[1ST

ISTITUTO PER LA RICERCA SCIENTIFICA E TECNOLOGICA

I 38100 TRENTO — Loc. PANTE DI Povo — TEL. 0461—814444
TELEX 400874 ITCRST — TELEFAX 0461—810851

AN INCOMPLETENESS THEOREM VIA ABSTRACTION

Alan Bundy, Fausto Giunchiglia, Adolfo Villafiorita, Toby Walsh

September 1996
Technical Report # 9302-15

T,
1 C

IsTiITUTO TRENTINO DI CULTURA

An Incompleteness Theorem via Abstraction”

Alan Bundy!, Fausto Giunchiglia®3, Adolfo Villafiorita®® and Toby Walsh??

Mathematical Reasoning Group, Dept of AIl, University of Edinburgh
Mechanized Reasoning Group, IRST

DISA, University of Trento

Istituto di Informatica, University of Ancona

Mechanized Reasoning Group, DIST, University of Genoa

April 13, 1996

U = W N —

Abstract

We demonstrate the use of abstraction in aiding the construction of an interesting
and difficult example in a proof checking system. This experiment demonstrates that
abstraction can make proofs easier to comprehend and to verify mechanically. To support
such proof checking, we have developed a formal theory of abstraction and added facilities
for using abstraction to the GETFOL proof checking system.

1 Introduction

This paper describes an experiment in which we use abstraction to aid the construction
of a simplified proof of Godel’s first incompleteness theorem. We show that this use
of abstraction makes the proof more accessible to both computer verification and human
comprehension. This experiment also serves toillustrate some of the facilities implemented
in the GETFOL proof checking system [Giu94].

Intuitively, an abstraction can be viewed as a mapping from a representation of a
problem onto a new representation [GW92a]. We represent problems as goals to be proved
inside appropriate first order theories. Let <A, @, A> be an axiomatic formal system,
where A is a first order language, € is a set of axioms, and A is a set of inference
rules. Then abstraction can be defined as a function f which maps the language of a
formal system onto the language of another formal system. The first formal system is
called the ground representation (space/theory), while the second is called the abstract
representation (space/theory). We also talk of abstract or ground language, axioms, and
goal with the obvious meaning.

In [GW92a], we identify various forms of abstractions and show how they can be used
in different ways. In this paper we consider an abstraction where the abstract axioms and

*The order 1s alphabetical and does not reflect the size of the contribution.

3. Find Abstract
Proof
4. Mapback - W
J(o) 5. Refine
ABSTRACT &
THEORY W
2. Abstract Theory
1. Define f
¢
GROUND GROUND THEORY
THEORY WITH OUTLINES

Figure 1: The cycle of theorem proving by abstraction.

goal are obtained by applying f to the ground axioms and goal, and the abstract inference
rules are the same as the ground ones. Furthermore, we restrict ourselves to a specific
use of abstraction where the proof of the abstract goal is used to drive the construction of
the proof of the ground goal. This can be thought of as a five-step process (see Figure 1).
In the first step we define f. In the second step we apply f to the ground representation
to obtain the abstract representation. In the third step we prove the abstract goal, that
is, we find a proof 1l, of f(¢), where ¢ is the ground goal. II, provides the key steps of
the ground proof. In the fourth step we unabstract or map back 1I,, that is, we generate
from II, a tree Iy, called outline, of schematic formulas [GW92b]. Schematic formulas
are needed as usually f is many-to-one; this allows us to build simpler and easier to solve
abstract problems [GW92a]. The parameters occurring in the formulas in II; represent
possible choices in unabstracting abstract formulas into ground formulas. In the fifth
and last step, called refinement, we refine Il into a ground proof. This is achieved by
building a sequence of outlines Il,, ..., 1I,,, where II; (with 2 < ¢ < n) either instantiates
a parameter of II;_1 or adds a proof step to II;_1; and then by checking that II,, actually
represents a proof 1, of ¢. More details of this process are given in [GW92b] and also in
[SVGY4, VS94], where other examples of abstractions are presented.

GETFOL [Giu94], the proof checker used in this experiment, is an extension and re-im-
plementation of the FOL proof checking system [Wey80]. GETFOL includes an extension
of the Natural Deduction calculus [Pra65] (ND henceforth), syntactical and semantical
simplification, and complex deciders for subclasses of first order logic. A single proof step
in GETFOL can thus represent very complex reasoning. GETFOL also provides facilities for
multi-theoretic reasoning. That is, GETFOL allows for multiple distinct logical theories (or,

to use GETFOL terminology, contexts); this feature is essential for this experiment as the
ground and the abstract representation are two distinct theories. We could perhaps call
GETFOL an “interactive theorem prover”. However we stick to “proof checker” as we wish
to emphasize our interest in the interaction with the system rather than in the automation
of the construction of proofs. Above all, GETFOL is a conversational system: the interface
with GETFOL is designed to make the interaction with the user more a dialogue than a
sequence of commands. The user engages in a conversation with GETFOL in which he or
she describes the abstraction, builds an outline of the proof using this abstraction, and
then progressively refines this outline. Potentially combinatorial explosive decisions are
left to the judgment of the user (eg. choices in unabstracting formulas) while the system
performs all the mechanical steps and book-keeping. The advantage over conventional
approaches is that the proofs built are easier to understand and to construct. The two
way nature of this conversation is, we believe, essential for abstraction to be useful.

In this paper we do not discuss more general issues about abstraction. We only notice
that GETFOL is the first system where abstraction can be used interactively, combining it
with user guidance, and inside a proof checking system. A comprehensive and general
discussion about abstraction is given in [GW92a] (but see also [Pla81, GW89] for the
use of abstraction in theorem proving, and [GW91, Kor87, Kno94] for some theoretical
evidence of the advantages of using abstraction automatically). [GW92a] provides a long
list of references to much work in this area, and rationally reconstructs some of the most
important instances.

2 The Plan

The next Section briefly introduces Gédel’s first incompleteness theorem. We present the
original statement of the theorem, together with some basic definitions, and then translate
a simplified axiomatization into the logic of the GETFOL system. Section 4 sketches a
high level proof of the theorem in GETFOL. The actual proof by abstraction is presented
in Sections 5, 6, and 7. Section 5 describes the first two steps of theorem proving by
abstraction, that is, the declaration of the abstraction, and the generation of the abstract
space. Section 6 describes the third step, namely the construction of the abstract proof.
We introduce some of GETFOL’s tools for building proofs, and explain the structure of the
abstract proof. Section 7 describes the last two steps of theorem proving by abstraction,
namely mapping back and refinement. Inside Section 7, Table 2 (page 20) compares the
abstract proof with the ground proof. Finally, the Appendices collect some input/output
of GETFOL: the ground language, the ground axiomatization, the abstract axioms, the
abstract proof, and the ground proof can be found here.

GETFOL input and output are written using the teletype font. The text has been
slightly edited, to make it more readable. Other formulas are written in mathematical
font.

3 The Ground Theory

GETFOL allows for the definition and use of multiple theories at the same time, each of
which has its own name. There is, however, only one current context, that is, only one

theory in which at a given moment we can operate (e.g. define axioms, apply inference
rules, and so on). When the system is started there is only one theory, which is also
the current context. This theory has name NOTNAMED&, which actually means that it is
unnamed. We begin therefore by giving this theory an appropriate name:

NOTNAMED&: : namecontext metamaths;
You have named the current context: metamaths
metamaths: :

The GETFOL prompt is the name of the context inside which we are at the moment, followed
by “::”. Fach GETFOL command has three parts: a string which uniquely identifies it,
a list of arguments, and, finally, “;” which ends the command itself. GETFOL always
produces a short answer which describes the action taken. With the above command we
have given name metamaths to the context inside which we are going to carry out the
ground proof.

Our goal is to prove Gdidel First Incompleteness Theorem, which states that

“I. The system S is not complete; that is, it contains propositions A [...], for
which neither A nor —=A is provable [...] IIl. Theorem I can be sharpened to
the effect that, even if we add finitely many axioms to the system S [...] we do
not obtain a complete system, provided the extended system is w-consistent.”

[Géd86]
where

“a system is said to be w-consistent if, for no property F(z) of natural numbers,
F(1), F(2), ..., F(n), ... ad infinitum

as well as

Ja.—F(x)
are provable” [G6d86].

In the original statement the system “S” is the logic of “Principia Mathematica” [WR25]

with the axiom of choice (for all types) and the natural numbers as individuals. The

theorem, however, can be proved for any formal theory containing arithmetic [Smo77].
We shall prove in GETFOL the following formula':

OCONS > 3w (~PROVABLE(w) A ~PROVABLE(~ w)) (1)

where OCONS means that maths — a fixed but unspecified theory containing arithmetic
— is w-consistent, w is a variable ranging over formulas, PROVABLE(w) means that
the formula w is provable in maths, and ~ is the symbol for negation in maths. No-
tice that maths is not directly axiomatized inside GETFOL. Formula (1) is proven inside
metamaths, a theory in which we discuss the provability, consistency, w-consistency, etc. of
maths. metamaths is a formal metatheory of maths which formalizes (part of) the infor-
mal metatheory inside which Goédel carried out the proof of the incompleteness theorem.

'We write formulas which are not mechanized following the syntax presented in §17 of [Kle52] (with the
following two exceptions: we use A instead of & and p — ¢ as an abbreviation of (p D ¢) & (¢ D p)).

wl, w2 variables of metamaths ranging over formulas of maths;

vi a variable of metamaths ranging over variables of maths;
t1 a variable of metamaths ranging over terms of maths;

n a variable of metamaths ranging over natural numbers;

X a constant of metamaths representing a variable of maths;
PROVABLE (w1) the formula w1 is provable in maths;

CONS maths is consistent;

0CONS maths is w-consistent;

SUBST(t1,v1,wl,w2) substituting the term t1 for the variable v1 in the
formula w1 gives the formula w2;

NUMBER (n) n is a natural number;

prov(wl, n) n is the Godel number of a proof of the formula wi;

“ wl “ is the symbol for negation in maths;

wl equiv w2 equiv is the symbol for logical equivalence in maths;
all(x, wil) all is the symbol for universal quantification in maths.

Table 1: Intended interpretation of some symbols of the alphabet of metamaths.

As such, metamaths has terms which denote elements of maths and variables ranging
over such elements. Consider for instance formula (1). We said above that w ranges
over formulas and that ~ is the symbol for negation in maths. To be precise, we should
have said that w ranges over terms denoting formulas of maths, and that ~ is a function
symbol such that the term obtained by applying it to a term denoting a formula of maths
denotes the negation of the formula itself. To keep explanations simple, from now on we
leave implicit all of this and speak freely, for instance, of variables ranging over elements
of maths. We will be precise only when this is necessary for a correct understanding of
what is going on.

By default, each GETFOL context has a first order language. The user is left with the
task of defining its alphabet. This is done using the declare command. Consider for
instance the following command:

metamaths:: declare predconst PROVABLE 1;
PROVABLE has been declared to be a Predconst

This command declares PROVABLE as a predicate of arity 1. The complete definition of
the alphabet is given in the Appendix. The intended interpretation of some important
symbols is given in Table 1.

We next give some axioms from which we will prove formula (1). These axioms define
various important properties of maths. First we state what it means for maths to be
consistent?:

?Mechanized formulas follow the syntax of the GETFOL system ([Giu94], Section 7). In particular, quantifiers
may have more than one variable; a “.” is required after the last variable in the scope of a quantifier. Thus,
for instance, forall x y.p stands for Va (Yy p).

cons: forall wi.(CONS imp not PROVABLE(wl1) or not PROVABLE(™ wil))

@,

GETFOL axioms have names. In a GETFOL axiom the string before — in this case cons

— is the name used to refer to the axiom.
We also state as axioms two consequences of w-consistency:

occ: OCONS imp CONS;
oc: OCONS imp not (forall n. (NUMBER(n) imp PROVABLE(diag(n))) and
PROVABLE(™ all(x, diag(x))))

Axiom occ states that w-consistency is stronger than consistency (see [Kle52] for a proof).
Axiom oc is an instance of the definition of w-consistency (see below for an explanation
of the meaning of diag).

In metamaths we also want a formula of the type:

Vw (PROVABLE(w) < 3n (NUMBER(n) N PROVABLE(prov(fno(w),n))))

where prov(fno(w),n) is true when n is the Goédel number of a proof of the formula
whose Gédel number is frno(w). To simplify the proof and avoid the manipulation of the
existential quantifier, we replace the above formula with the following two implications

corr: forall wi. (PROVABLE(wl) imp
PROVABLE (prov(wl, k(w1))) and NUMBER(k(w1)))
comp: forall w2 n. (NUMBER(n) and PROVABLE(prov(w2, n)) imp PROVABLE(w2))

where k is a Skolem function introduced to eliminate the existential quantifier; k takes as
argument a formula and returns a number. Notice that the conjunction of corr and comp
is not equivalent to the formula above. Note also that prov, differently from prov, takes
as first argument a formula rather than a number. Thus prov(w,n) in the mechanized
proof stands for prov(fro(w),n).

Consider now the following formula, built using Cantor’s diagonal method (see [Kle52],
page 207 for more details):

all(z, ~ prov(p,z) 2)
where p is the Godel number of the formula all(z, ~ prov(p,z)). Thus (2) is a formula
which asserts its own unprovability. Notice that all(z, ~ prov(p,x)) is such that neither
(the formula denoted by) all(x, ~ prov(p, z)) itself nor its negation is provable in maths.
In the GETFOL proof we start from the following formula:

PROVABLE(all(x, ~ prov(p, z) equiv ~ prov(fno(all(z, ~ prov(p,z))),z))) (3)

In order to enhance readability, we use diag(z) as a synonym of ~ prov(p,z). We have
therefore the following axiom:

diagonal: PROVABLE(all(x, diag(x) equiv (" prov(all(x, diag(x)), x))))

The formula all(x,diag(x)) and its negation are the formulae that we will show
unprovable in maths. Note that, since "prov(all(x,diag(x)),x) means that x is not
the Godel number of a proof of all(x,diag(x)), the formula all(x,diag(x)), which is
a synonym of all(x, "prov(all(x,diag(x)),x)), expresses its own unprovability.

An important property of diag is that it is numeralwise expressible [Kle52]:

numwise: forall n. (NUMBER(n) imp PROVABLE(diag(n)) or PROVABLE(~ diag(n)))

That is, for any natural number n, either diag(n) or “diag(n) is provable in maths. We
also need to describe some of the inference rules of maths:

iffel: forall wl w2. (PROVABLE(w1) and PROVABLE(wl equiv w2) imp
PROVABLE(w2))
iffers: forall wl w2. (PROVABLE(™ wl) and PROVABLE(wl equiv ~ w2) imp
PROVABLE(w2))
alle: forall v1 wl t1 w2. (PROVABLE(all(vi, w1l)) and
SUBST(t1, v1, wi, w2) imp PROVABLE(w2))

The axiom iffel describes the —E. rule of maths. The axiom iffers encodes the
application of a <E,;, a -E, and a L., shortening both the axiomatization and the
proof. The axiom alle describes the VE inference rule. Intuitively, SUBST(t1,v1,wl,w2)
is true when the formula w2 is the result of uniformly substituting the term t1 for the
variable v1 in the formula wl. The axiomatization is completed by three axioms describing
some instances of SUBST. For instance:

trivl: SUBST(k(all(x, diag(x))), x, diag(x), diag(k(all(x, diag(x)))))

says that the result of substituting k(all(x,diag(x))) for x in diag(x) is the formula
diag(k(all(x,diag(x)))). Notice that, as expected, k takes as argument a formula
(that is, all(x, diag(x))), and diag a number (that is, k(all(x, diag(x)))).

The complete set of axioms is given in the Appendix. As a conclusive remark, it
is important to notice that the axioms of metamaths make the proof much simpler and
shorter than it would be if we started from first principles, e.g. from the axioms of Peano
Arithmetic. However this observation does not weaken the message of this paper, which
shows how abstraction helps in that part of the proof where, starting from the diagonal
axiom (and the other principles listed above), we prove that there is a formula w such
that neither w nor its negation is provable. (See Section 8 for a longer discussion on this
point.)

4 The Ground Proof

In this Section we will just discuss the key steps of the ground proof. The full proof is
given in the Appendix.

The proof starts with an assumption, discharged at the very end, that maths is w-con-
sistent:

11 0CONS (11)

In GETFOL, proof steps, when asserted, are printed out as (proof) lines (also called facts).
A line consists of three parts. In order these are: the line number, the formula derived at
this point in the proof, and the set of its dependencies (that is, the set of the line numbers
of the assumptions on which it depends). In this case, we are at the line labeled 11, and

have a formula 0CONS whose set of dependencies is the singleton set with unique element
11°.

The proof now divides in two halves. In the first half we prove, by reductio ad
absurdum, that all(x,diag(x)) is unprovable. We therefore start by assuming that
all(x,diag(x)) is indeed provable:

12 PROVABLE(all(x, diag(x))) (12)

By applying the alle axiom, from assumption 12, substituting k(all(x,diag(x))) for
X we get:

13 PROVABLE(diag(k(all(x, diag(x))))) (12)

and, by using proof line 13, the diagonal axiom (to get the provability in maths of
diag(k(all(x, diag(x)))) equiv ~ prov(all(x, diag(x)), k(all(x, diag(x))))),
and the iffel axiom, we get:

14 PROVABLE(" prov(all(x, diag(x)), k(all(x, diag(x))))) (12)
On the other hand, by using corr and assumption 12 we derive that:

16 PROVABLE(all(x, diag(x))) imp
PROVABLE(prov(all(x, diag(x)), k(all(x, diag(x))))) and
NUMBER(k(all(x, diag(x))))

16 PROVABLE(prov(all(x, diag(x)), k(all(x, diag(x))))) (12)

We have thus found a contradiction, since — if maths is consistent (assumption 11 and
axiom occ) — it cannot be the case that a formula and its negation are both provable
(proof lines 14 and 16):

10 CONS imp not PROVABLE(~ prov(all(x, diag(x)), k(all(x, diag(x))))) or
not PROVABLE(prov(all(x, diag(x)), k(all(x, diag(x)))))
17 FALSE (11 12)

FALSE is the symbol for falsity (L) in the GETFOL language. Proof line 17 is derived from
10, 14, and 16 in just one step using GETFOL’s tautological decider taut. The input/output
behavior of taut is described in [Giu94]; the details of its implementation are described in
[AG93, GAP9I5]. Here it suffices to know that taut takes a goal formula (in this case the
formula of line 17) and a set of hypotheses (in this case 10, 14, and 16) and tries to prove
that the goal follows from the hypotheses by applying propositional reasoning only. If
this is the case, then taut asserts the goal as a proof line with appropriate dependencies.

We can now discharge the initial assumption, by applying the L. rule to proof line 17,
thus concluding the first half of the proof:

3In this section, contrarily to what happens in the rest of the paper, proof steps are written without the
commands which generates them. The reason is that the proof outlined in this section is generated by the
commands described in Section 7. Notice furthermore that the label of the above proof line is 11 and not 1, as
one could have expected, and as it would have been if we had proved the goal using the inference rules of the
ground space. The labeling given in this section is that generated via abstraction, and is described in Section 7.

18 not PROVABLE(all(x, diag(x))) (11)

In the second half of the proof we show that “"all(x, diag(x)) is unprovable. The
proof is again by reductio ad absurdum. We start by assuming

19 PROVABLE(~ all(x, diag(x))) (19)

From this assumption, the assumption of w-consistency (proof line 11), and axiom oc we
can prove

- Vn (NUMBER(n) > PROVABLE(diag(n)))
which is in turn equivalent to

20 exists n. (not (NUMBER(n) imp PROVABLE(diag(m)))) (11 19)

In the GETFOL proof, proof line 20 is proved using GETFOL’s command monad. As with
taut, monad’s input/output behavior is described in [Giu94], while the details of its im-
plementation are in [AG93, GAP95]. Here it suffices to know that monad decides a class
which contains the monadic class, the V3 class and a class which reduces to the V3 class
by simple quantifier manipulation.

We can now apply GETFOL’s JE rule. This requires us to make the following assump-
tion:

21 not (NUMBER(n) imp PROVABLE(diag(n))) (21)

(GETFOL’s 3E rule actually implements existential instantiation [Giu94].) From 21, since
diag is numeralwise expressible, we have

22 PROVABLE(~ diag(n)) (21)

Using the diagonal and the iffers axioms, we get:

23 PROVABLE(prov(all(x, diag(x)), n)) (21)
The proof is now almost done, since, by completeness
24 (WUMBER(n) and PROVABLE(prov(all(x, diag(x)), n))) imp

PROVABLE(all(x, diag(x)))
25 PROVABLE(all(x, diag(x))) (11 19)

which is clearly in contradiction with proof line 19 and the assumption of w-consistency
of maths:

26 CONS imp (not PROVABLE(all(x, diag(x))) or
not PROVABLE(™ all(x, diag(x))))
27 FALSE (11 19)

By applying the 1. rule we get

28 not PROVABLE(™ all(x, diag(x))) (11)

The last three lines of the proof build the goal formula. We first apply an Al to
the proof lines showing the unprovability of all(x,diag(x)) and its negation; we then
apply an 31 to the formula thus obtained; we finally discharge the initial assumption of
w-consistency with an D1I:

29 (not PROVABLE(all(x, diag(x)))) and

(not PROVABLE(” all(x, diag(x)))) (11)
30 exists wi. ((not PROVABLE(w1)) and (not PROVABLE(™ wil))) (11)
31 0OCONS imp exists wil. ((not PROVABLE(w1)) and (not PROVABLE(™ wi)))

Although this proof may have seemed quite long and tortuous (31 steps), it was con-
siderably shortened by the use of GETFOL’s decision procedures — the proof is more than
70 steps using just the introduction and elimination rules of GETFOL’s ND logic. The proof
itself consists of universal eliminations on the axioms, propositional reasoning using the
taut decider, predicative reasoning using the monad decider, and a final existential intro-
duction. As well as being complete for fragments of first order logic, GETFOL’s deciders
are also very efficient. For example, given the appropriate axioms and proof lines, monad
is able to show in just one step (as opposed to 10 ND steps) and ~ 0.3 seconds run time
(on a SPARC station 10* running GETFOL on GNU common LISP 1.0) that the formula
of line 20, that is exists n.(not (NUMBER(n) imp PROVABLE(diag(n)))), is provable.
Of course, the difficult problem is in determining which instances of the axioms to use
and in choosing the formula to be proved.

This proof turns out to be a considerable challenge to an unguided theorem prover.
We have given these axioms to OTTER (v. 3.0) [McC90] but it blew up. Using “ordered
hyper resolution, unit deletion, and factoring, with satellites in sos with and nuclei in
usable”, 30093733 clauses (of which 11632 were kept) were generated after 2 days on a
Sun SPARC station 10. In the rest of the paper, we will show how abstraction can help
tackle these problems.

5 The Abstract Theory

More than 10 years ago, the first author gave a slightly different version of the axioms
described in Section 3 to a Prolog-based resolution theorem prover. Motivated by its
failure to prove a variant of formula (1), he proposed (what we now call) an abstraction
which simplifies the proof greatly, halving it in size. Following [GW92a], we now have the
formal machinery necessary to mechanize this proposal in a general and provably correct
way.

The abstraction we propose maps terms of metamaths onto new terms of the abstract
theory. All the other aspects of the ground language (for example, the predicate sym-
bols, the logical connectives) are left unchanged. Formally, this is an atomic abstraction
[GW92a]. Such abstractions were first proposed by Plaisted [Pla81]. The goal is to make
the diagonal axiom redundant and thus avoid reasoning (in the abstract space) about
the details of diagonalization. More precisely, we map the predicates of maths (that is,
terms of metamaths) onto sentential letters (that is, individual constants of the abstract
theory) in such a way that the diagonal axiom becomes a tautology. This is obtained

*SUNW, SPARC station-10 microprocessor, 32M RAM, Sun OS 4.1.3 Ul operating system.

10

as follows: diag(X) and “prov(X,Y) are mapped onto d (this mapping transforms the
diagonalization formula onto a tautology); prov(X,Y) is mapped onto ~d (this mapping
is coherent with the previous, which changed the polarity of prov); al1(X,Y) is mapped
onto the abstraction of Y (notice that since predicates of maths are mapped onto senten-
tial letters, universal quantifications are useless in the abstract theory). It is important
to notice that this abstraction is not meaning preserving, that is, different ground terms
and formulas are collapsed into a single abstract term or formula. This is often the case
when using abstraction [GW92a]. The hope is that the abstract goal will be much easier
to solve. Of course, the existence of a proof of the abstract goal does not guarantee the
existence of a proof of the ground goal. This must be checked, and it is the goal of the
mapping back and refinement. In particular, in this case, in the ground space we have
to fit into the abstract proof all the extra steps which take into account the details of
diagonalization. The advantage is that these (often confusing) details are dealt with in
isolation, when all the rest of the proof has been carried out.
The GETFOL definition of the abstraction is as follows:

metamaths:: makecontext absmetamaths;
metamaths:: abstraction declare goedel: metamaths => absmetamaths

TABS(all($x, $y)) = TABS($y)
TABS(diag($x)) 1= d
TABS(~ prov($x, $y)) =d

TABS (prov($x, $y)) = 7 d

WABS($A and $B)
WABS(forall $x. $4)

WABS($A) and WABS($B)
forall TABS($x). WABS($4)

WABS (PROVABLE($x)) = PROVABLE(TABS($x))
WABS (NUMBER ($x)) = NUMBER(TABS($x))
WABS (OCONS) = 0CONS

>

In GETFOL, abstractions have names. The name chosen for this abstraction is goedel. An
abstraction is defined by giving a ground context, in this case metamaths, an abstract
context, in this case absmetamaths, and the mapping [between the languages of the
two contexts. The mapping f is defined as a set of rewrite rules: TABS (which stands
for Term ABStraction) defines the rewriting rules of f over terms; WABS (which stands
for Well formed formula ABStraction) defines the rewriting rules of f over formulas. In
the definition of goedel, the symbols prefixed by a “$” sign are schematic variables
which can be substituted with formulas or terms (depending on their names). Thus,
for instance, diag($x) represents all the formulas of maths having diag as outermost
predicative symbol, like diag(x), or diag(k(all(x,diag(x)))). Notice that TABS and
WABS are recursively defined over the structure of terms and formulas respectively. Thus,
for instance, the rule TABS(all($x, $y)) := TABS($y) says that the abstraction of any
universally quantified formula of maths is equal to the abstraction of the formula in
the scope of the quantification. This rewriting rule removes universal quantifications
from formulas of maths. Finally, the command makecontext, executed just before the
definition of goedel, creates a new GETFOL context and gives it name absmetamaths.

11

Having defined the abstraction, we can now perform the second step of Figure 1
(page 2), that is, apply f to obtain the abstract space. This is done by feeding the set
of rewrite rules defining f into the GETFOL rewriter. The resulting axioms, formulas and
goals are then automatically asserted as such in the abstract space. The complete set of
abstract axioms is reported in the Appendix.

To demonstrate the mapping of the language, let us consider for instance how the
third line of the proof from the bottom maps into the abstract space:

metamaths:: abstract wff (not PROVABLE(all(x,diag(x))) and
not PROVABLE(™ all(x, diag(x)))) by goedel;
I am switching from the current context to: absmetamaths
(not PROVABLE(d)) and (not PROVABLE(™ d))
is the mapped wff from ‘metamaths’.

The last line of the ground proof (which does not involve any of details of diagonalization)
is instead mapped across without change.
The axioms are mapped across similarly. Consider the following example:

metamaths:: abstract axiom iffel by goedel;

I am switching from the current context to: absmetamaths

iffel : forall wi w2. ((PROVABLE(w1) and PROVABLE(wl equiv w2)) imp
PROVABLE(w2))

has been declared to be a new axiom in ‘absmetamaths’.

As expected, this and the other axioms describing the inference rules of maths are not
changed by the abstraction function. Consider now the mapping of the diagonal axiom:

metamaths:: abstract axiom diagonal by goedel;

I am switching from the current context to: absmetamaths
diagonal : PROVABLE(d equiv d)

has been declared to be a new axiom in ‘absmetamaths’.

Again, as expected, the diagonal axiom maps onto the provability of a tautological
formula, d equiv d. Not surprisingly, we do not need to use it in the abstract proof.

6 The Abstract Proof

The third step of Figure 1 consists of finding a proof in the abstract context. This is much
easier than finding a proof in the ground context. Indeed, it is well within the reach of
current resolution theorem provers. OTTER (v. 3.0), for example — using the setting
described in Section 4 for the ground proof — was able to find a proof in just 0.14 seconds
of user CPU time on a SPARC station 10, generating just 40 clauses (of which 34 were
kept). This resolution proof is an outline of a ground proof. Similarly, as we demonstrate
in the next section, the abstract ND proof given in this section serves as an outline for
the ground ND proof given in Section 4.

To build the abstract proof we need to switch to absmetamaths, that is, to make
absmetamaths the current context. This is achieved by the following GETFOL command:

12

metamaths:: switchcontext absmetamaths;
You are now using context: absmetamaths
absmetamaths::

As before, the proof begins with the assumption of w-consistency of maths,

absmetamaths:: assume OCONS;
1 0COoNs (1)

Like in the ground proof, the abstract proof divides naturally into two halves. In the
first half we show — by reductio ad absurdum — that d is unprovable. We begin therefore
by assuming the opposite of the goal

absmetamaths:: assume PROVABLE(d);
2 PROVABLE(d) (2)

The next four lines of the proof are devoted to deriving from this a contradiction. The
contradiction is easier to see than in the ground axiomatization. By axiom corr, if d
is provable then ~d will also be provable. We apply VE to axiom corr and the taut
command to proof lines 2 and 3:

absmetamaths:: alle corr d;
3 PROVABLE(d) imp (PROVABLE(™ d) and NUMBER(k(d)))

absmetamaths:: taut PROVABLE(™ d) by 2 3;
4 PROVABLE(™ d) (2)

GETFOL’s commands for ND’s inference rules are composed of a string identifying a logical
symbol (eg. all for universal quantification) suffixed by e or i, for the elimination or the
introduction rule respectively.

If maths is consistent (assumption 1 and axiom occ), a formula and its negation cannot
both be provable. Thus we have found the contradiction we seek and we can discharge
assumption 2 by asserting its negation. Let us consider this argument in detail. By the
definition of consistency we have:

absmetamaths:: alle cons d;
5 CONS imp ((not PROVABLE(d)) or (not PROVABLE(™ d)))

Proof line 5 is in contradiction with line 1, axiom occ, line 2, and line 4:

absmetamaths:: taut FALSE by 1 occ 5 2 4;
6 FALSE (1 2)

Thus we can discharge the assumption that d is provable:

absmetamaths:: noti 6 2;
7 not PROVABLE(4) (1)

In the second half of the proof we show that “d is also unprovable. As in the ground
proof, we show that if “d were provable, d would also be provable, which is in contradiction
with the assumption of (w-)consistency of maths. We start therefore by assuming the
provability of the formula ~d

13

absmetamaths:: assume PROVABLE(™ d);
8 PROVABLE(™ d) (8)

But, by axiom oc, the previous proof line, and assumption 1, using the decider monad:

absmetamaths:: monad exists n. not (NUMBER(n) imp PROVABLE(d)) by 8 1 oc;
9 exists n. (not (NUMBER(n) imp PROVABLE(d))) (1 8)

We now eliminate the existential quantifier and show, using comp, proof line 8 and proof
line 10, that 4 is provable:

absmetamaths:: existe 9 n;
10 not (NUMBER(n) imp PROVABLE(d)) (10)

absmetamaths:: alle comp d n;
11 (NUMBER(n) and PROVABLE(™ d)) imp PROVABLE(d)

absmetamaths:: taut PROVABLE(d) by 8 10 11;
12 PROVABLE(d) (1 8)

Proof lines 8 and 12 are in contradiction with the consistency of maths:

absmetamaths:: alle cons d;
13 CONS imp ((not PROVABLE(d)) or (mot PROVABLE(™ d4)))

We can discharge assumption 8 asserting its negation:

absmetamaths:: taut FALSE by 1 occ 1 8 12 13;
14 FALSE (1 8)

absmetamaths:: noti 14 8;
15 not PROVABLE(™ d) (1)

The proof is now almost done. The goal is built by introducing a conjunction, an exis-

tential, and by finally discharging the initial assumption of w-consistency with the intro-
duction of an implication:

absmetamaths:: andi 7 15;
16 (not PROVABLE(d)) and (not PROVABLE(™ d)) (1)

absmetamaths:: existi 16 d:wi;
17 exists wil. ((not PROVABLE(w1)) and (not PROVABLE(™ wil))) (1)

absmetamaths:: impi 1 17;
18 OCONS imp exists wl. ((not PROVABLE(w1)) and (not PROVABLE(™ wil)))

The proof requires just 5 of the abstract axioms. Indeed, OTTER was able to find
an abstract proof slightly quicker when given just these 5 axioms as opposed to all of
them (0.09 seconds on a SPARC station 10 generating 26 clauses of which 16 were kept
using the same settings as the other examples). Note also that the abstract proof does
not require any of the complicated axioms, eg. diagonal or numwise.

14

A considerable use of the deciders was made in the proof; they considerably reduced
the length of the proof. Given the appropriate premisses, the decision procedure taut
is able to determine in just one step the formula of line 12, that is PROVABLE(d). The
fact that this takes 0.20 seconds run time on a SPARC station 10 and that the same
command in the ground theory fails (the corresponding ground formula is too complex
and refinement is needed to simplify the inference) is an indication of the reduction in
complexity abstraction had provided here. Of course, as in the ground space, the difficult
problem is in determining which instances of the axioms to use and in choosing the formula
to be proved.

7 Mapping Back and Refinement

Steps four and five of Figure 1 are mapping back and refinement, that is, the transforma-
tion of the abstract proofinto a ground proof. From the abstract proof we build an outline
of the ground proof. This outline contains parameters and deductions corresponding to
the key steps of the ground proof. We must therefore refine this outline. That is, the user
must guide the system in the choice of instantiating parameters and of adding missing
steps. To perform such refinement steps in a proof checking system, we need some com-
mands for manipulating outlines. In addition, we need to distinguish between the steps
in an outline and those in a proof: steps in an outline may not be derivable as mapping
back is not guaranteed. Steps in an outline are merely conjectures. We call them, tries.
For simplicity, we begin with the conclusion of the abstract proof

absmetamaths:: show proof;

16 (not PROVABLE(d)) and (not PROVABLE(~ d)) (1)
17 exists wl. ((not PROVABLE(w1)) and (not PROVABLE(~ wil))) (1)
18 OCONS imp exists wl. ((not PROVABLE(w1)) and (not PROVABLE(™ wil)))

show proof shows all the steps of the proof being built, following the order in which they
have been asserted. We first instruct GETFOL to map the last three facts back to tries in
the ground space.

absmetamaths:: mapback fact 16 by goedel;

absmetamaths:: mapback fact 17 by goedel;

absmetamaths:: mapback fact 18 by goedel;

absmetamaths:: switchcontext metamaths;

You are now using context: metamaths

metamaths:: show outline;

16.0 (not PROVABLE(d)) and (not PROVABLE(™ d4))
ANDI 7.0 15.0

17.0 exists wil. ((not PROVABLE(w1)) and (not PROVABLE(™ w1l)))
EXISTI 16.0

18.0 OCONS imp exists wi. ((not PROVABLE(w1)) and (not PROVABLE(™ wil)))
IMPI OCONS 17.0

show outline shows all the steps of the outline being built. A try has a number, a
formula, and a justification, which explains how the try has been asserted. In this case,

15

the tries are numbered 16.0, 17.0, and 18.0; and, for instance, try 18.0 has been obtained
with an D1 between the formula 0CONS and the try 17.0. To add extra steps between
these tries, GETFOL would use line numbers of the form 16.n, 17.n, and 18.n, with
increasing n. Note that 17.0 and 18.0 are the unique unabstractions of lines 17 and 18
in the abstract proof. Line 16, by comparison, has several possible unabstractions, all due
to possible instantiations of d and ~ d. The formula displayed for try 16.0 is meant to
represent one of a set of ground formulas which abstract onto line 16. Notice indeed that
d is not an element of the language of metamaths (see Appendix); it is rather a parameter
which must be substituted by one of the formulas that the abstraction goedel maps onto
it. We call this process, (parameter) instantiation. GETFOL guarantees the correctness
of instantiations. The legal instantiations for try 16.0 are only those yielding a ground
formula that abstracts to proof line 16 of the abstract proof. In this case, we decide to
instantiate all occurrences of d in the try 16.0 to the term all(x,diag(x)) with the
command tryinst (instantiate a try):

metamaths:: tryinst 16.0 d: all(x, diag(x)) all by goedel;
16.0 (not PROVABLE(all(x, diag(x)))) and (not PROVABLE(™ all(x, diag(x))))
ANDI 7.0 15.0

Try 17.0 now follows immediately from 16.0. To show this we perform an existential
introduction on 16.0, and match the result of this existential introduction with 17.0.

metamaths:: tryexisti 16.0 all(x, diag(x)):wil;
16.1 exists wi. ((not PROVABLE(w1)) and (not PROVABLE(~ wi1))) 17.0
EXISTI 16.0

metamaths:: trymatch 16.1 17.0;
17.0 has been bound to 16.1.

All the commands manipulating tries start with try; in particular all the commands
implementing ND inference rules which apply to tries have their usual name prefixed by
try. The command trymatch takes two tries and verifies that they are actually two
distinct instances of the same try.

So far, we have successfully mapped back and refined the penultimate two lines of the
proof. However, rather than laboriously mapping back each line of the abstract proof
individually, we can map back the whole of the abstract proof using one command:

metamaths:: switchcontext absmetamaths;
You are now using context: absmetamaths
absmetamaths:: mapback proof by goedel;

This creates an outline of 18 lines, each being a parameterized unabstraction of the cor-
responding line in the abstract proof. Let’s switch now our attention to the middle of the
proof. In the abstract proof, at line 8, we assumed PROVABLE(™ d). The try associated
with this line is thus:

absmetamaths:: switchcontext metamaths;
You are now using context: metamaths

16

metamaths:: show outline;

8.0 PROVABLE(™ d)
ASSUME PROVABLE(™ d)

The refinement of try 8.0 consists of choosing an instantiation for d. This is easy since
in refining try 16.0, we committed to all(x,diag(x)) as the unabstraction of d, the
unprovable formula. We therefore instantiate d to all(x,diag(x)) in try 8.0:

metamaths:: tryinst 8.0 d: all(x, diag(x)) by goedel;
8.0 PROVABLE(™ all(x, diag(x)))
ASSUME PROVABLE(™ all(x, diag(x)))

This demonstrates an important feature of refinement. GETFOL is a system traditionally
used to reason forwards from axioms and hypotheses to a goal. Facilities have also been
added for reasoning backwards from the goal to the axioms and hypotheses. In reasoning
with outlines, however, the user has greater flexibility; they can reason from the beginning
of the proof, from the end, or (if they wish) from the middle.

We must now find an instantiation for tries 9.0, 10.0, 11.0, and 12.0:

metamaths:: show outline;

9.0 exists n. (not (NUMBER(n) imp PROVABLE(d))) 10.0
MONAD exists n. (not (NUMBER(n) imp PROVABLE(d))) BY 8.0 1.0 oc
10.0 not (NUMBER(n) imp PROVABLE(d))
EXISTE 9.0
11.0 (NUMBER(n) and PROVABLE(™ d)) imp PROVABLE(J)
ALLE comp d, n
12.0 PROVABLE(4)
TAUT PROVABLE(d) BY 8.0 10.0 11.0

By looking at the justifications of try 11.0, we decide to instantiate the parameter ~ d
to prov(all(x,diag(x)),n) and the parameter d to all(x,diag(x)). Try 11.0 is now
derivable by applying ALLE to axiom comp.

metamaths:: tryinst 11.0 ~ d: prov(all(x,diag(x)),n) all by goedel;
11.0 (NUMBER(n) and PROVABLE(prov(all(x, diag(x)), n))) imp
PROVABLE(d)
ALLE comp d, n
metamaths:: tryinst 11.0 d: all(x,diag(x)) all by goedel;
11.0 (NUMBER(n) and PROVABLE(prov(all(x, diag(x)), n))) imp
PROVABLE(all(x, diag(x)))
ALLE comp all(x, diag(x)), n

Reasoning in a similar way, we decide to instantiate the parameter d in tries 9.0 and 10.0
to diag(n):

17

metamaths:: tryinst 9.0 10.0 d: diag(n) by goedel;
9.0 exists n. (not (NUMBER(n) imp PROVABLE(diag(m))))

MONAD exists n. (not (NUMBER(n) imp PROVABLE(diag(n)))) BY 8.0 1.0 oc
10.0 not (NUMBER(n) imp PROVABLE(diag(n)))

EXISTE 9.0

Try 9.0 can now be obtained by applying monad to try 8.0, 1.0, and axiom oc; try 10.0
by applying EXISTE to try 9.0. As for the try 12.0, we instantiate the parameter d to
all(x,diag(x)), so that from try 12.0 we derive a contradiction with try 8.0 and axiom
cons:

metamaths:: tryinst 12.0 d: all(x,diag(x)) all by goedel;
12.0 PROVABLE(all(x, diag(x))) mnobelow
TAUT PROVABLE(all(x, diag(x))) BY 8.0 10.0 11.0

There is now a gap between try 12.0 and its premisses. That is, try 12.0 is not
obtainable by applying the taut decider: we need to add a few steps to the outline.
When this happens the gap must always be filled by using one of facts made useless by
the abstraction. In this case we use the numwise axiom.

metamaths:: tryalle numwise n;
0.5 NUMBER(n) imp (PROVABLE(diag(n)) or PROVABLE(" diag(m)))
ALLE numwise n

metamaths:: trytaut PROVABLE(™ diag(n)) by 0.5 10.0;
10.1 PROVABLE(™ diag(mn))
TAUT PROVABLE(™ diag(n)) BY 0.5 10.0

The next two steps are devoted to proving PROVABLE(diag(n) equiv ~ prov(all(x,
diag(x)), n).
Using the diagonal and the alle axioms:

metamaths:: tryalle alle
x diag(x) equiv ~ prov(all(x, diag(x)), x)
n diag(n) equiv ~ prov(all(x, diag(x)), n);
0.7 (PROVABLE(all(x, diag(x) equiv (~ prov(all(x, diag(x)), x)))) and
SUBST(n, x, diag(x) equiv (~ prov(all(x, diag(x)), x)),
diag(n) equiv (” prov(all(x, diag(x)), n)))) imp
PROVABLE(diag(n) equiv (~ prov(all(x, diag(x)), n)))
ALLE alle ...

metamaths:: trytaut PROVABLE(diag(n) equiv (~ prov(all(x, diag(x)), n)))
by diag 0.7 trivse;
0.8 PROVABLE(diag(n) equiv (~ prov(all(x, diag(x)), n)))
TAUT PROVABLE(diag(n) equiv (~ prov(all(x, diag(x)), n)))

By using the iffers axiom, try 0.8, and try 10.1:
metamaths:: tryalle iffers diag(n) prov(all(x,diag(x)),n);

0.6 (PROVABLE(™ diag(n)) and
PROVABLE(diag(n) equiv (~ prov(all(x, diag(x)), n)))) imp

18

PROVABLE(prov(all(x, diag(x)), n))
ALLE iffers diag(n), prov(all(x, diag(x)), n)

metamaths:: trytaut PROVABLE(prov(all(x, diag(x)), n)) by 10.1 0.6 diagonal;
10.2 PROVABLE(prov(all(x, diag(x)), n))
TAUT PROVABLE(prov(all(x, diag(x)), n)) BY 10.1 0.6 0.8

We are now almost done. By axiom comp (try 11.0), try 10.2, and try 10.0 (from which
we know NUMBER(n)) we get:

metamaths:: trytaut PROVABLE(all(x, diag(x))) by 10.2 10.0 11.0;
11.1 PROVABLE(all(x, diag(x)))
TAUT PROVABLE(all(x, diag(x))) BY 10.2 10.0 11.0

metamaths:: trymatch 12.0 11.1;
12.0 has been bound to 11.1.

To illustrate the whole refinement process, we present in Table 2 the ground proof
opposite to the abstract proof: the left column contains the facts of the abstract proof
and the right column contains the facts of the ground proof. The mathematical font
has been used instead of teletype for typographical reasons. The symbol stands for
PROVABLE and K for k(all(x,diag(x))). The steps added during refinement can be
grouped in two different categories. The first category (braced by a curly bracket) is
composed of those steps having the first and the last line abstracted to the same for-
mula. These steps corresponds to a single step of the abstract proof. For instance, line 2
of the abstract proof encodes seven steps of the ground proof, that is, the derivation of
F e~ prov(all(z, diag(x)), K) from F all(z,diag(x)) Proof lines 12, 13, and 14 are ab-
stracted to the same abstract formula, F d. The second category (braced by a square
bracket) is composed by the steps needed to bridge gaps between ground inference rules.
For instance, the single inference that allows the derivation of proof line 12 from proof
lines 11 and 10 in the abstract proof (an application of the taut decider) is not valid in
the ground space. We need to add six steps in the ground proof.

Having refined the outline, we must finally check that it is indeed a proof. That is,
that every try is derived from previous tries. To do this we use the command ol2prf
which attempts to convert an outline into a proof. This command checks that the outline
is a well formed proof, translates the (pairs of) numbers m.n used to refer to tries to the
natural numbers used to refer to lines of a proof, and asserts each try as a proof line.

metamaths:: show outline;
16.0 (not PROVABLE(all(x, diag(x)))) and (not PROVABLE(™ all(x, diag(x))))

ANDI 7.0 15.0
16.1 exists wl. ((not PROVABLE(w1)) and (not PROVABLE(™ w1)))

EXISTI 16.0
17.0 exists wl. ((not PROVABLE(w1)) and (not PROVABLE(™ w1)))
MATCH 16.1

18.0 OCONS imp exists wi. ((not PROVABLE(w1)) and (not PROVABLE(™ wil)))
IMPI O0CONS 17.0

19

Abstract Proof

Ground Proof

1 OCONS 5 11 OCONs 1
12+ all(z,diag(z)) (12)
3+ all(z,diag(z)) A SUBST(...) Dt diag(K)
13+ diag(K) (10)
1+ all(z,diag(z) equiv ~ prov(all(z,diag(z)),=)) A
2 Fd (2) ASUBST(...) DF diag(K)equiv ~ prov(all(z,diag(z)), K)
F diag(K)equiv ~ prov(all(z, diag(z)), K)
F diag(K)A F diag(K) equiv ~ prov(all(z,diag(z)),K) D
F~ prov(all(z, diag(z)), K)
14 +~ prov(all(z,diag(z)), K) (12)
3 FdDOF~dA NUMB(k(d)) 15+ all(z,diag(z)) Dt prov(ali(z,diag(z)), K) A NUMB(K)
4 F~d (2) 16+ prov(all(z,diag(z)), K) (10)
9 CONS D =t prov(all(z,diag(z)),K) vV =
F~ prov(all(z, diag(z)), K)
5 CONS D (=F dv 10 CONS D =k~ prov(all(z,diag(z)),K) Vv
Vo k~d) Vv =k prov(all(z, diag(z)), K)
6 FALSE (12) 17 FALSE (11 12)
7 -k d (1) 18 =+ all(z,diag(x)) (18)
8 b~ d (8) 19 ke~ all(z,diag(z)) (19)
9 IAn ~(NUMB(n) DF d) (18) 20 In (NUMB(n) Dt diag(n)) (11 19)
10 =(NUMB(n) Dt d) (10) 21 —(NUMB(n) Dt diag(n)) (21)
[5 NUMB(n) DF diag(n)V Fr~ diag(n)
22 ko~ diag(n) (21)
7t all(z,diag(z) equiv ~ prov(all(z,diag(z)),z)) A SUBST(...) D
F diag(n) equiv ~ prov(all(z,diag(z)),n)
8 diag(n)equiv ~ prov(all(z,diag(z)),n)
6 F~diag(n) A & diag(n)equiv ~ prov(all(z,diag(z)),n) D
F prov(all(z,diag(x)),n)
L 23 F prov(all(x,diag(x)),n) (21)
11 (NUMB(n)A F~d) DF d 24 NUMB(n)A b prov(all(z,diag(z)),n) DF all(z,diag(x))
12 + d (18) 25 + all(z,diag(z)) (11 19)
13 CONS D (nFdV -k~ d) 25 CONS D (- F all(z,diag(z)) V = F~ all(z,diag(x)))
14 FALSE (18) 26 FALSE (9 18)
15 =k~d (1) 28 -k~ oall(z,diag(z)) (11)
16 = dA-F~d (1) 29 -k all(z,diag(z)) A = F~ all(z,diag(z)) (11)
17 Jwl (- F wl A =k~ wl) (1 30 Jwl(~F wl A -F~wl) (11)
18 OCONS D Jwl (—=F wl A =k~ wl) 31 OCONS D Fwl (-F wl A mF~ wl)
Table 2: Abstract and Ground proof.

20

metamaths:: ol2prf;

29 (not PROVABLE(all(x, diag(x)))) and

(not PROVABLE(™ all(x, diag(x)))) (11)
30 exists wl. ((not PROVABLE(w1)) and (not PROVABLE(™ w1l))) (11)
31 0OCONS imp exists wil. ((not PROVABLE(w1)) and (not PROVABLE(™ wi)))
Congratulations: it’s a proof!

This completes the construction of the ground proof from the outline provided by the
abstract proof.

As a conclusive remark, it is important to notice that a lot of the process described
in this section can be automated. As shown above in this section, the mapping back is
completely automated (by the command mapback proof), as it is the process which takes
in input an outline, checks whether it is a proof, and produces the corresponding proof
(command ol2prf). The process which starts from the outline produced by mapback
and outputs the outline input to ol2prf, instead, cannot be completely automated, not
even in principle. In the general case, this process involves instantiating parameters and
performing first order theorem proving between any two tries which must be connected.
The advantage is that this should be easier than constructing the complete proof from
scratch (as we would have to do if we did not use abstraction).

8 Other Incompleteness Proofs

Shankar [Sha86] has obtained a complete mechanical verification of Gédel’s First Incom-
pleteness Theorem using the Boyer and Moore theorem prover [BM79]. To construct this
proof, he developed a (finite) set theory Z2 and wrote a LISP-like interpreter as a formula
in Z2. Using this interpreter, he was able to encode a function representing the prov-
ability of the theory within the theory. This gave him enough self-reference to perform
the difficult construction of a Godel sentence, G which asserts its unprovability. He then
showed that if G is either provable or unprovable, then it is both provable and unprovable.
But if Z2 is complete, either G is provable or unprovable since it does not contains any
free variables. Thus we cannot have both completeness and consistency for Z2. Shankar’s
proof is a very impressive and substantial piece of research. The events file to generate
the proof is more than 1 Mbyte. Our proof is much more modest by comparison. We
assume much which Shankar develops from first principles (eg. Gddel numbering, the
existence of an encoding of provability within the theory, the construction of the Godel
sentence). Nevertheless, our proof can be seen as an abstraction of a more complete proof
like Shankar’s in which we only perform the top-level reasoning. To obtain a complete
proof would require yet more refinement; it would be a very interesting exercise to try
to perform this refinement within the GETFOL system. However, it is beyond the goals of
this paper since our main aim is to demonstrate the usefulness of abstraction in helping
us find a proof.

Quaife [Qua88] has also obtained a proof of Godel’s First Incompleteness Theorem
using the I'TP system. This proof is similar to the one given here since it assumes the
diagonal lemma and only provides the high-level steps. Indeed, it is perhaps even simpler
than our proof since Quaife encodes provability as the modal operator of KT. Quaife’s

21

proof therefore avoids the need to discuss several issues like substitution and universal
quantification.

9 Conclusions

We have described an experiment in which a simplified proof of Gédel’s First Incomplete-
ness theorem was constructed with the aid of abstraction in the GETFOL proof checking
system. To perform this experiment, a theoretical and practical framework for using
abstraction in theorem proving was developed. We believe that this experiment convine-
ingly demonstrates that the use of abstraction proposed in this paper can aid both the
construction and explanation of proofs of difficult and challenging theorems.

References

[AG93] A. Armando and E. Giunchiglia. Embedding Complex Decision Procedures
inside an Interactive Theorem Prover. Annals of Mathematics and Artificial
Intelligence, 8(3-4):475-502, 1993.

[BM79] R.S. Boyer and J.S. Moore. A Computational Logic. Academic Press, 1979.
ACM monograph series.

[GAP95] E. Giunchiglia, A. Armando, and P. Pecchiari. Structured proof procedures.
Annals of Mathematics and Artificial Intelligence, 15(1), 1995.

[Giu94] F. Giunchiglia. The GETFOL Manual - GETFOL version 2. Technical Report
94-0010, DIST - University of Genova, Genoa, Italy, 1994.

[G6d86] Kurt Godel. Some metamathematical results on completeness and consistency
(1930b). In Kurt Gédel: Collected Works. Oxford University Press, 1986.

[GWS89] F. Giunchiglia and T. Walsh. Theorem Proving with Definitions. In Proc. of
the 7th Conference of the Society for the Study of Artificial Intelligence and
Simulation of Behaviour, pages 175-183, 1989. Also IRST-Technical Report
8901-03 and DAI Research Paper No 429, University of Edinburgh.

[GWI1] F. Giunchiglia and T. Walsh. Using abstraction. In Proc. of the 8th Confer-
ence of the Society for the Study of Artificial Intelligence and Simulation of
Behaviour, Leeds, UK, 1991. Also IRST-Technical Report 9010-08 and DAI
Research Paper 515, University of Edinburgh.

[GW92a] F. Giunchiglia and T. Walsh. A Theory of Abstraction. Artificial Intelligence,
57(2-3):323-390, 1992. Also IRST-Technical Report 9001-14, IRST, Trento,
Italy.

[GW92b] F. Giunchiglia and T. Walsh. Tree subsumption: Reasoning with outlines. In
Proc. 10th Furopean Conference on Artificial Intelligence FCAI-92, pages 77—
81, Vienna, Austria, 1992. Also IRST-Technical Report 9205-01, IRST, Trento,
Italy.

[Kle52] S.C. Kleene. Introduction to Metamathematics. North Holland, 1952.

22

[Kno94]
[Kor87]
[McC90]
[Plas1]
[Pra65]
[Quass]
[Shas6]

[Smo77]

[SVGO4]

[VS94]

[Wey80]

[WR25]

C. A. Knoblock. Automatically generating abstractions for planning. Artificial
Intelligence, (68):243-302, 1994.

R.E. Korf. Planning as search: A quantitative approach. Artificial Intelligence,
33:65-88, 1987.

W. W. McCune. Otter 2.0 users guide. Technical Report ANL-90/9, Maths
and CS. Division, Argonne National Laboratory, Argonne, Illinois, 1990.

D.A. Plaisted. Theorem proving with abstraction. Artificial Intelligence, 16:47—
108, 1981.

D. Prawitz. Natural Deduction - A proof theoretical study. Almquist and Wik-
sell, Stockholm, 1965.

A. Quaife. Automated proofs of Léb’s Theorem and Gédel’s two incompleteness
theorems. Journal of Automated Reasoning, (4):219,231, 1988.

N. Shankar. Proof Checking Metamathematics. Phd thesis, University of Texas
at Austin, 1986.

C. Smorynski. The Incompleteness Theorems. In Jon Barwise, editor, Handbook
of Mathematical Logic, pages 821-865. North Holland Publishing Company,
1977.

R. Sebastiani, A. Villafiorita, and F. Giunchiglia. Proving Theorems by Using
Abstraction Interactively. In To appear in the proceedings of the Second Inter-
national Round-Table on Abstract Intelligent Agent, Rome, Italy, 1994. Also
IRST-Technical Report 9403-17, IRST, Trento, Italy.

A. Villafiorita and R. Sebastiani. Proof planning by abstraction. In Proocedings
of FCAI-94, Workshop: From Theorem Provers to Mathematical Assistants:
Issues and Possible Solutions, pages 15-24, 1994. MRG-DIST Technical Report
94-0025, DIST - University of Genova, Genova, Italy.

R.W. Weyhrauch. Prolegomena to a Theory of Mechanized Formal Reasoning.
Artificial Intelligence, 13(1):133-176, 1980.

A.N. Whitehead and B. Russell. Principia Mathematica. Cambridge University
Press, Cambridge, England, 1925.

Appendix

Ground Language

Below, in this subsection on the ground language, is the set of GETFOL commands which
generate the language of metamaths. We have dropped the GETFOL prompt for reasons of

Space.
comment ! PREDICATIVE SYMBOLS of arity ... !
declare predconst PROVABLE 1; comment ! .1 !
declare predconst NUMBER 1; comment ! .1 !
declare predconst SUBST 4; comment ! ... 4 !
comment ! SENTENTIAL SYMBOLS !
declare sentconst CONS 0OCONS; comment ! !

23

comment ! FUNCTIONAL SYMBOLS of arity !
declare funconst k 1; comment ! ... 1 (prefix: standard binding priority) !

declare funconst diag 1; comment ! . 1 (prefix: standard binding priority) !
declare funconst ~ 1 [pre=200]; comment ! . 1 (prefix: binding priority is 200) !
declare funconst equiv 2 [inf=100 100]; comment ! . 1 (infix: binding priority is 100) !
declare funconst all 2; comment ! . 2 (prefix: standard binding priority) !
declare funconst prov 2; comment ! ... 2 (prefix: standard binding priority) !

comment ! INDIVIDUAL VARIABLES !
declare indvar wl w2; comment ! !
declare indvar vl t1; comment ! !
declare indvar n; comment ! !

comment ! INDIVIDUAL CONSTANTS !
declare indconst x; comment ! !

Ground Axiomatisation

metamaths:: theory metamath:
cons: forall wl.(CONS imp not PROVABLE(w1l) or not PROVABLE(™ wl))
occ: 0CONS imp CONS
oc: OCONS imp not (forall n. (NUMBER(n) imp PROVABLE(diag(n))) and
PROVABLE(~ all(x, diag(x))))

corr: forall wi. (PROVABLE(w1) imp PROVABLE(prov(wl, k(w1))) and
NUMBER (k (w1)))
comp: forall w2 n. (NUMBER(n) and PROVABLE(prov(w2, n)) imp PROVABLE(w2))

numwise: forall n. (NUMBER(n) imp PROVABLE(diag(n)) or PROVABLE(™ diag(n)))
diagional: PROVABLE(all(x, diag(x) equiv ~ prov(all(x, diag(x)), x)))

iffel: forall wi w2. (PROVABLE(w1) and PROVABLE(wl equiv ®2) imp
PROVABLE(w2))

iffers: forall wi w2. (PROVABLE(" wl) and PROVABLE(wl equiv ~ w2) imp
PROVABLE(w2))

alle: forall vl wl t1 w2. (PROVABLE(all(vl, wl)) and SUBST(t1, v1, wl, w2)
imp PROVABLE(w2))

trivi: SUBST(k(all(x, diag(x))), x, diag(x), diag(k(all(x, diag(x)))))
triv2: SUBST(k(all(x, diag(x))), x, diag(x) equiv ~ prov(all(x, diag(x)), x)
diag(k(all(x, diag(x)))) equiv
“ prov(all(x, diag(x)), k(all(x, diag(x)))))
triv3: SUBST(n, x, diag(x) equiv (~ prov(all(x, diag(x)), x)),
diag(n) equiv (" prov(all(x, diag(x)), n)))

The GETFOL command theory allows us to define a GETFOL theory, that is a set of axioms,
each with its own name, which can be globally invoked by certain commands, e.g. the
command abstract theory (see below), by using the name of the theory, in this case
metamath.

Abstract Axiomatisation

metamaths: : abstract theory metamath by goedel;
I am switching from the current context to: absmetamaths

metamath

cons : forall wi. (CONS imp ((not PROVABLE(w1)) or (not PROVABLE(™ w1))))

occ : OCONS imp CONS

oc : OCONS imp (not (forall n. (NUMBER(n) imp PROVABLE(d)) and PROVABLE(™ d)))
corr : forall wi. (PROVABLE(w1) imp (PROVABLE(™ d) and NUMBER(k(w1))))

comp : forall w2 n. ((NUMBER(n) and PROVABLE(™ d)) imp PROVABLE(w2))

24

numwise : forall n. (NUMBER(n) imp (PROVABLE(d) or PROVABLE(™ d)))
diagonal : PROVABLE(d equiv d)

iffel :

forall wl w2. ((PROVABLE(wl) and PROVABLE(wl equiv w2)) imp PROVABLE(w2))

iffers : forall wl w2. ((PROVABLE(™ w1) and PROVABLE(w1 equiv (” w2))) imp PROVABLE(w2))

alle :

trivl :
triv2 :

forall vl wl t1 w2. ((PROVABLE(all(vl, wil)) and SUBST(t1, vi, wl, w2)) imp PROVABLE(w2))

SUBST(k(d), x, d, d)
SUBST(k(d), x, d equiv d, d equiv d)

triv3 : SUBST(n, x, d equiv d, d equiv d)

has been declared to be a new theory in ‘absmetamaths’.

Abstract Proof

absmetamaths:: show proof;

0CONs (1)

PROVABLE(d) (2)

PROVABLE(d) imp (PROVABLE(™ d) and NUMBER(k(d)))
PROVABLE(™ d) (2)

CONS imp ((not PROVABLE(d)) or (not PROVABLE(™ d)))
FALSE (1 2)

not PROVABLE(d) (1)

PROVABLE(™ d) (8)

exists n. (not (WUMBER(n) imp PROVABLE(d))) (18)
not (NUMBER(n) imp PROVABLE(d)) (10)

(NUMBER (n) and PROVABLE(” d)) imp PROVABLE(d)
PROVABLE(d) (18)

CONS imp ((not PROVABLE(d)) or (not PROVABLE(™ d)))
FALSE (18)

not PROVABLE(™ d) (1)

(not PROVABLE(d)) and (not PROVABLE(™ d)) (1)
exists wl. ((not PROVABLE(w1)) and (not PROVABLE(™ w1))) (1)

OCONS imp exists wi. ((not PROVABLE(w1)) and (not PROVABLE(™ w1)))

Ground Proof

metamaths:: show proof;

1

N

[ea]

10

(PROVABLE(all(x, diag(x) equiv (~ prov(all(x, diag(x)), x)))) and
SUBST(k(all(x, diag(x))), x,

diag(x) equiv (" prov(all(x, diag(x)), x)),

diag(k(all(x, diag(x)))) equiv (” prov(all(x, diag(x)), k(all(x, diag(x)))))))
imp PROVABLE(diag(k(all(x, diag(x)))) equiv (~ prov(all(x, diag(x)), k(all(x, diag(x))))))
PROVABLE(diag(k(all(x, diag(x)))) equiv (~ prov(all(x, diag(x)), k(all(x, diag(x))))))
(PROVABLE(all(x, diag(x))) and
SUBST(k(all(x, diag(x))), x, diag(x), diag(k(all(x, diag(x))))))
imp PROVABLE(diag(k(all(x, diag(x)))))
(PROVABLE(diag(k(all(x, diag(x))))) and
PROVABLE(diag(k(all(x, diag(x)))) equiv (~ prov(all(x, diag(x)), k(all(x, diag(x)))))))
imp PROVABLE(” prov(all(x, diag(x)), k(all(x, diag(x)))))
NUMBER(n) imp (PROVABLE(diag(n)) or PROVABLE(" diag(n)))
(PROVABLE(" diag(n)) and
PROVABLE(diag(n) equiv (~ prov(all(x, diag(x)), n))))
imp PROVABLE(prov(all(x, diag(x)), n))
(PROVABLE(all(x, diag(x) equiv (~ prov(all(x, diag(x)), x)))) and
SUBST(n, x,

diag(x) equiv (" prov(all(x, diag(x)), x)),

diag(n) equiv (" prov(all(x, diag(x)), n))))
imp PROVABLE(diag(n) equiv (~ prov(all(x, diag(x)), n)))
PROVABLE(diag(n) equiv (~ prov(all(x, diag(x)), n)))
CONS imp ((not PROVABLE(prov(all(x, diag(x)), k(all(x, diag(x)))))) or

(not PROVABLE(™ prov(all(x, diag(x)), k(all(x, diag(x)))))))

CONS imp ((not PROVABLE(™ prov(all(x, diag(x)), k(all(x, diag(x)))))) or

25

11
12
13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

(not PROVABLE(prov(all(x, diag(x)), k(all(x, diag(x)))))))
0CONS (11)

PROVABLE(all(x, diag(x))) (12)
PROVABLE (diag(k(all(x, diag(x))))) (12)
PROVABLE(™ prov(all(x, diag(x)), k(all(x, diag(x))))) (12)

PROVABLE(all(x, diag(x))) imp (PROVABLE(prov(all(x, diag(x)), k(all(x, diag(x)))))

and NUMBER(k(all(x, diag(x)))))

PROVABLE(prov(all(x, diag(x)), k(all(x, diag(x))))) (12)
FALSE (11 12)

not PROVABLE(all(x, diag(x))) (11)

PROVABLE(" all(x, diag(x))) (19)

exists n. (not (NUMBER(n) imp PROVABLE(diag(n)))) (11 19)
not (WNUMBER(n) imp PROVABLE(diag(n))) (21)

PROVABLE(~ diag(n)) (21)

PROVABLE (prov(all(x, diag(x)), n)) (21)

(NUMBER.(n) and PROVABLE (prov(all(x, diag(x)), n))) imp PROVABLE(all(x, diag(x)))
PROVABLE(all(x, diag(x))) (11 19)

CONS imp ((not PROVABLE(all(x, diag(x)))) or (not PROVABLE(" all(x, diag(x)))))
FALSE (11 19)

not PROVABLE(™ all(x, diag(x))) (11)
(not PROVABLE(all(x, diag(x)))) and (not PROVABLE(™ all(x, diag(x)))) 11
exists wl. ((not PROVABLE(w1)) and (not PROVABLE(™ w1))) (11)

OCONS imp exists wi. ((not PROVABLE(w1)) and (not PROVABLE(™ w1)))

26

