like k-AC. In future work we plan to
explore better heuristics or completely new methods to compile to
DNNF.

ACKNOWLEDGEMENTS
We would like to thank the referees for their comments which helped
improve this paper.

REFERENCES
[1] Fadi A. Aloul, Igor L. Markov, and Karem A. Sakallah, ‘Force: a

fast and easy-to-implement variable-ordering heuristic’, in ACM Great
Lakes Symposium on VLSI, pp. 116–119, (2003).

[2] Fahiem Bacchus, ‘GAC via unit propagation’, in Proceedings of CP-
2007, pp. 133–147, (2007).

[3] Christian Bessière, Emmanuel Hebrard, and Toby Walsh, ‘Local con-
sistencies in SAT’, in SAT, pp. 299–314, (2003).

[4] Randal E. Bryant, ‘Graph-based algorithms for boolean function ma-
nipulation’, IEEE Trans. Computers, 35(8), 677–691, (1986).

[5] Kenil C. K. Cheng and Roland H. C. Yap, ‘Maintaining generalized arc
consistency on ad-hoc n-ary boolean constraints’, in ECAI 2006, pp.
78–82, (2006).

[6] Marco Correia and Pedro Barahona, ‘On the integration of singleton
consistency and look-ahead heuristics’, in Proceedings of the annual
ERCIM workshop on constraint solving and constraint logic program-
ming, eds., Francois Fages, Sylvain Soliman, and Francesca Rossi, Roc-
quencourt, France, (June 2007).

[7] Adnan Darwiche, ‘Model–based diagnosis using structured system de-
scriptions’, Journal of Artificial Intelligence Research, 8, 165–222,
(1998).

[8] Adnan Darwiche, ‘On the tractable counting of theory models and its
application to truth maintenance and belief revision.’, Journal of Ap-
plied Non-Classical Logics, 11(1-2), 11–34, (2001).

[9] Adnan Darwiche and Pierre Marquis, ‘A knowlege compilation map’,
Journal of Artificial Intelligence Research, 17, 229–264, (2002).

[10] Niklas Eén and Niklas Sörensson, ‘Translating pseudo-boolean con-
straints into SAT.’, Journal on Satisfiability, Boolean Modeling and
Computation, 2, 1–26, (2006).

[11] Gecode Team. Gecode: Generic constraint development environment,
2006. Available from http://www.gecode.org.

[12] Ian P. Gent, ‘Arc consistency in SAT’, in ECAI, pp. 121–125, (2002).
[13] Ian P. Gent, Ewan MacIntyre, Patrick Prosser, and Toby Walsh, ‘The

constrainedness of search’, in AAAI/IAAI, Vol. 1, pp. 246–252, (1996).
[14] P. Hawkins and P.J. Stuckey, ‘A hybrid BDD and SAT finite domain

constraint solver’, in Proceedings of the Practical Applications of
Declarative Programming, PADL 2006, LNCS, pp. 103–117. Springer,
(2006).

[15] S. Joy, J. E. Mitchell, and B. Borchers, ‘Solving MAX-SAT and
weighted MAX-SAT problems using branch-and-cut’, Technical report,
Troy, NY 12180, (1998).

[16] Nina Narodytska and Toby Walsh, ‘Constraint and variable ordering
heuristics for compiling configuration problems’, in IJCAI, pp. 149–
154, (2007).

[17] Knot Pipatsrisawat and Adnan Darwiche, ‘Rsat 2.0: SAT solver descrip-
tion’, Technical Report D–153, Automated Reasoning Group, Com-
puter Science Department, UCLA, (2007).

[18] Claude-Guy Quimper and Toby Walsh, ‘Decomposing global grammar
constraints.’, in Proceedings of CP-2007, pp. 590–604, (2007).

[19] E. Santos Jr., ‘On the generation of alternative explanations with impli-
cations for belief revision’, in Uncertainty in Artificial Intelligence, pp.
339–347, (1991).

[20] Kostas Stergiou and Nikos Samaras, ‘Binary encodings of non-binary
constraint satisfaction problems: Algorithms and experimental results’,
J. Artif. Intell. Res. (JAIR), 24, 641–684, (2005).

[21] VeCoS group, IT-university of Copenhagen. Con-
figuration benchmarks library, 2005. Available from
http://www.itu.dk/research/cla/externals/clib/.

