
Istituto per la Ricerca Scientifica e TecnologicaI 38100 Trento � Loc. Pant�e di Povo � tel. 0461�814444Telex 400874 ITCRST � Telefax 0461�810851
An Incompleteness Theorem via AbstractionAlan Bundy, Fausto Giunchiglia, Adolfo Villa�orita, Toby WalshSeptember 1996Technical Report # 9302-15

Istituto Trentino di Cultura

An Incompleteness Theorem via Abstraction�Alan Bundy1, Fausto Giunchiglia2;3, Adolfo Villa�orita4;5 and Toby Walsh2;51. Mathematical Reasoning Group, Dept of AI, University of Edinburgh2. Mechanized Reasoning Group, IRST3. DISA, University of Trento4. Istituto di Informatica, University of Ancona5. Mechanized Reasoning Group, DIST, University of GenoaApril 13, 1996AbstractWe demonstrate the use of abstraction in aiding the construction of an interestingand di�cult example in a proof checking system. This experiment demonstrates thatabstraction can make proofs easier to comprehend and to verify mechanically. To supportsuch proof checking, we have developed a formal theory of abstraction and added facilitiesfor using abstraction to the GETFOL proof checking system.1 IntroductionThis paper describes an experiment in which we use abstraction to aid the constructionof a simpli�ed proof of G�odel's �rst incompleteness theorem. We show that this useof abstraction makes the proof more accessible to both computer veri�cation and humancomprehension. This experiment also serves to illustrate some of the facilities implementedin the GETFOL proof checking system [Giu94].Intuitively, an abstraction can be viewed as a mapping from a representation of aproblem onto a new representation [GW92a]. We represent problems as goals to be provedinside appropriate �rst order theories. Let <�;
; �> be an axiomatic formal system,where � is a �rst order language,
 is a set of axioms, and � is a set of inferencerules. Then abstraction can be de�ned as a function f which maps the language of aformal system onto the language of another formal system. The �rst formal system iscalled the ground representation (space/theory), while the second is called the abstractrepresentation (space/theory). We also talk of abstract or ground language, axioms, andgoal with the obvious meaning.In [GW92a], we identify various forms of abstractions and show how they can be usedin di�erent ways. In this paper we consider an abstraction where the abstract axioms and�The order is alphabetical and does not re
ect the size of the contribution.1

GROUNDTHEORY
ABSTRACTTHEORY

GROUND THEORYWITH OUTLINES
62. Abstract Theory1. De�ne f -4. Mapback

��f(�)
3. Find AbstractProof

JJJ �a

JJJ �15. Re�ne

JJJ �2......

JJJ �n

JJJ �gFigure 1: The cycle of theorem proving by abstraction.goal are obtained by applying f to the ground axioms and goal, and the abstract inferencerules are the same as the ground ones. Furthermore, we restrict ourselves to a speci�cuse of abstraction where the proof of the abstract goal is used to drive the construction ofthe proof of the ground goal. This can be thought of as a �ve-step process (see Figure 1).In the �rst step we de�ne f . In the second step we apply f to the ground representationto obtain the abstract representation. In the third step we prove the abstract goal, thatis, we �nd a proof �a of f(�), where � is the ground goal. �a provides the key steps ofthe ground proof. In the fourth step we unabstract or map back �a, that is, we generatefrom �a a tree �1, called outline, of schematic formulas [GW92b]. Schematic formulasare needed as usually f is many-to-one; this allows us to build simpler and easier to solveabstract problems [GW92a]. The parameters occurring in the formulas in �1 representpossible choices in unabstracting abstract formulas into ground formulas. In the �fthand last step, called re�nement, we re�ne �1 into a ground proof. This is achieved bybuilding a sequence of outlines �2; : : : ;�n, where �i (with 2 � i � n) either instantiatesa parameter of �i�1 or adds a proof step to �i�1; and then by checking that �n actuallyrepresents a proof �g of �. More details of this process are given in [GW92b] and also in[SVG94, VS94], where other examples of abstractions are presented.GETFOL [Giu94], the proof checker used in this experiment, is an extension and re-im-plementation of the FOL proof checking system [Wey80]. GETFOL includes an extensionof the Natural Deduction calculus [Pra65] (ND henceforth), syntactical and semanticalsimpli�cation, and complex deciders for subclasses of �rst order logic. A single proof stepin GETFOL can thus represent very complex reasoning. GETFOL also provides facilities formulti-theoretic reasoning. That is, GETFOL allows for multiple distinct logical theories (or,2

to use GETFOL terminology, contexts); this feature is essential for this experiment as theground and the abstract representation are two distinct theories. We could perhaps callGETFOL an \interactive theorem prover". However we stick to \proof checker" as we wishto emphasize our interest in the interaction with the system rather than in the automationof the construction of proofs. Above all, GETFOL is a conversational system: the interfacewith GETFOL is designed to make the interaction with the user more a dialogue than asequence of commands. The user engages in a conversation with GETFOL in which he orshe describes the abstraction, builds an outline of the proof using this abstraction, andthen progressively re�nes this outline. Potentially combinatorial explosive decisions areleft to the judgment of the user (eg. choices in unabstracting formulas) while the systemperforms all the mechanical steps and book-keeping. The advantage over conventionalapproaches is that the proofs built are easier to understand and to construct. The twoway nature of this conversation is, we believe, essential for abstraction to be useful.In this paper we do not discuss more general issues about abstraction. We only noticethat GETFOL is the �rst system where abstraction can be used interactively, combining itwith user guidance, and inside a proof checking system. A comprehensive and generaldiscussion about abstraction is given in [GW92a] (but see also [Pla81, GW89] for theuse of abstraction in theorem proving, and [GW91, Kor87, Kno94] for some theoreticalevidence of the advantages of using abstraction automatically). [GW92a] provides a longlist of references to much work in this area, and rationally reconstructs some of the mostimportant instances.2 The PlanThe next Section brie
y introduces G�odel's �rst incompleteness theorem. We present theoriginal statement of the theorem, together with some basic de�nitions, and then translatea simpli�ed axiomatization into the logic of the GETFOL system. Section 4 sketches ahigh level proof of the theorem in GETFOL. The actual proof by abstraction is presentedin Sections 5, 6, and 7. Section 5 describes the �rst two steps of theorem proving byabstraction, that is, the declaration of the abstraction, and the generation of the abstractspace. Section 6 describes the third step, namely the construction of the abstract proof.We introduce some of GETFOL's tools for building proofs, and explain the structure of theabstract proof. Section 7 describes the last two steps of theorem proving by abstraction,namely mapping back and re�nement. Inside Section 7, Table 2 (page 20) compares theabstract proof with the ground proof. Finally, the Appendices collect some input/outputof GETFOL: the ground language, the ground axiomatization, the abstract axioms, theabstract proof, and the ground proof can be found here.GETFOL input and output are written using the teletype font. The text has beenslightly edited, to make it more readable. Other formulas are written in mathematicalfont.3 The Ground TheoryGETFOL allows for the de�nition and use of multiple theories at the same time, each ofwhich has its own name. There is, however, only one current context, that is, only one3

theory in which at a given moment we can operate (e.g. de�ne axioms, apply inferencerules, and so on). When the system is started there is only one theory, which is alsothe current context. This theory has name NOTNAMED&, which actually means that it isunnamed. We begin therefore by giving this theory an appropriate name:NOTNAMED&:: namecontext metamaths;You have named the current context: metamathsmetamaths::The GETFOL prompt is the name of the context inside which we are at the moment, followedby \::". Each GETFOL command has three parts: a string which uniquely identi�es it,a list of arguments, and, �nally, \;" which ends the command itself. GETFOL alwaysproduces a short answer which describes the action taken. With the above command wehave given name metamaths to the context inside which we are going to carry out theground proof.Our goal is to prove G�odel First Incompleteness Theorem, which states that\I. The system S is not complete; that is, it contains propositions A [: : :], forwhich neither A nor :A is provable [: : :] III. Theorem I can be sharpened tothe e�ect that, even if we add �nitely many axioms to the system S [: : :] we donot obtain a complete system, provided the extended system is !-consistent."[G�od86]where\a system is said to be !-consistent if, for no property F (x) of natural numbers,F (1); F (2); : : : ; F (n); : : : ad in�nitumas well as 9 x::F (x)are provable" [G�od86].In the original statement the system \S" is the logic of \Principia Mathematica" [WR25]with the axiom of choice (for all types) and the natural numbers as individuals. Thetheorem, however, can be proved for any formal theory containing arithmetic [Smo77].We shall prove in GETFOL the following formula1:OCONS � 9w (:PROVABLE(w) ^ :PROVABLE(� w)) (1)where OCONS means that maths | a �xed but unspeci�ed theory containing arithmetic| is !-consistent, w is a variable ranging over formulas, PROVABLE(w) means thatthe formula w is provable in maths , and � is the symbol for negation in maths . No-tice that maths is not directly axiomatized inside GETFOL. Formula (1) is proven insidemetamaths, a theory in which we discuss the provability, consistency, !-consistency, etc. ofmaths . metamaths is a formal metatheory of maths which formalizes (part of) the infor-mal metatheory inside which G�odel carried out the proof of the incompleteness theorem.1We write formulas which are not mechanized following the syntax presented in x17 of [Kle52] (with thefollowing two exceptions: we use ^ instead of & and p$ q as an abbreviation of (p � q) & (q � p)).4

w1, w2 variables of metamaths ranging over formulas of maths ;v1 a variable of metamaths ranging over variables of maths ;t1 a variable of metamaths ranging over terms of maths ;n a variable of metamaths ranging over natural numbers;x a constant of metamaths representing a variable of maths ;PROVABLE(w1) the formula w1 is provable in maths ;CONS maths is consistent;OCONS maths is !-consistent;SUBST(t1,v1,w1,w2) substituting the term t1 for the variable v1 in theformula w1 gives the formula w2;NUMBER(n) n is a natural number;prov(w1, n) n is the G�odel number of a proof of the formula w1;~ w1 ~ is the symbol for negation in maths ;w1 equiv w2 equiv is the symbol for logical equivalence in maths ;all(x, w1) all is the symbol for universal quanti�cation in maths .Table 1: Intended interpretation of some symbols of the alphabet of metamaths.As such, metamaths has terms which denote elements of maths and variables rangingover such elements. Consider for instance formula (1). We said above that w rangesover formulas and that � is the symbol for negation in maths . To be precise, we shouldhave said that w ranges over terms denoting formulas of maths , and that � is a functionsymbol such that the term obtained by applying it to a term denoting a formula of mathsdenotes the negation of the formula itself. To keep explanations simple, from now on weleave implicit all of this and speak freely, for instance, of variables ranging over elementsof maths . We will be precise only when this is necessary for a correct understanding ofwhat is going on.By default, each GETFOL context has a �rst order language. The user is left with thetask of de�ning its alphabet. This is done using the declare command. Consider forinstance the following command:metamaths:: declare predconst PROVABLE 1;PROVABLE has been declared to be a PredconstThis command declares PROVABLE as a predicate of arity 1. The complete de�nition ofthe alphabet is given in the Appendix. The intended interpretation of some importantsymbols is given in Table 1.We next give some axioms from which we will prove formula (1). These axioms de�nevarious important properties of maths . First we state what it means for maths to beconsistent2:2Mechanized formulas follow the syntax of the GETFOL system ([Giu94], Section 7). In particular, quanti�ersmay have more than one variable; a \." is required after the last variable in the scope of a quanti�er. Thus,for instance, forall x y.p stands for 8x (8 y p). 5

cons: forall w1.(CONS imp not PROVABLE(w1) or not PROVABLE(~ w1))GETFOL axioms have names. In a GETFOL axiom the string before \:" | in this case cons| is the name used to refer to the axiom.We also state as axioms two consequences of !-consistency:occ: OCONS imp CONS;oc: OCONS imp not (forall n. (NUMBER(n) imp PROVABLE(diag(n))) andPROVABLE(~ all(x, diag(x))))Axiom occ states that !-consistency is stronger than consistency (see [Kle52] for a proof).Axiom oc is an instance of the de�nition of !-consistency (see below for an explanationof the meaning of diag).In metamaths we also want a formula of the type:8w (PROVABLE(w)$ 9n (NUMBER(n) ^ PROVABLE(prov(fno(w); n))))where prov(fno(w); n) is true when n is the G�odel number of a proof of the formulawhose G�odel number is fno(w). To simplify the proof and avoid the manipulation of theexistential quanti�er, we replace the above formula with the following two implicationscorr: forall w1. (PROVABLE(w1) impPROVABLE(prov(w1, k(w1))) and NUMBER(k(w1)))comp: forall w2 n. (NUMBER(n) and PROVABLE(prov(w2, n)) imp PROVABLE(w2))where k is a Skolem function introduced to eliminate the existential quanti�er; k takes asargument a formula and returns a number. Notice that the conjunction of corr and compis not equivalent to the formula above. Note also that prov, di�erently from prov, takesas �rst argument a formula rather than a number. Thus prov(w,n) in the mechanizedproof stands for prov(fno(w); n).Consider now the following formula, built using Cantor's diagonal method (see [Kle52],page 207 for more details): all(x; � prov(p; x)) (2)where p is the G�odel number of the formula all(x; � prov(p; x)). Thus (2) is a formulawhich asserts its own unprovability. Notice that all(x; � prov(p; x)) is such that neither(the formula denoted by) all(x; � prov(p; x)) itself nor its negation is provable in maths.In the GETFOL proof we start from the following formula:PROVABLE(all(x; � prov(p; x) equiv � prov(fno(all(x; � prov(p; x))); x))) (3)In order to enhance readability, we use diag(x) as a synonym of � prov(p; x). We havetherefore the following axiom:diagonal: PROVABLE(all(x, diag(x) equiv (~ prov(all(x, diag(x)), x))))The formula all(x,diag(x)) and its negation are the formulae that we will showunprovable in maths . Note that, since ~prov(all(x,diag(x)),x) means that x is notthe G�odel number of a proof of all(x,diag(x)), the formula all(x,diag(x)), which isa synonym of all(x,~prov(all(x,diag(x)),x)), expresses its own unprovability.An important property of diag is that it is numeralwise expressible [Kle52]:6

numwise: forall n. (NUMBER(n) imp PROVABLE(diag(n)) or PROVABLE(~ diag(n)))That is, for any natural number n, either diag(n) or ~diag(n) is provable in maths . Wealso need to describe some of the inference rules of maths :iffel: forall w1 w2. (PROVABLE(w1) and PROVABLE(w1 equiv w2) impPROVABLE(w2))iffers: forall w1 w2. (PROVABLE(~ w1) and PROVABLE(w1 equiv ~ w2) impPROVABLE(w2))alle: forall v1 w1 t1 w2. (PROVABLE(all(v1, w1)) andSUBST(t1, v1, w1, w2) imp PROVABLE(w2))The axiom iffel describes the $Eleft rule of maths. The axiom iffers encodes theapplication of a $Eright, a :E, and a ?c, shortening both the axiomatization and theproof. The axiom alle describes the 8E inference rule. Intuitively, SUBST(t1,v1,w1,w2)is true when the formula w2 is the result of uniformly substituting the term t1 for thevariable v1 in the formula w1. The axiomatization is completed by three axioms describingsome instances of SUBST. For instance:triv1: SUBST(k(all(x, diag(x))), x, diag(x), diag(k(all(x, diag(x)))))says that the result of substituting k(all(x,diag(x))) for x in diag(x) is the formuladiag(k(all(x,diag(x)))). Notice that, as expected, k takes as argument a formula(that is, all(x, diag(x))), and diag a number (that is, k(all(x, diag(x)))).The complete set of axioms is given in the Appendix. As a conclusive remark, itis important to notice that the axioms of metamaths make the proof much simpler andshorter than it would be if we started from �rst principles, e.g. from the axioms of PeanoArithmetic. However this observation does not weaken the message of this paper, whichshows how abstraction helps in that part of the proof where, starting from the diagonalaxiom (and the other principles listed above), we prove that there is a formula w suchthat neither w nor its negation is provable. (See Section 8 for a longer discussion on thispoint.)4 The Ground ProofIn this Section we will just discuss the key steps of the ground proof. The full proof isgiven in the Appendix.The proof starts with an assumption, discharged at the very end, that maths is !-con-sistent:11 OCONS (11)In GETFOL, proof steps, when asserted, are printed out as (proof) lines (also called facts).A line consists of three parts. In order these are: the line number, the formula derived atthis point in the proof, and the set of its dependencies (that is, the set of the line numbersof the assumptions on which it depends). In this case, we are at the line labeled 11, and7

have a formula OCONS whose set of dependencies is the singleton set with unique element113.The proof now divides in two halves. In the �rst half we prove, by reductio adabsurdum, that all(x,diag(x)) is unprovable. We therefore start by assuming thatall(x,diag(x)) is indeed provable:12 PROVABLE(all(x, diag(x))) (12)By applying the alle axiom, from assumption 12, substituting k(all(x,diag(x))) forx we get:13 PROVABLE(diag(k(all(x, diag(x))))) (12)and, by using proof line 13, the diagonal axiom (to get the provability in maths ofdiag(k(all(x, diag(x)))) equiv ~ prov(all(x, diag(x)), k(all(x, diag(x))))),and the iffel axiom, we get:14 PROVABLE(~ prov(all(x, diag(x)), k(all(x, diag(x))))) (12)On the other hand, by using corr and assumption 12 we derive that:15 PROVABLE(all(x, diag(x))) impPROVABLE(prov(all(x, diag(x)), k(all(x, diag(x))))) andNUMBER(k(all(x, diag(x))))16 PROVABLE(prov(all(x, diag(x)), k(all(x, diag(x))))) (12)We have thus found a contradiction, since | if maths is consistent (assumption 11 andaxiom occ) | it cannot be the case that a formula and its negation are both provable(proof lines 14 and 16):10 CONS imp not PROVABLE(~ prov(all(x, diag(x)), k(all(x, diag(x))))) ornot PROVABLE(prov(all(x, diag(x)), k(all(x, diag(x)))))17 FALSE (11 12)FALSE is the symbol for falsity (?) in the GETFOL language. Proof line 17 is derived from10, 14, and 16 in just one step using GETFOL's tautological decider taut. The input/outputbehavior of taut is described in [Giu94]; the details of its implementation are described in[AG93, GAP95]. Here it su�ces to know that taut takes a goal formula (in this case theformula of line 17) and a set of hypotheses (in this case 10, 14, and 16) and tries to provethat the goal follows from the hypotheses by applying propositional reasoning only. Ifthis is the case, then taut asserts the goal as a proof line with appropriate dependencies.We can now discharge the initial assumption, by applying the ?c rule to proof line 17,thus concluding the �rst half of the proof:3In this section, contrarily to what happens in the rest of the paper, proof steps are written without thecommands which generates them. The reason is that the proof outlined in this section is generated by thecommands described in Section 7. Notice furthermore that the label of the above proof line is 11 and not 1, asone could have expected, and as it would have been if we had proved the goal using the inference rules of theground space. The labeling given in this section is that generated via abstraction, and is described in Section 7.8

18 not PROVABLE(all(x, diag(x))) (11)In the second half of the proof we show that ~all(x, diag(x)) is unprovable. Theproof is again by reductio ad absurdum. We start by assuming19 PROVABLE(~ all(x, diag(x))) (19)From this assumption, the assumption of !-consistency (proof line 11), and axiom oc wecan prove :8n (NUMBER(n) � PROVABLE(diag(n)))which is in turn equivalent to20 exists n. (not (NUMBER(n) imp PROVABLE(diag(n)))) (11 19)In the GETFOL proof, proof line 20 is proved using GETFOL's command monad. As withtaut, monad's input/output behavior is described in [Giu94], while the details of its im-plementation are in [AG93, GAP95]. Here it su�ces to know that monad decides a classwhich contains the monadic class, the 89 class and a class which reduces to the 89 classby simple quanti�er manipulation.We can now apply GETFOL's 9E rule. This requires us to make the following assump-tion:21 not (NUMBER(n) imp PROVABLE(diag(n))) (21)(GETFOL's 9E rule actually implements existential instantiation [Giu94].) From 21, sincediag is numeralwise expressible, we have22 PROVABLE(~ diag(n)) (21)Using the diagonal and the iffers axioms, we get:23 PROVABLE(prov(all(x, diag(x)), n)) (21)The proof is now almost done, since, by completeness24 (NUMBER(n) and PROVABLE(prov(all(x, diag(x)), n))) impPROVABLE(all(x, diag(x)))25 PROVABLE(all(x, diag(x))) (11 19)which is clearly in contradiction with proof line 19 and the assumption of !-consistencyof maths :26 CONS imp (not PROVABLE(all(x, diag(x))) ornot PROVABLE(~ all(x, diag(x))))27 FALSE (11 19)By applying the ?c rule we get28 not PROVABLE(~ all(x, diag(x))) (11)9

The last three lines of the proof build the goal formula. We �rst apply an ^ I tothe proof lines showing the unprovability of all(x,diag(x)) and its negation; we thenapply an 9 I to the formula thus obtained; we �nally discharge the initial assumption of!-consistency with an � I:29 (not PROVABLE(all(x, diag(x)))) and(not PROVABLE(~ all(x, diag(x)))) (11)30 exists w1. ((not PROVABLE(w1)) and (not PROVABLE(~ w1))) (11)31 OCONS imp exists w1. ((not PROVABLE(w1)) and (not PROVABLE(~ w1)))Although this proof may have seemed quite long and tortuous (31 steps), it was con-siderably shortened by the use of GETFOL's decision procedures | the proof is more than70 steps using just the introduction and elimination rules of GETFOL's ND logic. The proofitself consists of universal eliminations on the axioms, propositional reasoning using thetaut decider, predicative reasoning using the monad decider, and a �nal existential intro-duction. As well as being complete for fragments of �rst order logic, GETFOL's decidersare also very e�cient. For example, given the appropriate axioms and proof lines, monadis able to show in just one step (as opposed to 10 ND steps) and � 0:3 seconds run time(on a SPARC station 104 running GETFOL on GNU common LISP 1.0) that the formulaof line 20, that is exists n.(not (NUMBER(n) imp PROVABLE(diag(n)))), is provable.Of course, the di�cult problem is in determining which instances of the axioms to useand in choosing the formula to be proved.This proof turns out to be a considerable challenge to an unguided theorem prover.We have given these axioms to OTTER (v. 3.0) [McC90] but it blew up. Using \orderedhyper resolution, unit deletion, and factoring, with satellites in sos with and nuclei inusable", 30093733 clauses (of which 11632 were kept) were generated after 2 days on aSun SPARC station 10. In the rest of the paper, we will show how abstraction can helptackle these problems.5 The Abstract TheoryMore than 10 years ago, the �rst author gave a slightly di�erent version of the axiomsdescribed in Section 3 to a Prolog-based resolution theorem prover. Motivated by itsfailure to prove a variant of formula (1), he proposed (what we now call) an abstractionwhich simpli�es the proof greatly, halving it in size. Following [GW92a], we now have theformal machinery necessary to mechanize this proposal in a general and provably correctway.The abstraction we propose maps terms of metamaths onto new terms of the abstracttheory. All the other aspects of the ground language (for example, the predicate sym-bols, the logical connectives) are left unchanged. Formally, this is an atomic abstraction[GW92a]. Such abstractions were �rst proposed by Plaisted [Pla81]. The goal is to makethe diagonal axiom redundant and thus avoid reasoning (in the abstract space) aboutthe details of diagonalization. More precisely, we map the predicates of maths (that is,terms of metamaths) onto sentential letters (that is, individual constants of the abstracttheory) in such a way that the diagonal axiom becomes a tautology. This is obtained4SUNW, SPARC station-10 microprocessor, 32M RAM, Sun OS 4.1.3 U1 operating system.10

as follows: diag(X) and ~prov(X,Y) are mapped onto d (this mapping transforms thediagonalization formula onto a tautology); prov(X,Y) is mapped onto ~d (this mappingis coherent with the previous, which changed the polarity of prov); all(X,Y) is mappedonto the abstraction of Y (notice that since predicates of maths are mapped onto senten-tial letters, universal quanti�cations are useless in the abstract theory). It is importantto notice that this abstraction is not meaning preserving, that is, di�erent ground termsand formulas are collapsed into a single abstract term or formula. This is often the casewhen using abstraction [GW92a]. The hope is that the abstract goal will be much easierto solve. Of course, the existence of a proof of the abstract goal does not guarantee theexistence of a proof of the ground goal. This must be checked, and it is the goal of themapping back and re�nement. In particular, in this case, in the ground space we haveto �t into the abstract proof all the extra steps which take into account the details ofdiagonalization. The advantage is that these (often confusing) details are dealt with inisolation, when all the rest of the proof has been carried out.The GETFOL de�nition of the abstraction is as follows:metamaths:: makecontext absmetamaths;metamaths:: abstraction declare goedel: metamaths => absmetamathsTABS(all($x, $y)) := TABS($y)TABS(diag($x)) := dTABS(~ prov($x, $y)) := dTABS(prov($x, $y)) := ~ dWABS($A and $B) := WABS($A) and WABS($B)WABS(forall $x. $A) := forall TABS($x). WABS($A)...WABS(PROVABLE($x)) := PROVABLE(TABS($x))WABS(NUMBER($x)) := NUMBER(TABS($x))WABS(OCONS) := OCONS...;In GETFOL, abstractions have names. The name chosen for this abstraction is goedel. Anabstraction is de�ned by giving a ground context, in this case metamaths, an abstractcontext, in this case absmetamaths, and the mapping f between the languages of thetwo contexts. The mapping f is de�ned as a set of rewrite rules: TABS (which standsfor Term ABStraction) de�nes the rewriting rules of f over terms; WABS (which standsfor Well formed formula ABStraction) de�nes the rewriting rules of f over formulas. Inthe de�nition of goedel, the symbols pre�xed by a \$" sign are schematic variableswhich can be substituted with formulas or terms (depending on their names). Thus,for instance, diag($x) represents all the formulas of maths having diag as outermostpredicative symbol, like diag(x), or diag(k(all(x,diag(x)))). Notice that TABS andWABS are recursively de�ned over the structure of terms and formulas respectively. Thus,for instance, the rule TABS(all($x, $y)) := TABS($y) says that the abstraction of anyuniversally quanti�ed formula of maths is equal to the abstraction of the formula inthe scope of the quanti�cation. This rewriting rule removes universal quanti�cationsfrom formulas of maths . Finally, the command makecontext, executed just before thede�nition of goedel, creates a new GETFOL context and gives it name absmetamaths.11

Having de�ned the abstraction, we can now perform the second step of Figure 1(page 2), that is, apply f to obtain the abstract space. This is done by feeding the setof rewrite rules de�ning f into the GETFOL rewriter. The resulting axioms, formulas andgoals are then automatically asserted as such in the abstract space. The complete set ofabstract axioms is reported in the Appendix.To demonstrate the mapping of the language, let us consider for instance how thethird line of the proof from the bottom maps into the abstract space:metamaths:: abstract wff (not PROVABLE(all(x,diag(x))) andnot PROVABLE(~ all(x, diag(x)))) by goedel;I am switching from the current context to: absmetamaths(not PROVABLE(d)) and (not PROVABLE(~ d))is the mapped wff from `metamaths'.The last line of the ground proof (which does not involve any of details of diagonalization)is instead mapped across without change.The axioms are mapped across similarly. Consider the following example:metamaths:: abstract axiom iffel by goedel;I am switching from the current context to: absmetamathsiffel : forall w1 w2. ((PROVABLE(w1) and PROVABLE(w1 equiv w2)) impPROVABLE(w2))has been declared to be a new axiom in `absmetamaths'.As expected, this and the other axioms describing the inference rules of maths are notchanged by the abstraction function. Consider now the mapping of the diagonal axiom:metamaths:: abstract axiom diagonal by goedel;I am switching from the current context to: absmetamathsdiagonal : PROVABLE(d equiv d)has been declared to be a new axiom in `absmetamaths'.Again, as expected, the diagonal axiom maps onto the provability of a tautologicalformula, d equiv d. Not surprisingly, we do not need to use it in the abstract proof.6 The Abstract ProofThe third step of Figure 1 consists of �nding a proof in the abstract context. This is mucheasier than �nding a proof in the ground context. Indeed, it is well within the reach ofcurrent resolution theorem provers. OTTER (v. 3.0), for example | using the settingdescribed in Section 4 for the ground proof | was able to �nd a proof in just 0.14 secondsof user CPU time on a SPARC station 10, generating just 40 clauses (of which 34 werekept). This resolution proof is an outline of a ground proof. Similarly, as we demonstratein the next section, the abstract ND proof given in this section serves as an outline forthe ground ND proof given in Section 4.To build the abstract proof we need to switch to absmetamaths, that is, to makeabsmetamaths the current context. This is achieved by the following GETFOL command:12

metamaths:: switchcontext absmetamaths;You are now using context: absmetamathsabsmetamaths::As before, the proof begins with the assumption of !-consistency of maths ,absmetamaths:: assume OCONS;1 OCONS (1)Like in the ground proof, the abstract proof divides naturally into two halves. In the�rst half we show | by reductio ad absurdum | that d is unprovable. We begin thereforeby assuming the opposite of the goalabsmetamaths:: assume PROVABLE(d);2 PROVABLE(d) (2)The next four lines of the proof are devoted to deriving from this a contradiction. Thecontradiction is easier to see than in the ground axiomatization. By axiom corr, if dis provable then ~d will also be provable. We apply 8E to axiom corr and the tautcommand to proof lines 2 and 3:absmetamaths:: alle corr d;3 PROVABLE(d) imp (PROVABLE(~ d) and NUMBER(k(d)))absmetamaths:: taut PROVABLE(~ d) by 2 3;4 PROVABLE(~ d) (2)GETFOL's commands for ND's inference rules are composed of a string identifying a logicalsymbol (eg. all for universal quanti�cation) su�xed by e or i, for the elimination or theintroduction rule respectively.If maths is consistent (assumption 1 and axiom occ), a formula and its negation cannotboth be provable. Thus we have found the contradiction we seek and we can dischargeassumption 2 by asserting its negation. Let us consider this argument in detail. By thede�nition of consistency we have:absmetamaths:: alle cons d;5 CONS imp ((not PROVABLE(d)) or (not PROVABLE(~ d)))Proof line 5 is in contradiction with line 1, axiom occ, line 2, and line 4:absmetamaths:: taut FALSE by 1 occ 5 2 4;6 FALSE (1 2)Thus we can discharge the assumption that d is provable:absmetamaths:: noti 6 2;7 not PROVABLE(d) (1)In the second half of the proof we show that ~d is also unprovable. As in the groundproof, we show that if ~d were provable, d would also be provable, which is in contradictionwith the assumption of (!-)consistency of maths . We start therefore by assuming theprovability of the formula ~d 13

absmetamaths:: assume PROVABLE(~ d);8 PROVABLE(~ d) (8)But, by axiom oc, the previous proof line, and assumption 1, using the decider monad:absmetamaths:: monad exists n. not (NUMBER(n) imp PROVABLE(d)) by 8 1 oc;9 exists n. (not (NUMBER(n) imp PROVABLE(d))) (1 8)We now eliminate the existential quanti�er and show, using comp, proof line 8 and proofline 10, that d is provable:absmetamaths:: existe 9 n;10 not (NUMBER(n) imp PROVABLE(d)) (10)absmetamaths:: alle comp d n;11 (NUMBER(n) and PROVABLE(~ d)) imp PROVABLE(d)absmetamaths:: taut PROVABLE(d) by 8 10 11;12 PROVABLE(d) (1 8)Proof lines 8 and 12 are in contradiction with the consistency of maths :absmetamaths:: alle cons d;13 CONS imp ((not PROVABLE(d)) or (not PROVABLE(~ d)))We can discharge assumption 8 asserting its negation:absmetamaths:: taut FALSE by 1 occ 1 8 12 13;14 FALSE (1 8)absmetamaths:: noti 14 8;15 not PROVABLE(~ d) (1)The proof is now almost done. The goal is built by introducing a conjunction, an exis-tential, and by �nally discharging the initial assumption of !-consistency with the intro-duction of an implication:absmetamaths:: andi 7 15;16 (not PROVABLE(d)) and (not PROVABLE(~ d)) (1)absmetamaths:: existi 16 d:w1;17 exists w1. ((not PROVABLE(w1)) and (not PROVABLE(~ w1))) (1)absmetamaths:: impi 1 17;18 OCONS imp exists w1. ((not PROVABLE(w1)) and (not PROVABLE(~ w1)))The proof requires just 5 of the abstract axioms. Indeed, OTTER was able to �ndan abstract proof slightly quicker when given just these 5 axioms as opposed to all ofthem (0.09 seconds on a SPARC station 10 generating 26 clauses of which 16 were keptusing the same settings as the other examples). Note also that the abstract proof doesnot require any of the complicated axioms, eg. diagonal or numwise.14

A considerable use of the deciders was made in the proof; they considerably reducedthe length of the proof. Given the appropriate premisses, the decision procedure tautis able to determine in just one step the formula of line 12, that is PROVABLE(d). Thefact that this takes 0.20 seconds run time on a SPARC station 10 and that the samecommand in the ground theory fails (the corresponding ground formula is too complexand re�nement is needed to simplify the inference) is an indication of the reduction incomplexity abstraction had provided here. Of course, as in the ground space, the di�cultproblem is in determining which instances of the axioms to use and in choosing the formulato be proved.7 Mapping Back and Re�nementSteps four and �ve of Figure 1 are mapping back and re�nement, that is, the transforma-tion of the abstract proof into a ground proof. From the abstract proof we build an outlineof the ground proof. This outline contains parameters and deductions corresponding tothe key steps of the ground proof. We must therefore re�ne this outline. That is, the usermust guide the system in the choice of instantiating parameters and of adding missingsteps. To perform such re�nement steps in a proof checking system, we need some com-mands for manipulating outlines. In addition, we need to distinguish between the stepsin an outline and those in a proof: steps in an outline may not be derivable as mappingback is not guaranteed. Steps in an outline are merely conjectures. We call them, tries.For simplicity, we begin with the conclusion of the abstract proofabsmetamaths:: show proof;...16 (not PROVABLE(d)) and (not PROVABLE(~ d)) (1)17 exists w1. ((not PROVABLE(w1)) and (not PROVABLE(~ w1))) (1)18 OCONS imp exists w1. ((not PROVABLE(w1)) and (not PROVABLE(~ w1)))show proof shows all the steps of the proof being built, following the order in which theyhave been asserted. We �rst instruct GETFOL to map the last three facts back to tries inthe ground space.absmetamaths:: mapback fact 16 by goedel;absmetamaths:: mapback fact 17 by goedel;absmetamaths:: mapback fact 18 by goedel;absmetamaths:: switchcontext metamaths;You are now using context: metamathsmetamaths:: show outline;16.0 (not PROVABLE(d)) and (not PROVABLE(~ d))ANDI 7.0 15.017.0 exists w1. ((not PROVABLE(w1)) and (not PROVABLE(~ w1)))EXISTI 16.018.0 OCONS imp exists w1. ((not PROVABLE(w1)) and (not PROVABLE(~ w1)))IMPI OCONS 17.0show outline shows all the steps of the outline being built. A try has a number, aformula, and a justi�cation, which explains how the try has been asserted. In this case,15

the tries are numbered 16.0, 17.0, and 18.0; and, for instance, try 18.0 has been obtainedwith an � I between the formula OCONS and the try 17.0. To add extra steps betweenthese tries, GETFOL would use line numbers of the form 16.n, 17.n, and 18.n, withincreasing n. Note that 17.0 and 18.0 are the unique unabstractions of lines 17 and 18in the abstract proof. Line 16, by comparison, has several possible unabstractions, all dueto possible instantiations of d and ~ d. The formula displayed for try 16.0 is meant torepresent one of a set of ground formulas which abstract onto line 16. Notice indeed thatd is not an element of the language of metamaths (see Appendix); it is rather a parameterwhich must be substituted by one of the formulas that the abstraction goedel maps ontoit. We call this process, (parameter) instantiation. GETFOL guarantees the correctnessof instantiations. The legal instantiations for try 16.0 are only those yielding a groundformula that abstracts to proof line 16 of the abstract proof. In this case, we decide toinstantiate all occurrences of d in the try 16.0 to the term all(x,diag(x)) with thecommand tryinst (instantiate a try):metamaths:: tryinst 16.0 d: all(x, diag(x)) all by goedel;16.0 (not PROVABLE(all(x, diag(x)))) and (not PROVABLE(~ all(x, diag(x))))ANDI 7.0 15.0Try 17.0 now follows immediately from 16.0. To show this we perform an existentialintroduction on 16.0, and match the result of this existential introduction with 17.0.metamaths:: tryexisti 16.0 all(x, diag(x)):w1;16.1 exists w1. ((not PROVABLE(w1)) and (not PROVABLE(~ w1))) 17.0EXISTI 16.0metamaths:: trymatch 16.1 17.0;17.0 has been bound to 16.1.All the commands manipulating tries start with try; in particular all the commandsimplementing ND inference rules which apply to tries have their usual name pre�xed bytry. The command trymatch takes two tries and veri�es that they are actually twodistinct instances of the same try.So far, we have successfully mapped back and re�ned the penultimate two lines of theproof. However, rather than laboriously mapping back each line of the abstract proofindividually, we can map back the whole of the abstract proof using one command:metamaths:: switchcontext absmetamaths;You are now using context: absmetamathsabsmetamaths:: mapback proof by goedel;This creates an outline of 18 lines, each being a parameterized unabstraction of the cor-responding line in the abstract proof. Let's switch now our attention to the middle of theproof. In the abstract proof, at line 8, we assumed PROVABLE(~ d). The try associatedwith this line is thus:absmetamaths:: switchcontext metamaths;You are now using context: metamaths 16

metamaths:: show outline;...8.0 PROVABLE(~ d)ASSUME PROVABLE(~ d)...The re�nement of try 8.0 consists of choosing an instantiation for d. This is easy sincein re�ning try 16.0, we committed to all(x,diag(x)) as the unabstraction of d, theunprovable formula. We therefore instantiate d to all(x,diag(x)) in try 8.0:metamaths:: tryinst 8.0 d: all(x, diag(x)) by goedel;8.0 PROVABLE(~ all(x, diag(x)))ASSUME PROVABLE(~ all(x, diag(x)))This demonstrates an important feature of re�nement. GETFOL is a system traditionallyused to reason forwards from axioms and hypotheses to a goal. Facilities have also beenadded for reasoning backwards from the goal to the axioms and hypotheses. In reasoningwith outlines, however, the user has greater
exibility; they can reason from the beginningof the proof, from the end, or (if they wish) from the middle.We must now �nd an instantiation for tries 9.0, 10.0, 11.0, and 12.0:metamaths:: show outline;...9.0 exists n. (not (NUMBER(n) imp PROVABLE(d))) 10.0MONAD exists n. (not (NUMBER(n) imp PROVABLE(d))) BY 8.0 1.0 oc10.0 not (NUMBER(n) imp PROVABLE(d))EXISTE 9.011.0 (NUMBER(n) and PROVABLE(~ d)) imp PROVABLE(d)ALLE comp d, n12.0 PROVABLE(d)TAUT PROVABLE(d) BY 8.0 10.0 11.0...By looking at the justi�cations of try 11.0, we decide to instantiate the parameter ~ dto prov(all(x,diag(x)),n) and the parameter d to all(x,diag(x)). Try 11.0 is nowderivable by applying ALLE to axiom comp.metamaths:: tryinst 11.0 ~ d: prov(all(x,diag(x)),n) all by goedel;11.0 (NUMBER(n) and PROVABLE(prov(all(x, diag(x)), n))) impPROVABLE(d)ALLE comp d, nmetamaths:: tryinst 11.0 d: all(x,diag(x)) all by goedel;11.0 (NUMBER(n) and PROVABLE(prov(all(x, diag(x)), n))) impPROVABLE(all(x, diag(x)))ALLE comp all(x, diag(x)), nReasoning in a similar way, we decide to instantiate the parameter d in tries 9.0 and 10.0to diag(n): 17

metamaths:: tryinst 9.0 10.0 d: diag(n) by goedel;9.0 exists n. (not (NUMBER(n) imp PROVABLE(diag(n))))MONAD exists n. (not (NUMBER(n) imp PROVABLE(diag(n)))) BY 8.0 1.0 oc10.0 not (NUMBER(n) imp PROVABLE(diag(n)))EXISTE 9.0Try 9.0 can now be obtained by applying monad to try 8.0, 1.0, and axiom oc; try 10.0by applying EXISTE to try 9.0. As for the try 12.0, we instantiate the parameter d toall(x,diag(x)), so that from try 12.0 we derive a contradiction with try 8.0 and axiomcons:metamaths:: tryinst 12.0 d: all(x,diag(x)) all by goedel;12.0 PROVABLE(all(x, diag(x))) nobelowTAUT PROVABLE(all(x, diag(x))) BY 8.0 10.0 11.0There is now a gap between try 12.0 and its premisses. That is, try 12.0 is notobtainable by applying the taut decider: we need to add a few steps to the outline.When this happens the gap must always be �lled by using one of facts made useless bythe abstraction. In this case we use the numwise axiom.metamaths:: tryalle numwise n;0.5 NUMBER(n) imp (PROVABLE(diag(n)) or PROVABLE(~ diag(n)))ALLE numwise nmetamaths:: trytaut PROVABLE(~ diag(n)) by 0.5 10.0;10.1 PROVABLE(~ diag(n))TAUT PROVABLE(~ diag(n)) BY 0.5 10.0The next two steps are devoted to proving PROVABLE(diag(n) equiv ~ prov(all(x,diag(x)), n).Using the diagonal and the alle axioms:metamaths:: tryalle allex diag(x) equiv ~ prov(all(x, diag(x)), x)n diag(n) equiv ~ prov(all(x, diag(x)), n);0.7 (PROVABLE(all(x, diag(x) equiv (~ prov(all(x, diag(x)), x)))) andSUBST(n, x, diag(x) equiv (~ prov(all(x, diag(x)), x)),diag(n) equiv (~ prov(all(x, diag(x)), n)))) impPROVABLE(diag(n) equiv (~ prov(all(x, diag(x)), n)))ALLE alle ...metamaths:: trytaut PROVABLE(diag(n) equiv (~ prov(all(x, diag(x)), n)))by diag 0.7 triv6;0.8 PROVABLE(diag(n) equiv (~ prov(all(x, diag(x)), n)))TAUT PROVABLE(diag(n) equiv (~ prov(all(x, diag(x)), n))) ...By using the iffers axiom, try 0.8, and try 10.1:metamaths:: tryalle iffers diag(n) prov(all(x,diag(x)),n);0.6 (PROVABLE(~ diag(n)) andPROVABLE(diag(n) equiv (~ prov(all(x, diag(x)), n)))) imp18

PROVABLE(prov(all(x, diag(x)), n))ALLE iffers diag(n), prov(all(x, diag(x)), n)metamaths:: trytaut PROVABLE(prov(all(x, diag(x)), n)) by 10.1 0.6 diagonal;10.2 PROVABLE(prov(all(x, diag(x)), n))TAUT PROVABLE(prov(all(x, diag(x)), n)) BY 10.1 0.6 0.8We are now almost done. By axiom comp (try 11.0), try 10.2, and try 10.0 (from whichwe know NUMBER(n)) we get:metamaths:: trytaut PROVABLE(all(x, diag(x))) by 10.2 10.0 11.0;11.1 PROVABLE(all(x, diag(x)))TAUT PROVABLE(all(x, diag(x))) BY 10.2 10.0 11.0metamaths:: trymatch 12.0 11.1;12.0 has been bound to 11.1.To illustrate the whole re�nement process, we present in Table 2 the ground proofopposite to the abstract proof: the left column contains the facts of the abstract proofand the right column contains the facts of the ground proof. The mathematical fonthas been used instead of teletype for typographical reasons. The symbol ` stands forPROVABLE and K for k(all(x,diag(x))). The steps added during re�nement can begrouped in two di�erent categories. The �rst category (braced by a curly bracket) iscomposed of those steps having the �rst and the last line abstracted to the same for-mula. These steps corresponds to a single step of the abstract proof. For instance, line 2of the abstract proof encodes seven steps of the ground proof, that is, the derivation of`� prov(all(x; diag(x));K) from ` all(x; diag(x)) Proof lines 12, 13, and 14 are ab-stracted to the same abstract formula, ` d. The second category (braced by a squarebracket) is composed by the steps needed to bridge gaps between ground inference rules.For instance, the single inference that allows the derivation of proof line 12 from prooflines 11 and 10 in the abstract proof (an application of the taut decider) is not valid inthe ground space. We need to add six steps in the ground proof.Having re�ned the outline, we must �nally check that it is indeed a proof. That is,that every try is derived from previous tries. To do this we use the command ol2prfwhich attempts to convert an outline into a proof. This command checks that the outlineis a well formed proof, translates the (pairs of) numbers m.n used to refer to tries to thenatural numbers used to refer to lines of a proof, and asserts each try as a proof line.metamaths:: show outline;...16.0 (not PROVABLE(all(x, diag(x)))) and (not PROVABLE(~ all(x, diag(x))))ANDI 7.0 15.016.1 exists w1. ((not PROVABLE(w1)) and (not PROVABLE(~ w1)))EXISTI 16.017.0 exists w1. ((not PROVABLE(w1)) and (not PROVABLE(~ w1)))MATCH 16.118.0 OCONS imp exists w1. ((not PROVABLE(w1)) and (not PROVABLE(~ w1)))IMPI OCONS 17.0 19

Abstract Proof Ground Proof1 OCONS (1) 11 OCONS (11)2 ` d (2) 8>>>>>>>>><>>>>>>>>>: 12 ` all(x; diag(x)) (12)3 ` all(x; diag(x)) ^ SUBST (: : :) �` diag(K)13 ` diag(K) (10)1 ` all(x; diag(x) equiv � prov(all(x;diag(x)); x))^^SUBST(: : :) �` diag(K) equiv � prov(all(x; diag(x));K)2 ` diag(K) equiv � prov(all(x; diag(x));K)4 ` diag(K)^ ` diag(K) equiv � prov(all(x; diag(x));K) �`� prov(all(x; diag(x));K)14 `� prov(all(x; diag(x));K) (12)3 ` d �`� d ^ NUMB (k(d)) 15 ` all(x; diag(x)) �` prov(all(x; diag(x));K) ^ NUMB (K)4 `� d (2) 16 ` prov(all(x; diag(x));K) (10)h 9 CONS � : ` prov(all(x;diag(x));K) _ :`� prov(all(x; diag(x));K)5 CONS � (: ` d_ 10 CONS � : `� prov(all(x; diag(x));K)__: `� d) _: ` prov(all(x; diag(x));K)6 FALSE (1 2) 17 FALSE (11 12)7 : ` d (1) 18 : ` all(x; diag(x)) (18)8 `� d (8) 19 `� all(x; diag(x)) (19)9 9n :(NUMB(n) �` d) (1 8) 20 9n :(NUMB(n) �` diag(n)) (11 19)10 :(NUMB(n) �` d) (10) 21 :(NUMB(n) �` diag(n)) (21)26666666664 5 NUMB (n) �` diag(n)_ `� diag(n)22 `� diag(n) (21)7 ` all(x; diag(x) equiv � prov(all(x;diag(x)); x)) ^ SUBST (: : :) �` diag(n) equiv � prov(all(x; diag(x)); n)8 ` diag(n) equiv � prov(all(x; diag(x)); n)6 `� diag(n)^ ` diag(n) equiv � prov(all(x; diag(x));n) �` prov(all(x;diag(x)); n)23 ` prov(all(x;diag(x)); n) (21)11 (NUMB(n)^ `� d) �` d 24 NUMB(n)^ ` prov(all(x;diag(x)); n) �` all(x; diag(x))12 ` d (1 8) 25 ` all(x; diag(x)) (11 19)13 CONS � (: ` d _ : `� d) 25 CONS � (: ` all(x; diag(x)) _ : `� all(x; diag(x)))14 FALSE (1 8) 26 FALSE (9 18)15 : `� d (1) 28 : `� all(x; diag(x)) (11)16 : ` d ^ : `� d (1) 29 : ` all(x; diag(x)) ^ : `� all(x; diag(x)) (11)17 9w1 (: ` w1 ^ : `� w1) (1) 30 9w1 (: ` w1 ^ : `� w1) (11)18 OCONS � 9w1 (: ` w1 ^ : `� w1) 31 OCONS � 9w1 (: ` w1 ^ : `� w1)Table 2: Abstract and Ground proof.20

metamaths:: ol2prf;...29 (not PROVABLE(all(x, diag(x)))) and(not PROVABLE(~ all(x, diag(x)))) (11)30 exists w1. ((not PROVABLE(w1)) and (not PROVABLE(~ w1))) (11)31 OCONS imp exists w1. ((not PROVABLE(w1)) and (not PROVABLE(~ w1)))Congratulations: it's a proof!This completes the construction of the ground proof from the outline provided by theabstract proof.As a conclusive remark, it is important to notice that a lot of the process describedin this section can be automated. As shown above in this section, the mapping back iscompletely automated (by the command mapback proof), as it is the process which takesin input an outline, checks whether it is a proof, and produces the corresponding proof(command ol2prf). The process which starts from the outline produced by mapbackand outputs the outline input to ol2prf, instead, cannot be completely automated, noteven in principle. In the general case, this process involves instantiating parameters andperforming �rst order theorem proving between any two tries which must be connected.The advantage is that this should be easier than constructing the complete proof fromscratch (as we would have to do if we did not use abstraction).8 Other Incompleteness ProofsShankar [Sha86] has obtained a complete mechanical veri�cation of G�odel's First Incom-pleteness Theorem using the Boyer and Moore theorem prover [BM79]. To construct thisproof, he developed a (�nite) set theory Z2 and wrote a LISP-like interpreter as a formulain Z2. Using this interpreter, he was able to encode a function representing the prov-ability of the theory within the theory. This gave him enough self-reference to performthe di�cult construction of a G�odel sentence, G which asserts its unprovability. He thenshowed that if G is either provable or unprovable, then it is both provable and unprovable.But if Z2 is complete, either G is provable or unprovable since it does not contains anyfree variables. Thus we cannot have both completeness and consistency for Z2. Shankar'sproof is a very impressive and substantial piece of research. The events �le to generatethe proof is more than 1 Mbyte. Our proof is much more modest by comparison. Weassume much which Shankar develops from �rst principles (eg. G�odel numbering, theexistence of an encoding of provability within the theory, the construction of the G�odelsentence). Nevertheless, our proof can be seen as an abstraction of a more complete prooflike Shankar's in which we only perform the top-level reasoning. To obtain a completeproof would require yet more re�nement; it would be a very interesting exercise to tryto perform this re�nement within the GETFOL system. However, it is beyond the goals ofthis paper since our main aim is to demonstrate the usefulness of abstraction in helpingus �nd a proof.Quaife [Qua88] has also obtained a proof of G�odel's First Incompleteness Theoremusing the ITP system. This proof is similar to the one given here since it assumes thediagonal lemma and only provides the high-level steps. Indeed, it is perhaps even simplerthan our proof since Quaife encodes provability as the modal operator of KT. Quaife's21

proof therefore avoids the need to discuss several issues like substitution and universalquanti�cation.9 ConclusionsWe have described an experiment in which a simpli�ed proof of G�odel's First Incomplete-ness theorem was constructed with the aid of abstraction in the GETFOL proof checkingsystem. To perform this experiment, a theoretical and practical framework for usingabstraction in theorem proving was developed. We believe that this experiment convinc-ingly demonstrates that the use of abstraction proposed in this paper can aid both theconstruction and explanation of proofs of di�cult and challenging theorems.References[AG93] A. Armando and E. Giunchiglia. Embedding Complex Decision Proceduresinside an Interactive Theorem Prover. Annals of Mathematics and Arti�cialIntelligence, 8(3{4):475{502, 1993.[BM79] R.S. Boyer and J.S. Moore. A Computational Logic. Academic Press, 1979.ACM monograph series.[GAP95] E. Giunchiglia, A. Armando, and P. Pecchiari. Structured proof procedures.Annals of Mathematics and Arti�cial Intelligence, 15(I), 1995.[Giu94] F. Giunchiglia. The GETFOL Manual - GETFOL version 2. Technical Report94-0010, DIST - University of Genova, Genoa, Italy, 1994.[G�od86] Kurt G�odel. Some metamathematical results on completeness and consistency(1930b). In Kurt G�odel: Collected Works. Oxford University Press, 1986.[GW89] F. Giunchiglia and T. Walsh. Theorem Proving with De�nitions. In Proc. ofthe 7th Conference of the Society for the Study of Arti�cial Intelligence andSimulation of Behaviour, pages 175{183, 1989. Also IRST-Technical Report8901-03 and DAI Research Paper No 429, University of Edinburgh.[GW91] F. Giunchiglia and T. Walsh. Using abstraction. In Proc. of the 8th Confer-ence of the Society for the Study of Arti�cial Intelligence and Simulation ofBehaviour, Leeds, UK, 1991. Also IRST-Technical Report 9010-08 and DAIResearch Paper 515, University of Edinburgh.[GW92a] F. Giunchiglia and T. Walsh. A Theory of Abstraction. Arti�cial Intelligence,57(2-3):323{390, 1992. Also IRST-Technical Report 9001-14, IRST, Trento,Italy.[GW92b] F. Giunchiglia and T. Walsh. Tree subsumption: Reasoning with outlines. InProc. 10th European Conference on Arti�cial Intelligence ECAI-92, pages 77{81, Vienna, Austria, 1992. Also IRST-Technical Report 9205-01, IRST, Trento,Italy.[Kle52] S.C. Kleene. Introduction to Metamathematics. North Holland, 1952.22

[Kno94] C. A. Knoblock. Automatically generating abstractions for planning. Arti�cialIntelligence, (68):243{302, 1994.[Kor87] R.E. Korf. Planning as search: A quantitative approach. Arti�cial Intelligence,33:65{88, 1987.[McC90] W. W. McCune. Otter 2.0 users guide. Technical Report ANL-90/9, Mathsand CS. Division, Argonne National Laboratory, Argonne, Illinois, 1990.[Pla81] D.A. Plaisted. Theorem proving with abstraction. Arti�cial Intelligence, 16:47{108, 1981.[Pra65] D. Prawitz. Natural Deduction - A proof theoretical study. Almquist and Wik-sell, Stockholm, 1965.[Qua88] A. Quaife. Automated proofs of L�ob's Theorem and G�odel's two incompletenesstheorems. Journal of Automated Reasoning, (4):219,231, 1988.[Sha86] N. Shankar. Proof Checking Metamathematics. Phd thesis, University of Texasat Austin, 1986.[Smo77] C. Smorynski. The Incompleteness Theorems. In Jon Barwise, editor, Handbookof Mathematical Logic, pages 821{865. North Holland Publishing Company,1977.[SVG94] R. Sebastiani, A. Villa�orita, and F. Giunchiglia. Proving Theorems by UsingAbstraction Interactively. In To appear in the proceedings of the Second Inter-national Round-Table on Abstract Intelligent Agent, Rome, Italy, 1994. AlsoIRST-Technical Report 9403-17, IRST, Trento, Italy.[VS94] A. Villa�orita and R. Sebastiani. Proof planning by abstraction. In Proocedingsof ECAI-94, Workshop: From Theorem Provers to Mathematical Assistants:Issues and Possible Solutions, pages 15{24, 1994. MRG-DIST Technical Report94-0025, DIST - University of Genova, Genova, Italy.[Wey80] R.W. Weyhrauch. Prolegomena to a Theory of Mechanized Formal Reasoning.Arti�cial Intelligence, 13(1):133{176, 1980.[WR25] A.N. Whitehead and B. Russell. Principia Mathematica. Cambridge UniversityPress, Cambridge, England, 1925.AppendixGround LanguageBelow, in this subsection on the ground language, is the set of GETFOL commands whichgenerate the language of metamaths. We have dropped the GETFOL prompt for reasons ofspace. comment ! PREDICATIVE SYMBOLS of arity ... !declare predconst PROVABLE 1; comment ! ... 1 !declare predconst NUMBER 1; comment ! ... 1 !declare predconst SUBST 4; comment ! ... 4 !comment ! SENTENTIAL SYMBOLS !declare sentconst CONS OCONS; comment ! !23

comment ! FUNCTIONAL SYMBOLS of arity !declare funconst k 1; comment ! ... 1 (prefix: standard binding priority) !declare funconst diag 1; comment ! ... 1 (prefix: standard binding priority) !declare funconst ~ 1 [pre=200]; comment ! ... 1 (prefix: binding priority is 200) !declare funconst equiv 2 [inf=100 100]; comment ! ... 1 (infix: binding priority is 100) !declare funconst all 2; comment ! ... 2 (prefix: standard binding priority) !declare funconst prov 2; comment ! ... 2 (prefix: standard binding priority) !comment ! INDIVIDUAL VARIABLES !declare indvar w1 w2; comment ! !declare indvar v1 t1; comment ! !declare indvar n; comment ! !comment ! INDIVIDUAL CONSTANTS !declare indconst x; comment ! !Ground Axiomatisationmetamaths:: theory metamath:cons: forall w1.(CONS imp not PROVABLE(w1) or not PROVABLE(~ w1))occ: OCONS imp CONSoc: OCONS imp not (forall n. (NUMBER(n) imp PROVABLE(diag(n))) andPROVABLE(~ all(x, diag(x))))corr: forall w1. (PROVABLE(w1) imp PROVABLE(prov(w1, k(w1))) andNUMBER(k(w1)))comp: forall w2 n. (NUMBER(n) and PROVABLE(prov(w2, n)) imp PROVABLE(w2))numwise: forall n. (NUMBER(n) imp PROVABLE(diag(n)) or PROVABLE(~ diag(n)))diagional: PROVABLE(all(x, diag(x) equiv ~ prov(all(x, diag(x)), x)))iffel: forall w1 w2. (PROVABLE(w1) and PROVABLE(w1 equiv w2) impPROVABLE(w2))iffers: forall w1 w2. (PROVABLE(~ w1) and PROVABLE(w1 equiv ~ w2) impPROVABLE(w2))alle: forall v1 w1 t1 w2. (PROVABLE(all(v1, w1)) and SUBST(t1, v1, w1, w2)imp PROVABLE(w2))triv1: SUBST(k(all(x, diag(x))), x, diag(x), diag(k(all(x, diag(x)))))triv2: SUBST(k(all(x, diag(x))), x, diag(x) equiv ~ prov(all(x, diag(x)), x)diag(k(all(x, diag(x)))) equiv~ prov(all(x, diag(x)), k(all(x, diag(x)))))triv3: SUBST(n, x, diag(x) equiv (~ prov(all(x, diag(x)), x)),diag(n) equiv (~ prov(all(x, diag(x)), n)));The GETFOL command theory allows us to de�ne a GETFOL theory, that is a set of axioms,each with its own name, which can be globally invoked by certain commands, e.g. thecommand abstract theory (see below), by using the name of the theory, in this casemetamath.Abstract Axiomatisationmetamaths:: abstract theory metamath by goedel;I am switching from the current context to: absmetamathsmetamathcons : forall w1. (CONS imp ((not PROVABLE(w1)) or (not PROVABLE(~ w1))))occ : OCONS imp CONSoc : OCONS imp (not (forall n. (NUMBER(n) imp PROVABLE(d)) and PROVABLE(~ d)))corr : forall w1. (PROVABLE(w1) imp (PROVABLE(~ d) and NUMBER(k(w1))))comp : forall w2 n. ((NUMBER(n) and PROVABLE(~ d)) imp PROVABLE(w2))24

numwise : forall n. (NUMBER(n) imp (PROVABLE(d) or PROVABLE(~ d)))diagonal : PROVABLE(d equiv d)iffel : forall w1 w2. ((PROVABLE(w1) and PROVABLE(w1 equiv w2)) imp PROVABLE(w2))iffers : forall w1 w2. ((PROVABLE(~ w1) and PROVABLE(w1 equiv (~ w2))) imp PROVABLE(w2))alle : forall v1 w1 t1 w2. ((PROVABLE(all(v1, w1)) and SUBST(t1, v1, w1, w2)) imp PROVABLE(w2))triv1 : SUBST(k(d), x, d, d)triv2 : SUBST(k(d), x, d equiv d, d equiv d)triv3 : SUBST(n, x, d equiv d, d equiv d)has been declared to be a new theory in `absmetamaths'.Abstract Proofabsmetamaths:: show proof;1 OCONS (1)2 PROVABLE(d) (2)3 PROVABLE(d) imp (PROVABLE(~ d) and NUMBER(k(d)))4 PROVABLE(~ d) (2)5 CONS imp ((not PROVABLE(d)) or (not PROVABLE(~ d)))6 FALSE (1 2)7 not PROVABLE(d) (1)8 PROVABLE(~ d) (8)9 exists n. (not (NUMBER(n) imp PROVABLE(d))) (1 8)10 not (NUMBER(n) imp PROVABLE(d)) (10)11 (NUMBER(n) and PROVABLE(~ d)) imp PROVABLE(d)12 PROVABLE(d) (1 8)13 CONS imp ((not PROVABLE(d)) or (not PROVABLE(~ d)))14 FALSE (1 8)15 not PROVABLE(~ d) (1)16 (not PROVABLE(d)) and (not PROVABLE(~ d)) (1)17 exists w1. ((not PROVABLE(w1)) and (not PROVABLE(~ w1))) (1)18 OCONS imp exists w1. ((not PROVABLE(w1)) and (not PROVABLE(~ w1)))Ground Proofmetamaths:: show proof;1 (PROVABLE(all(x, diag(x) equiv (~ prov(all(x, diag(x)), x)))) andSUBST(k(all(x, diag(x))), x,diag(x) equiv (~ prov(all(x, diag(x)), x)),diag(k(all(x, diag(x)))) equiv (~ prov(all(x, diag(x)), k(all(x, diag(x)))))))imp PROVABLE(diag(k(all(x, diag(x)))) equiv (~ prov(all(x, diag(x)), k(all(x, diag(x))))))2 PROVABLE(diag(k(all(x, diag(x)))) equiv (~ prov(all(x, diag(x)), k(all(x, diag(x))))))3 (PROVABLE(all(x, diag(x))) andSUBST(k(all(x, diag(x))), x, diag(x), diag(k(all(x, diag(x))))))imp PROVABLE(diag(k(all(x, diag(x)))))4 (PROVABLE(diag(k(all(x, diag(x))))) andPROVABLE(diag(k(all(x, diag(x)))) equiv (~ prov(all(x, diag(x)), k(all(x, diag(x)))))))imp PROVABLE(~ prov(all(x, diag(x)), k(all(x, diag(x)))))5 NUMBER(n) imp (PROVABLE(diag(n)) or PROVABLE(~ diag(n)))6 (PROVABLE(~ diag(n)) andPROVABLE(diag(n) equiv (~ prov(all(x, diag(x)), n))))imp PROVABLE(prov(all(x, diag(x)), n))7 (PROVABLE(all(x, diag(x) equiv (~ prov(all(x, diag(x)), x)))) andSUBST(n, x,diag(x) equiv (~ prov(all(x, diag(x)), x)),diag(n) equiv (~ prov(all(x, diag(x)), n))))imp PROVABLE(diag(n) equiv (~ prov(all(x, diag(x)), n)))8 PROVABLE(diag(n) equiv (~ prov(all(x, diag(x)), n)))9 CONS imp ((not PROVABLE(prov(all(x, diag(x)), k(all(x, diag(x)))))) or(not PROVABLE(~ prov(all(x, diag(x)), k(all(x, diag(x)))))))10 CONS imp ((not PROVABLE(~ prov(all(x, diag(x)), k(all(x, diag(x)))))) or25

(not PROVABLE(prov(all(x, diag(x)), k(all(x, diag(x)))))))11 OCONS (11)12 PROVABLE(all(x, diag(x))) (12)13 PROVABLE(diag(k(all(x, diag(x))))) (12)14 PROVABLE(~ prov(all(x, diag(x)), k(all(x, diag(x))))) (12)15 PROVABLE(all(x, diag(x))) imp (PROVABLE(prov(all(x, diag(x)), k(all(x, diag(x)))))and NUMBER(k(all(x, diag(x)))))16 PROVABLE(prov(all(x, diag(x)), k(all(x, diag(x))))) (12)17 FALSE (11 12)18 not PROVABLE(all(x, diag(x))) (11)19 PROVABLE(~ all(x, diag(x))) (19)20 exists n. (not (NUMBER(n) imp PROVABLE(diag(n)))) (11 19)21 not (NUMBER(n) imp PROVABLE(diag(n))) (21)22 PROVABLE(~ diag(n)) (21)23 PROVABLE(prov(all(x, diag(x)), n)) (21)24 (NUMBER(n) and PROVABLE(prov(all(x, diag(x)), n))) imp PROVABLE(all(x, diag(x)))25 PROVABLE(all(x, diag(x))) (11 19)26 CONS imp ((not PROVABLE(all(x, diag(x)))) or (not PROVABLE(~ all(x, diag(x)))))27 FALSE (11 19)28 not PROVABLE(~ all(x, diag(x))) (11)29 (not PROVABLE(all(x, diag(x)))) and (not PROVABLE(~ all(x, diag(x)))) (11)30 exists w1. ((not PROVABLE(w1)) and (not PROVABLE(~ w1))) (11)31 OCONS imp exists w1. ((not PROVABLE(w1)) and (not PROVABLE(~ w1)))

26

