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Abstract. Rippling is a type of rewriting developed for inductive theorem proving which uses
annotations to direct search. Rippling has many desirable properties: for example, it is highly goal
directed, usually involves little search, and always terminates. In this paper we give a new and
more general formalization of rippling. We introduce a simple calculus for rewriting annotated
terms, close in spirit to first-order rewriting, and prove that it has the formal properties desired
of rippling. Next we develop criteria for proving the termination of such annotated rewriting, and
introduce orders on annotated terms that lead to termination. In addition, we show how to make
rippling more flexible by adapting the termination orders to the problem domain. Our work has
practical as well as theoretical advantages: it has led to a very simple implementation of rippling
that has been integrated in the Edinburgh CLLAM system.
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1. Introduction

Rippling is a form of rewriting developed by Bundy et al [6, 8] which uses anno-
tations to restrict rewriting and to guide the derivation towards a particular goal.
Rippling applies naturally in inductive theorem proving where the induction con-
clusion typically differs from the induction hypothesis by the addition of some
constructors or destructors. These differences are marked by annotations. Rippling
uses annotated rewrite rules, called wave-rules, to move these marked differences;
when successful, the differences are either removed completely or moved to posi-
tions like the top of the term that enable the use of the induction hypothesis.
Rippling has many attractive properties. It is highly goal directed, manipu-
lating just the differences between the induction conclusion and hypothesis while
leaving their common structure preserved; this is in contrast to rewriting based on
normalization, which is used in other inductive theorem provers such as NQTHM
[4]. Rippling also involves little search since annotations severely restrict rewriting.
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Indeed, the use of annotation places such strong restrictions on the search space
that it is often possible to analyze failed rippling proofs and to suggest missing
lemmas or generalizations [15]

In this paper we give a new account of rippling and its properties that is both
substantially simpler and more general than previous accounts. Conceptually, the
starting point of our work is the formal presentation of rippling given by Bundy
et al. in [6]. There rippling is presented as first-order rewriting restricted by some
simple preconditions that ensure that annotations in the subterm being rewritten
match annotations in the applied wave-rule. We show that this is inadequate.
Taken literally, it leads to an implementation of rippling too restrictive to carry
out the derivations given in [6] (see §8). When the restrictions are loosened (as
they were in the implementation of the CLAM system [7]) other problems arise
like improperly annotated terms. We give a simple calculus for rippling which does
not suffer from these problems.

We also simplify, improve, and generalize the specification of wave-rules and
their associated termination orderings. Wave-rules have previously been present-
ed using complex schematic definitions that combine the properties of structure
preservation and the reduction of a well-founded measure (see §8). Our definition
of wave-rules separates these two concerns and their demonstration. We present
measures that, despite their simplicity, admit strictly more wave-rules than the
considerably more complex specification given in [6].

Another contribution of our work is to provide new termination orderings which
extend the power of rippling. Although rippling was designed primarily to prove
inductive theorems, it has recently been applied to other problem domains. For
example, it has been used to sum series [16], to prove limit theorems [17], and to
perform normalization [1]. In rippling, as in conventional rewriting, the termina-
tion ordering can be made domain dependent. We illustrate this idea by two new
orderings.

A practical contribution of our work is that it greatly simplifies implementa-
tion; our calculus leads to an implementation of rippling in the spirit of standard
first-order rewriting. Moreover, systems implementing rippling require a procedure
which annotates rewrite rules (here called a wave-rule parser) and our work eas-
es the construction of such a routine. We report on our implementation of these
routines which has been integrated into the CLAM system.

The remainder of this paper is organized as follows. §2 provides a background on
rippling, in particular on annotation and wave-rules. §3 formalizes properties of rip-
pling and shows why first-order rewriting cannot directly satisfy these properties.
§4 presents a new calculus that does satisfy these properties. Next, §5 introduces
reduction orders under which rippling will terminate. §6 describes how our calcu-
lus can be implemented and how unannotated rewrite rules can be annotated and
oriented to give wave-rules. §7 presents two new orders which extend the power of
rippling. Finally, in §8 we survey related work.
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2. Annotation and Wave-rules

In this section, we give a brief overview of rippling and introduce notation and
terminology. [6] should be consulted for additional motivation and examples.
Rippling arose out of an analysis of inductive proofs, and of the heuristics
embedded within the NQTHM theorem prover [4]. As a simple example, suppose
we wish to prove P(z) for all natural numbers, z. We assume P(n) and attempt
to show P(s(n)). The hypothesis and the conclusion are identical except for the
successor function s(.) applied to the induction variable n. Rippling marks this dif-

ference by the annotation, P(|s(n)| ). The annotation in the induction conclusion,
given by the box, arrow and underlining, marks the differences with the induction
hypothesis. Deleting the arrow and everything in the box that is not underlined
gives the skeleton, P(n); this is identical to the induction hypothesis, and is pre-
served during rippling. By comparison, simply removing annotations gives the
erasure, P(s(n)). The boxed but not underlined term parts are wave-fronts; these
are moved and transformed (and possibly deleted) by rippling. The underlined
parts are wave-holes; they represent terms in the wave-front that we wish to leave
unchanged. Wave-fronts are marked with arrows indicating if rippling should try
to move the wave-front up through the skeleton term tree or down towards the
leaves. Wave-fronts with an up arrow are called outward directed, whilst those
with a down arrow are inward directed.

A wave-front can be viewed as a context, that is, it is a term with one, or more,
proper subterms deleted. Schematically, an outward directed wave-front is of the

form | (g1, ..., pin) | where n > 0 and the p; may be similarly annotated; when

n = 1 we call the wave-front simply annotated and when n > 1 we call it multi-
hole annotated. A term is said to be simply annotated when all its wave-fronts are
simply annotated, and is multi-hole annotated otherwise.

To formalize rippling, we extend the signature of the original theory with three
new unary function symbols: wfout, wfin and wh (representing outward and inward
directed wave-fronts and wave-holes respectively). The requirement that a context
has at least one hole and that terms in these holes may be further annotated can
be formally captured by defining the set of well-annotated terms with respect to
a set of unannotated (first-order) terms unats.

DEFINITION 1. Well-annotated terms (or wats) are the smallest set such that,
1. t is a wat for all unannotated terms;

2. wfout(f(t1,...,t,)) is a wat iff for at least some ¢, t; = wh(s;) and for each
i where t; = wh(s;), s; is a wat and for each ¢ where t; # wh(s;), t; is an
unannotated term;

3. wfin(f(t1,...,t,)) is a wat under the same conditions in case (2).

4. f(t1,...,t,) is a wat where f is not wfout, wfin, or wh iff each ¢; is a wat.
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For example, wfout(s(wh(z))) X wfout(s(wh(y))) represents the well-annotated

term|s(z) | X|s(y) | . Tosimplify the presentation of annotated terms, we shall still

use boxes, arrows and holes. However, this is just syntactic sugar for wfout, wfin
and wh. Note that in our formalization of annotation, wave-holes occur as imme-
diate subterms of the function symbol in the wave-front. As additional syntactic
sugar, we may merge adjacent wave-fronts and wave-holes when displaying anno-

tated terms. For example, we will display the term |s(|s(z)|)| as the annotated

term |s(s(z))| . Insisting that wave-fronts are “maximally split” both simplifies

the presentation of rippling that follows and leads to a simpler implementation
since wave-fronts do not need to be dynamically split or merged during rippling,
as in [6].

We define the skeleton of an annotated term to be the set of unannotated terms
formed by deleting function symbols and variables within wave-fronts that are not
within wave-holes.

DEFINITION 2. The skeleton function skel:wats — P(unats) is defined by,
1. skel(z) = {2} for all variables z;

2. skel(J(lr, o t0) | ) = {s | Fidy = thn s € skel(t)) )
3. skel(F(tr, i ta)|) = {5 | Fids = tiA s € shel(t])):
(

4. skel(f(ty,...,tn)) ={f(s1,-..,8.) | Vi.s; € skel(t;)}.

For example, the skeleton of the annotated term

s(|[s@) | +(bxe)|) (1)

is the set {s(a), s(b x ¢)}. Note that the skeleton of a simply annotated term is a
singleton set; in this case, we refer to the member as the skeleton of the term.
By erasing annotation, we construct the corresponding unannotated term.

DEFINITION 3. The erasure function erase:wats — unats is defined by,
1. erase(z) = z for all variables x;

T
2. erase(| f(tr,. .- tn) | ) = f(s1,...,54) where if {; = {; then s; = erase(l]) else

5; = 1i;
1
3. erase(| f(try. .- tn) | ) = f(s1,...,54) where if {; = {; then s; = erase(l]) else
si = ti;

4. erase(f(t1,...,tn)) = f(s1,...,8,) where s; = erase(t;).
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For example, the erasure of (1) is s(s(a) + (b X ¢)).
2.1. WAVE-RULES AND RIPPLING

Wave-rules are formally defined in §4.4. Informally, they are rewrite rules between
annotated terms that are skeleton preserving and measure decreasing under an
appropriate ordering on annotated terms. This definition is simpler and more gen-
eral to the one given in [6] where these two requirements were combined in the
syntactic specification of a wave-rule.!

Skeleton preservation in the simply-annotated case means that both the LHS
(left-hand side) and RHS (right-hand side) of the wave-rule have an identical skele-
ton. In the multi-hole case we demand that some of the skeletons on the LHS
are preserved on the RHS and no new skeletons are introduced, i.e. skel(LHS) D
skel(RHS). Measure reduction and orderings for annotated terms will be described
in considerable detail later. The intuition is that the position and orientation of
wave-fronts define a measure. Rippling makes well-founded progress by moving
annotations to decrease this measure; for example, moving outwards directed wave-
fronts upwards in the rewritten term.

To illustrate the different types of wave-rules that our definition captures and to
help motivate the definition of termination orders on annotated terms, we give some
examples of wave-rules used by rippling. To begin with, most recursive function
definitions and all primitive recursive function definitions can be annotated as
wave-rules. For example, the recursive definition of times gives the wave-rule

s | xV = [(UxV)+ V], (2)

Lemmas also can be often annotated as wave-rules, for example, algebraic laws
like associativity, distributivity, and cancellation (<> is infix append on lists).

@ V]yxw = [Txw v w| 3)

U<>V)| <>W = |U<>(V.<>W) (4)
U<>(K<>WT)—> (U<>V)y<>W (5)
UV =[w+z[ > [t=wrv=z] (6)

(4) and (5) demonstrate that rules like associativity can be wave-rules in both direc-
tions; the precondition on rippling that annotations in wave-rules match those in
the rewritten term prevent looping. (6) is an example of a wave-rule with multi-hole
annotation. Note that — indicates rewriting, not implication; in fact, implication
in (6) holds only in the reverse direction. This is sensible since in inductive theorem

! This generalization is, however, briefly discussed in their further work section.
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proving, rippling reasons backwards from the induction conclusion to the induction
hypothesis and rewrite rules based on implication as opposed to equivalence may
be used; see [6] for further discussion on how such rewrite rules may be used in
forward directed theorem proving.

Wave-rules can also ripple wave-fronts inwards, or change the orientation of
wave-fronts from out to in (but not in to out).

(U<>V)<>W¢—>U<>() (7)
Evhw - v (Vu ®)

A simple example of a proof guided by rippling is the proof of the associativity
of multiplication

(zxy)xz=2axX(yxz). 9)

The proof uses structural induction on 2. In the step-case, (9) is the induction
hypothesis and the induction conclusion is

(Xy)xz: S(Q)Tx(yxz).

The wave-fronts in the induction conclusion mark the differences with the induction
hypothesis. Rippling on both sides of the induction conclusion using (2) yields

(xyFu])xz=[@xyx=)+yxz

Rippling with (3) on the left-hand side then gives

(zxy)xz+yxXz| =lzxX(yxz)+yxz

As expected, the skeleton in each step of our proof is the induction hypothesis.
At the end of this rewriting, the wave-fronts are at the root of each term. We can
therefore complete the proof by simplifying with the induction hypothesis.

Rippling outward directed wave-fronts up towards the root of terms, like in
the previous example, is called rippling-out. Wave-rules can also ripple wave-fronts
downwards towards the position of universally quantified variables in the induction
hypothesis. Such positions are called sinks because wave-fronts can be “absorbed”
there: when we appeal to the induction hypothesis, universally quantified variables
will be matched with the content of the sinks; an example of this is provided in
§7.1. Rippling downward directed wave-fronts towards the leaves of the term tree
using rules like (7) is called rippling-in.

3. Properties of Rippling

We now formalize the properties desired of rippling which motivate our calculus.
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Well-formedness: if s is a wat, and s ripples to ¢, then ¢ is also a wat;
Skeleton preservation: if s ripples to ¢ then skel(t) C skel(s);

Correctness: if s ripples to ¢ then erase(s) rewrites to erase(t) in the original
(unannotated) theory;

Termination: rippling terminates.

The first property means that terms manipulated by rippling stay well-formed.
Hence we can always compute their skeleton and erasure. Skeleton preservation
ensures that rippling directs the derivation towards (at least) one of the induc-
tion hypotheses. Correctness guarantees that we can perform the corresponding
derivation in the underlying object-level theory; annotation merely guides search.
Finally, termination is important for practical considerations; it means we can try
other possibilities (e.g., other inductions) when derivations fails.

Unfortunately, rippling implemented directly by first-order rewriting in an anno-
tated theory fails to achieve these properties. We demonstrate this negative result
by example. Consider using first-order rewriting to apply the wave-rule corre-
sponding to the recursive definition of multiplication given in (2) to the term

s(z)| x|s(y)|. This is a wat but rewrites to |z X |s(y) | +|s(y)| | which is not

a wat since the second argument of plus contains a wave-front (a box) directly
inside another without an intermediate wave-hole. The reader may find it easier
to carry out the rewrite step and verify this by removing the syntactic sugar and
representing the boxes and holes explicitly with wfout and wh.

Termination also fails using first-order rewriting directly. Consider, for example,
the equation h(f(U,s(V))) = s(h(f(s(U),V))). Under the width measure given in

§5.2, this is a wave-rule in the left-to-right direction annotated as

R fWUs(V) ) = [sh(F(s(U), V) ]))

It is also a wave-rule in the reverse direction with the annotation

s(h(f(s@), V) [ )] = r( S s(V))])-

However, these wave-rules together lead to cycling as follows:

h(|flas(@) ) = |s(h(f(s(a), @) )| = h(flas(@)]) — ...

Note that unlike the multiplication example, all terms in this derivation are well-
annotated and share the same skeleton. With two equations, we can construct
looping derivations.

final.tex; 17/05/1995; 13:26; no v.; p.38
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Both the problems of improperly annotated terms and non-termination arise
when an annotated term replaces an unannotated term in a wave-front. This obser-
vation motivates our definition of a calculus for rippling. We introduce a new notion
of term replacement that erases annotation when replacing terms in a wave-front.
The redefinition of term replacement naturally gives rise to a new notion of sub-
stitution, and thus matching. By means of these simple modifications, we develop
a calculus for rewriting annotated terms which is guaranteed to preserve well-
formedness of annotation, skeletons, and correctness with respect to the underlying
theory. In addition, this calculus allows us to design simple termination measures
which are stable and monotonic. For unannotated terms and rewrite rules, our
calculus performs conventional rewriting.

4. A Calculus for Annotated Rewriting

Notational Convention: To simplify notation in proofs, in this section we assume

that the arguments of an annotated term like | f(¢1,...,%,) | may be partitioned
so that the first 7 arguments are headed by wave-holes, i.e., of the form ¢; = ﬁ
for i € {1,...,7}, and the last n — j are unannotated. Hence the term may be
written as | f(t1,...,¢5,ti41,...,t,) |, oreven | f(ty,...,t,) | . This is without loss

of generality as the proofs below do not depend on the order of wave-holes.
4.1. GROUND REWRITING

We first consider rewriting using ground rewrite rules. As is typical (e.g., see [11]
Section II), we distinguish between two kinds of variables: those in rewrite rules
and those in terms. We treat the later kind, “term variables”, as constants.

We begin by redefining subterm replacement. Let s[{] represent a wat with a dis-
tinguished subterm [ that is also a wat. Let rep(s[l], r) denote subterm replacement
of r for the distinguished occurrence of [ in the term s; rep is defined identically
to the usual subterm replacement of [ by r in s except that if [ occurs within
a wave-front any annotations on r are erased before replacement. For example,

replacing « in |b+ s(a)| by |s(a ives | b+ s(s(a but replacing b by |[s(b
placing (a)| by|s(a)| & (s(a) ] placing b by | s(b)

gives T + s(a) | . From now on, we will perform all term replacement (includ-

ing that occurring during substitution) using this function.
In rewriting terms, we will use just proper rewrite rules.

DEFINITION 4. [ — r is a proper rewrite rule when erase(l) — erase(r) is a
rewrite rule, [ and r are wats, and skel(r) C skel(l).
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The last two requirements are needed for well-formedness and skeleton preserva-
tion. Note also that the requirement that erase(l) — erase(r) is a rewrite rule
means that Vars(r) C Vars(l).

Ground rewriting consists of rewriting using proper rewrite rules that contain
no (non-term) variables. Let R be a set of rewrite rules that are (for now) ground.
If s[l] is a wat then ground rewriting with a rule [ — r in R yields rep(s[l], r); we
use s[l] =g s[r] to denote such ground rippling. In what follows we will assume a
particular rewrite rule set R, and drop subscripted references, e.g., writing simply
s[l] — s[r].

Ground rippling preserves the well-formedness of annotated terms, preserves
skeletons, and corresponds to an annotated version of rewriting in the underlying
(unannotated) theory.

THEOREM 1. if s is a wat, [ — r a proper rewrite rule between ground wats | and
r and s[l] — s[r], then
1. s[r] is a wat,
2. skel(s[r]) C skel(s[l]),
3. erase(s[l]) — erase(s[r]).
Proof. (sketch) The proof follows by structural induction on s. The only non-

trivial case is when s is headed by a wave-front, e.g., s =| f(sq, .. 3 Sy Sidls s Sn)

and [ is strict subterm of one of the s; (the case for inward directed wave-fronts
is analogous). There are two cases depending on if ¢ < j. In the first case, s; is a
wat; by the induction hypothesis, s;[r] is a wat. Thus, s[r] is a wat. Also, by the
induction hypothesis skel(s;[r]) C skel(s;[{]). As no other subterm is changed, the
union of their skeletons is unchanged. Hence skel(s[r]) C skel(s[l]). Finally, by the
induction hypothesis, erase(s;[l]) — erase(s;[r]). Again, as all the other subterms
are unchanged, their erasures stay the same. Thus, erase(s[l]) — erase(s[r]). In
the second case, s; is an unannotated term within the wave-front. Thus, when we
substitute r for [ we will erase annotations on r. Hence, s;[r] is unannotated, and
s[r]is a wat. From the definition of the skeleton it follows that term replacement in
wave-fronts has no effect on the skeleton, so skel(s[l]) = skel(s) = skel(s[r]). Final-
ly s; is unannotated and [ — r is a proper equation, erase(s;[l]) — erase(s;[r]) and
thus erase(s[l]) — erase(s[r]). =

By Theorem 1 it follows by induction on the number of rewrite steps that the
reflexive transitive closure of — on ground wats also preserves well-formedness,
skeletons and correctness with respect to the theory.

As a simple example, let [h(a)| — a be a proper rewrite rule. We can apply

this rule only to the first subterm of the wat

f(Ma) ] s h(a)) (10)
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and this results in | f(a, h(a))| . Alternatively, we could apply the proper rewrite

rule a — to both occurrences of @ in (10) resulting in

FQR(A@) )| h(R(a)) ]| - (11)

. o U
Note that annotation was erased when substituting for the second occur-

rence of a. We can apply this rewrite rule again to both occurrences of @ in (11).
Whilst rippling with proper rewrite rules is structure preserving (the skeleton of
the rewritten term is always the same as the skeleton of the original term), this
example shows that it is not necessarily terminating; for termination we need fur-
ther restrictions which will be introduced later.

4.2. ANNOTATED MATCHING

When rewrite rules contain (non-term) variables, they must be applied using
matching. Since substitution depends on subterm replacement, our new definition
of subterm replacement gives rise to a new kind of substitution; during substitu-
tion, terms replacing variables in wave-fronts are erased of annotation. This in turn
gives rise to a new kind of matching. We represent a well-annotated substitution
(or was) by a set of pairs, X/t in which X is a variable and ¢ is a wat, and X occurs
only once in the set. The domain of a substitution o, written Dom(c) is the set
{X | X/t € 0}. Application of a well-annotated substitution o to a well-annotated
term ¢, written o(¢), is as normal except term replacement is performed with our
new subterm replacement function. Finally, if o is a was, we define the erase(o),
and skel(o) as the result of applying these functions to each element in the range
of the substitution, i.e.,

erase(o) = {X/t'| X/t € o Nt/ = erase(t)} .

The following can be easily verified by induction over the structure of wats.

LEMMA 1. For o a well-annotated substitution we have

o flte,...,tn) | ) =|flo(tr),...,erase(o)(t,)) | =|f(o(tr),...,erase(o(t,)))

o flte,...,tn) | ) =|flo(tr),...,erase(o)(t,)) | =|f(o(tr),...,erase(o(t,)))
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Annotated substitution preserves well-formedness, skeletons and erasure in the
following sense:

THEOREM 2. if t is a wat and o is a well-annotated substitution then
1. o(t) is a wat,
2. skel(o(t)) = (skel(o))(skel(t)),
3. erase(o(t)) = (erase(o))(erase(t)).
Proof. (sketch) The proof follows by structural induction on ¢. As before, the

only interesting case is when ¢ = | f(ty,...,t;,tj41,...,¢,)| (the inwards case is

analogous). (1) follows as

o(t)=\|f(o(tr),...,0(t;),erase(c(tj+1)), ..., erase(o(ty,)))

and subterms in wave-fronts, i.e., o(¢;) for i € {1,..., 7} are wats by the induction
hypothesis and the remaining subterms are unannotated and therefore also wats.
(2) follows as

skel(o(t)) = skel(| f(o(t1),...,0(t;), erase(o(tjt1)), ... erase(a(ty))) | )

— UZ{:l{S | s € skel(a(t;))}
= Ul_{s| s € skel(o)(skel(t1))}

= (skel(o))skel(| f( 7---7Q7t]‘+17---7tn) )

Finally (3) follows as

erase(a(t)) = erase( f

—~

o(ty),...,erase(o(t,)))|)
t1))s...,erase(erase(o(t,))))

)
), .. erase(o(t,)))
(
(

erase(ty)), ..., (erase(o))(erase(t,)))

erase(ty), ..., erase(t,)))

To perform rewriting, we need a notion of annotated matching corresponding
to this new notion of annotated substitution.

DEFINITION 5. if s and t are wats, then o is an annotated match of s with ¢ iff
Dom(o) = Vars(s), o is a was and o(s) = ¢.
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DELETE:
Su{t=t:Pos} = S

DECOMPOSE :

SU{f(s1,---y80) = f(t1,...,tn): Pos} = SU{s;=t;:Pos|1<i<n}

SULf(81,-- 1855 Sjatse vy sn) | = [y ostjstjpr, oo tn) | isk} =

SUA{sy =tyisk,...,s; =t;:isk s;41 = tjpriwf, ..., s, =ty wf}

SU{f(s_l,...,ﬁ,sHl,...,sn) = f(t_l,...,ﬁ,tjﬂ,...,tn)i:sk‘} =
SUA{sy=tyisk,....s; =t;:isk s;41 =tjprwf, ..., 85, =ty wf}

Fig. 1. Transformation rules for amatch(s, t).

Observe that even restricting o to variables in s, annotated matching is not

unitary. For example, {X/s(0)} and {X/ } are both annotated matches of

T with |s(0) x 0| . It can be seen, however, that matches differ only in the

amount of annotation which appear on substitutions for variables that occur in
wave-fronts but not in skeletons. Based on this observation, we can define a notion
of minimality of annotation so that annotated matching is unique. If ¢ and 7
are well annotated substitutions for s and ¢ then we write o < 7 iff there exists
X/t € 0 and X/t € 7 with ¢t = erase(tz) and all other pairs in ¢ and 7 are
identical. We write <% for the transitive (but not reflexive) closure of <.

DEFINITION 6. if s and ¢ are wats, then ¢ is a minimal match of s with ¢ iff o
is an annotated match of s with ¢ and there does not exist any annotated match
T with 7 <t 0.

It follows from this definition that if we have a minimal match, we cannot remove
any annotation and have the result remain a match. We now give an algorithm
for computing minimal matches. We will use this afterwards to show that minimal
matches are unique.

Our procedure, amatch(s,t), is based on the transformation rules given in Fig-
ure 1. Because term replacement, and hence substitution is dependent on context
(i.e. whether or not the term to be replaced is in a wave-front), our rules manip-
ulate equations labeled with context information (wffor “in the wave-front” and
sk for “in the skeleton”). As notational shorthand, Pos is a meta-variable that
matches either wf or sk.

Starting with the set containing the match problem {s = ¢: sk}, we apply these
transformation rules exhaustively. An equation set is normalized if no more trans-
formation rules can be applied. A normalized equation set, S is compatible iff 1)
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A Calculus for and Termination of Rippling 13

every equation is a variable assignment X = s: Pos where s is a wat, 2) for each
variable X there exists at most one equation of the form X = s:sk, and 3) if
X =s:sk € Sand X =t:wf € S then erase(s) = t. If a normalized equation set
is not compatible, matching has failed; otherwise matching has succeeded and we
return the answer substitution

{X/s| X=s:sk€ Sor (X =s:wfe Sand X =t:sk ¢ 5)}.

As an example, if we match T with ||s(a)| + s(a))| then our initial

matching problem is

(x+x)[ =|[s@] +s(@)] : sk}

and applying DECOMPOSE yields {X = T : sk, X = s(a) : wf}. This

normalized equation set is compatible and yields the answer {X/|s(a)| }. Note

that regular matching would fail on this example.

It is easy to see that the application of these rules in any order terminates in
time linear in the size of the smaller of s and t. Moreover, although there are
choice points concerning which rule is applied, these choices are AND choices: all
equations must be reduced and each reduction is independent. It follows that when
there is an answer substitution, it is unique. Below, when we show correctness, we
demonstrate that the algorithm returns all minimal answers, so it follows that
there is a unique such answer.

Note that the DELETE and the first DECOMPOSE rule implement regular
matching. For unannotated terms, the compatibility check reduces to the require-
ment that the normalized equation set only contains variable assignments, and
each variable has a single substitution. Annotated matching therefore subsumes
regular matching. As with regular matching, we can also add two failure rules for
greater efficiency: CONFLICT which causes annotated matching to fail when the
outermost function symbols disagree; and INCOMPATIBLE which causes anno-
tated matching to fail immediately if the set of equations of the form X = s: Pos
is not compatible. These additional failure rules are not, however, needed for the
completeness or correctness of annotated matching.

THEOREM 3. if s and t are wats then,
1. amatch(s,t) = o iff o is the minimal match of s and t;
2. amatch(s,t) fails iff s and t do not have an annotated match.

Proof. (sketch) We prove a stronger result: a set of labeled equations S can be
transformed to a compatible set of equations from which we extract o iff for all
s=t:ske S,o(s)=t,and forall s =t:wfe 9, (erase(o))(s) = t. The minimality
of the answer substitution extracted holds by construction.
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14 David Basin and Toby Walsh

(=) We use induction on the length of the transformation. If S is already a
normalized compatible set of equations, then the result follows directly from the
way the answer substitution is computed. Alternatively, we must apply a trans-
formation rule. The interesting case is when DECOMPOSE is applied, say to

S1yeeey8a)| = | f(t1,...,t,) | : sk, giving the set of equations S’. By the induc-
51 u ging

tion hypothesis, for all s=t:sk € S, o(s) = o(t), and for all s=t:wf € 9,
(erase(o))(s) = (erase(o))(t). By the definition of annotated substitution, we

have o(| f(s1,...ysn) | ) = | f(t1, .. ta) |-

(<) We use induction on the height of the largest LHS of an equation. If this
is atomic then, possibly after applications of DELETE, the equation set will be
compatible. If it is not atomic, then the equation with the largest LHS will be of
the form f(sy,...,s,) =t:Pos, | f(s1,...,5,)| =tisk, or | f(s1,...,5) - t:sk.
In all three cases, we can apply DECOMPOSE and appeal to the induction
hypothesis.

Note that the normalized equation set is not compatible iff either two occur-
rences of a variable in the skeleton need a different substitution, or a variable in
the wave-front needs a substitution which is not the erasure of the substitution
needed by an occurrence in the skeleton, or there is a conflict in function symbols
or annotation preventing application of DECOMPOSE. But this occurs iff s and
t do have an annotated match. m

4.3. FIRST-ORDER ANNOTATED REWRITING

We now consider rippling with proper rewrite rules that may contain variables.
First, we define non-ground rippling. Let s[t] be a wat with a distinguished subterm
t and [ — r be a proper rewrite rule. Further, let o = amatch(l,t). Then s[t]
rewrites to s[o(r)], which we write as s[o(l)] — s[o(r)]. Correctness parallels the
ground case. The proof relies on the fact that o is a well-annotated substitution and
we can thus reduce the problem to the correctness of ground rippling.

THEOREM 4. if s is a wat, | — r a proper rewrite rule, and s[o(l)] — s[o(r)],
then

1. s[o(r)] is a wat,

2. skel(s[o(r)]) C skel(s[a(l)]),

3. erase(s[o(l)]) — erase(sla(r)]).

Proof. Annotated matching guarantees that o is a was. By Theorem 2, o(l) and
o(r) are wats, skel(o(r)) C skel(o(l)) and erase(o(l)) — erase(o(r)). Now, since
o(l) is syntactically identical to a subterm of s, it is ground (no non-term variables
occur in s). Furthermore o(r) is also ground because [ — r is a rewrite rule and
thus Vars(r) C Vars(l). Hence the rewriting of s[o(l)] — s[o(r)] is equivalent
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A Calculus for and Termination of Rippling 15

to rewriting s[o (/)] with the ground proper rewrite rule o(l/) — o(r). Thus, by
Theorem 1, the three properties hold. =

Let —* be the reflexive transitive closure of —. By induction on the number
of rewrite steps, it follows from Theorem 4 that rippling is correct and preserves
skeletons. That is, if we erase annotations, we can perform the same (object-level)
rewriting; annotations merely guide rewriting in a skeleton preserving way.

THEOREM 5. if s is a wat and s —* ¢ then
1. t 15 a wat,

2. skel(t) C skel(s),

3. erase(s) —* erase(t).

4.4. TERMINATION

We now have a calculus which satisfies the first three properties required of rip-
pling. Now we address the fourth: termination. As is conventional, we guarantee
termination by placing an additional restriction on (proper) rewrite rules: they
must reduce the measure of the rewritten term in a well-founded ordering.

We first define a weak kind of monotonicity that ensures monotonicity with
respect to replacement of wats by wats. This is adequate to show termination
when our rewrite rules are between wats.

DEFINITION 7. An order > is monotonic with respect to wats iff for all wats s
and for all ground wats [ and r, if [ > r, then s[l] > s[r].

We now consider termination restricted to the ground case.

LEMMA 2. Let R be a set of (not necessarily proper) rewrite rules between ground
wats. If > is well-founded and monotonic with respect to wats, and for alll — r €
R we have | > r then rippling with R is terminating.

Proof. By monotonicity, an infinite rewrite sequence t; +— ty — ... gives an
infinite sequence of wats t; > t3 > ..., contradicting the well-foundedness of >.
|

For non-ground rippling we consider a restricted form of stability.

DEFINITION 8. An order > is stable with respect to wats iff for all well-annotated
substitutions ¢ and wats s and ¢ where s > ¢, we have that o(s) > o(t). An order
on annotated terms that is well-founded, monotonic, and stable with respect to
wats is an annotation reduction order.
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16 David Basin and Toby Walsh

Note that annotation reduction orders are strictly weaker than normal reduction
orders which are monotonic and stable over all terms in the signature, as opposed
to just well-annotated ones. We will call our orders simply reduction orders when
no confusion can arise.

Based on these definitions, we can at last formally define a wave-rule.

DEFINITION 9. Let > be an annotation reduction order. Then a proper rewrite
rule [ — r is a wave-rule with respect to > iff [ > r.

THEOREM 6. for an annotation reduction order > and R a set of wave-rules with
respect to >, rippling using wave-rules in R is terminating.

Proof. We again reduce the problem to the ground case. If s — t using [ — r
then this is equivalent to rippling with a rewrite rule o (/) — o(r) between ground
wats. Since > is stable with respect to wats, o(l) > o(r). By the termination of
ground rippling, we have termination in the general case. =

Note that our proof is similar to the one given in [11] (Corollary to Theorem
5) as we need not show that the ordering is a reduction ordering, but rather only
monotonic and stable with respect to possible instances of the rewrite rules.

5. Annotation Orders

To prove the termination of rippling using Theorem 6, we need to define a suitable
order on annotated terms. We begin with simply annotated terms, those whose
wave-fronts have a single wave-hole. We then generalize to orders for terms with
multi-hole annotation. The orders we define are similar, though simpler, to that
given by Bundy et al. in [6]. We can order all the wave-rules given in [6] and admit
wave-rules not possible in their setting (see §8).

5.1. SINGLE WAVE-HOLES

We consider annotated terms as decorated trees where the tree is the skeleton and
the wave-fronts are boxes decorating the nodes. See, for example, the first tree

in Fig. 2 which represents the term ‘S(Q) ‘T > ‘S(Z) ‘T. Our orders are based on

assigning measures to annotation in these trees. We define orders by progressively
simplifying these annotated trees to capture the notion of progress during rippling
that we wish to measure.

To begin with, since rippling is skeleton preserving, we need not account for the
contents of the skeleton in our orderings. That is, we can abstract away function
symbols in the skeleton, for example, mapping each to a variadic function constant
“*¥7 This gives, for example, the second tree in Fig. 2.
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Fig. 2. Defining a measure on annotated terms.

v

A further abstraction is to ignore the names of function symbols within wave-
fronts and assign a numeric weight to wave-fronts. For example, we may tally up the
values associated with each function symbol as in a Knuth-Bendix ordering. Two
of the simplest kinds of weights that we may assign to wave-fronts measure their
width and their size. Width is the number of nested function symbols between the
root of the wave-front and the wave-hole. Size is the number of function symbols
and constants in a wave-front. In what follows we will restrict our attention to the
width measure. This gives, for example, the third tree in Fig. 2. Of course, there
are problem domains where we want our measure to reflect more of the structure
of wave-fronts. §7.1 contains an example of this where the actual contents of the
wave-front are compared using a conventional term ordering.

Finally, a very simple notion of progress during rippling is that wave-fronts
move up or down through the skeleton tree. Under this view, the tree structure
may be ignored: it is not important which branch a wave-front is on, only its depth
in the skeleton tree. Hence, we can apply an abstraction that maps the tree onto
a list, level by level. For instance, we can use the sum of the weights at a given
depth. Applying this abstraction gives the final list in Fig. 2. Note that depths are
relative to the skeleton as opposed to depth in the erased term; measuring depth
relative to a fixed skeleton is one of the key ideas in the measures proposed here.

To formalize the above ideas, we introduce the following definitions. As is stan-
dard, a position is simply a path address represented by a string and is defined as
follows: the set of positions in the term ¢ is Pos(t) where,

Pos(f(s1,...,5,)) = {AYU{ip|1<i<n A pe€ Pos(s;)}

A represents the empty string and “.” is the string concatenation operator. The
subterm of a term ¢ at position p is ¢/p where:
t/A =t

f(s1,-..,8.)/ip = si/p

If s is a subterm of ¢ at position p, its depth is the length of p. The height of t,
written |¢], is the maximal depth of any subterm in ¢.

Because we are interested in measures based on weight relative to the skeleton,
during the remainder of this paper, positions, depth, and height, will always be
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18 David Basin and Toby Walsh

relative to the skeleton of simply annotated terms. That is, we picture such terms
as in the first tree in Figure 2. The positions in the term tree are only those
in the skeleton; annotation and function symbols in wave-fronts are treated as
markings of function symbols in the skeleton. For example, the term in Figure 2 is

‘S(Q) ‘T > ‘S(Z) ‘T which has skeleton U > V. The height of this term is 1 since the
deepest subterms, U and V', have positions 1 and 2 respectively. Another example

is | f(s(f(a,s(b))),c)| with the skeleton f(a,s(b)). The deepest subterm is b at

position 2.1 and hence the height of the annotated term is 2.

For an annotated term ¢, the out-weight of a position p is the sum of the weights
of the (possibly nested) outwards oriented wave-fronts at p. The in-weight is defined
analogously except for inward directed wave-fronts. We now define a measure on
terms corresponding to the final list in Fig. 2 based on weights of annotation
relative to their depths.

DEFINITION 10. The out-measure, MO(t) of an annotated term ¢ is a list of
length |t| + 1 whose i-th element is the sum of out-weights for all term positions
in ¢t at depth ¢. The in-measure, MZ(t) is a list whose i-th element is the sum
of in-weights for all term positions in ¢ at depth . The measure of an annotated

term, M (t) is the pair of out and in-measures, (MO(t), MZ(t)).

Consider, for example, the following palindrome function (“::” is infix cons)

palin(,Acc) — | H ::palin(T,|H :: Acc) ¢) (12)

The skeleton of both sides is palin(T, Acc). The out-measure of the left-hand side is

[0,1] and that of the right-hand side is [1,0]. The in-measures are [0,0] and [0,1].
We now define a well-founded ordering on these measures which reflects the

progress that we want rippling to make. Consider, a simple wave-rule like (2),

s(U)| xV = |(UxV)+V

The LHS out-measure is [0, 1], and the RHS is [1, 0]. Rippling with this rule makes
progress because it moves one wave-front upwards towards the root of the term.
In general, rippling progresses if one out-oriented wave-front moves up or disap-
pears, while nothing deeper moves downwards. If the out-measure of a term before
rippling is [lo, . .., ;] and after [rg, ..., ;] then there must be some depth d where
lg > rq and for all ¢ > d we have [; = r;. This is simply the lexicographic order
on the reverse of the two lists where components are compared using > on the
natural numbers. Progress for in-oriented wave-fronts is similar and reflects that
these wave-fronts should move towards leaves; that is just the lexicographic order
on the in-measures. Of course, both outward and inward oriented wave-fronts may
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A Calculus for and Termination of Rippling 19

occur in the same rule, e.g., (12). Similar to [6], we define a composite ordering on
the out and in-measures. We order the out-measure before the in-measure since
this enables us to ripple wave-fronts out and either to reach the root of the term,
or at some point to turn wave-fronts down and to ripple in towards the leaves.

DEFINITION 11. ¢t > s iff M(t) > M(s) and skel(s) = skel(t). Here > represents
the lexicographic order on pairs with >,y (the reversed lexicographic order on
lists) used to compare the out-measure and >, (the lexicographic order on lists)
to compare the in-measure.

This definition is sensible as the restriction that skel(s) = skel(t) means that
the measure lists are the same length and may be compared. Although a skeleton
independent measure would be desirable there is a deeper reason for this restriction:
our order would not be stable without it. As a simple example, consider the terms

s=|X+s(s(Y))]| andt =|s(X)+Y) T. If we ignore the skeleton restriction and

just compare annotation measures then s > {. However, under the substitution

o ={X/|s(s(a))| } we have o(t) > o(s). We will shortly show the stability of our
more restricted ordering.

Given the well-foundedness of > on the natural numbers and that lexicographic
combinations of well-founded orders are well-founded we can conclude:

THEOREM 7. The composite ordering is well-founded.

5.2. MuLTIPLE WAVE-HOLES

We now generalize our order to multi-hole annotation; that is, multiple wave-holes
in a single wave-front. Wave-rules involving such terms are called multi-wave-rules
in [6]. We have already seen an example of this in (6). The binomial equation is
another example.

binom(,) = binom(X,|s(Y)|) + binom(X,Y) (13)

Both sides have the same skeleton, namely {binom(X,Y)}. In general, however,
the skeletons of the right-hand side of a multi-wave-rule need only be a subset of
the skeletons of the left-hand side.

We define orders for terms with multi-hole annotation in a uniform way from
the previous single hole ordering by reducing terms with multi-hole annotation to
sets of simply annotated terms and extending the single hole ordering to these sets.
This reduction is accomplished by considering ways that multi-hole annotation can
be weakened to simple annotation by “absorbing” wave-holes. Weakening a multi-
wave term like (13) erases some of the wave-holes (underlining) though always
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20 David Basin and Toby Walsh

leaving at least one wave-hole. By erasing a wave-hole {; we mean removing the
underline annotation and erasing any further annotation in ¢;. A wave-front is
mazimally weak when it has exactly one wave-hole. A term is maximally weak
when all its wave-fronts are maximally weak. Maximally weak terms are simply
annotated and we can apply the previously defined single hole measure to them.
Returning to the binomial example, (13) has precisely two weakenings.

binom(,) = binom(X,) + binom(X,Y) (14)

binom(|s(X)|,|s(Y)|) = [binom(X,s(Y))+ binom(X,Y) (15)

Both are maximally weak as each wave-front has a single hole. As another example,
the left-hand side of (6) has four maximal weakenings (and four non-maximal
weakenings) whilst the right-hand side has two weakenings, both maximal.

Let weakenings(s) be the set of maximal weakenings of s. It is easily computed
by constructing the closure of all weakenings of s and returning the set of simply
annotated results. As elements of these sets are simply annotated, we can apply
the single hole measure to them. A natural order to define on such sets is therefore
the multi-set extension of the order used to compare simply annotated terms. A
multi-set extension of an ordering is defined as follows [11].

DEFINITION 12. A multi-set ordering >> is induced from a given ordering >
whereby M >> N iff N can be obtained from M by replacing one or more elements
in M by any finite number of elements each of which is smaller (under >) than
one of the replaced elements.

We extend the single hole ordering to multi-hole annotated terms as follows.

DEFINITION 13. [ >* r iff weakenings(l) =~ weakenings(r) where >> is the
multi-set extension of the single hole order .

This order is well-defined as maximal weakenings are simply annotated and can
be compared using the single hole order. Note that if [ and r are simply annotated
then their weakenings are {/} and {r}, and [ >* r and [ > r are equivalent. We
will drop the superscript on >* when context makes our intention clear.

As an example consider (13). The LHS weakenings are

finom (0[S0}

The RHS weakenings are

{{binom(X,|s(Y) | ) + binom(X,Y) | ,|binom(X + s(Y)) + binom(X,Y) | }.
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The only member of the first set is >-greater than both members of the second
set. This wave-rule is thus measure decreasing.

5.3. TERMINATION UNDER >*

Since »=* is defined via a multi-set extension of a well-founded order it too is
well-founded.

LEMMA 3. =% is well-founded.

We now show that >* is monotonic and stable. To simplify proofs, we ignore
complications caused by inwards oriented wave-fronts. Reincorporating these is
conceptually simple but notationally involved since measures expand to pairs.

As measures are lists, term replacement corresponds to operations on lists.
Hence we begin with relevant terminology. Let [ and r be list of integers and [+ r
and [ — r be componentwise addition and subtraction. When one list is shorter
than the other, we “pad” it out by appending additional 0s to the end so that its
length is the same as the longer. For n a natural number, let [1" be the result of
“right shifting” [ by n positions by appending [ to the end of the list containing n
zeros. If the length of [ is n+ 1, then for any d € {0,...,n} we define the splice of
r into [ at depth d, which we write as [ +4 r, to be [ + (r Td). Splicing can result
in a longer list; for example, if { = [lo, {1, (2, {5] and r = [rg, r1, r2], then

l—|—2 T‘Il—|—(T‘T2)I[10711712713]—|—[0707T‘07T‘17T‘2]I[lo,ll7lg—|—7‘0713—|—7‘177‘2].

We will use some simple properties about splice and list arithmetic below.

LEMMA 4. Let | and ' be lists of length i + 1 and | >,cy1er I'. Let r,rq, ..., 1) be
lists of length j + 1 then

1.Yd€{0,.... 5} . r >revien ™ +a U/ =1

2.Vd e {07 .. ,Z}l +a T >revier I +ar

3. Vdy,...,d, € {07 .. ,Z} ( . ((l +d, 7‘1) +d, 7‘2) e td, T‘l) > evier ( .. ((l/ +d,
r1) Ady T2) e Fd T

The first lemma says we can splice in the difference between I’ and [ where | >, cyicx
" and the result will be smaller. The second says we can splice a list r into { and
" and preserve the ordering of [ and !’. The third lemma is essentially an iterated
version of the second for performing multiple splices with different lists at multiple
positions. We use these results to prove theorems about stability and monotonicity
as such theorems can be seen as statements about splicing measures.

LEMMA 5. »=* is monotonic with respect to wats.
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Proof. (sketch) Let s[l] be a term with a distinguished subterm [. Note that
if [ > r then [ must be annotated. We argue by cases. Suppose first that s, [,
and r are simply annotated. Let m; = MO(l) be the measure of /; similarly let
m, = MO(r) and m; = MO(s). Let d be the depth of [ in the skeleton of s. The
measure of s[r] is the measure of s altered by splicing at depth d the difference
between the measures of r and [, i.e., mg+4 (m, —my). Since [ > r we can conclude,
using the first part of Lemma 4, that s[l] =* s[r].

Now suppose [ and r contain multi-hole annotation and the only multi-hole
annotation in s[l] occurs in [ itself. Let the maximal weakenings of [ and r be the
sets L ={ly,...,{;} and R = {rq,...,r} respectively. The maximal weakenings of
s[l] and s[r] then are the sets S; = {s[l1], ..., s[{;]} and S, = {s[r1],...,s[rg]}. Now
under the definition of >* and multi-sets, [ =* r if we can replace some collection
of the [; € L by smaller elements (under >) resulting in the set R. But we can do
the identical replacements in the context s[.] hence transforming the set S; to S,.
Consider such a replacement, say replacing /1 € L by ry,...,ry; now [ > r; and it
follows (by the previously considered case) that s[ly] > s[r;] for each i € {1,...,p}.
Hence the transformation of S; to 5, shows that s[l] >* s[r].

The final case to consider is when s itself has multiple skeletons, independent
of the number of skeletons of [. We argue as above except that rather than just
comparing sets composed from s[/;] and s[r;] we have to consider weakings of s as
well. But any steps in weakening s (not in the subterm /) can be made identically
in both s[l;] and s[r;] and s[{] =* s[r] follows. =

LEMMA 6. =~ s stable with respect to wats.

Proof. (sketch) Let s and t be wats with s >* t. To show that o(s) >* o(t) it
suffices to consider a substitution o that replaces a single variable  with a wat r
since substitution for multiple variables can be achieved by iterating substitutions
for single variables. We consider two cases: first, when s, ¢ are simply annotated,
and second, when they may contain multi-hole wave-fronts.

Case 1: s and ¢ are simply annotated. As s > ¢, both is terms have the same
single skeleton. Note that substitutions for occurrences of z in wave-fronts have no
effect on our width measure (although they can change the size of a wave-front).
Assume x occurs p times in each skeleton. If weakenings(r) = {r1,...,r,} then

S = weakenings(o(s)) = {s1,...,5.}

and
T = weakenings(o(t)) = {t1,...,tn}

where n = p *x m. Each of these weakenings can be constructed by replacing the
variables z in s and ¢ with maximal weakenings of r; each s; thus has a “partner”
t; in which the occurrences of z are replaced by the same weakening of r. Now
to show that S is greater than 7 under the multi-set ordering we must give a
transformation of S to T" where each term is replaced by a finite number of smaller
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(under >) terms. Our transformation is simply to replace s; by its partner ¢;. If
we order (arbitrarily) the occurrences of  in the skeleton of s (and therefore also
t), z1,...,2,, then if s; and ¢; were formed by replacing z;, occurring at depth d;
with a weakening of ¢ that has a measure r;, then the measures of the two terms
s; and t; are

(. o((s 4dq, 7™1) +dyp 72) - +d, rp)

and

(((t +4, 7‘1) +d, 7‘2) ‘|‘dp T‘p)

respectively. But now, using part 3 of Lemma 4 we have that the former is greater
under >, ., than the latter, hence o(l) > o(r).

Case 2: all terms may contain multi-hole annotation. Let S = {sy,...,s;} and
T = {ty,...,tr} be the maximal weakenings of s and ¢t. As s »* ¢, there is a
transformation (respecting >) of S to T'. We must construct a transformation
from the maximal weakenings of o(s) to the maximal weakenings of o(t). We
proceed as follows. Consider a replacement of, say, s; in .S with some ¢1,...,%,
that takes place in transforming S to 7. Now suppose the maximal weakenings
of r are {ry,...,ry} then o(s1) and the o(¢;) each have n maximal weakenings
where n is a multiple of m dependent on the number of occurrences of z in the
skeleton of sq. In particular, weakenings(o(s1)) = {s11,...,51,,} and for each ¢;,
weakenings(o(t;)) = {t;1,...,tin}. Again we may speak of “partners”: each sy ;
has as partners ¢;;, for « € {1,...,p} and j € {1,...,n} where the weakenings
of t; ; come from weakening the occurrences ¢ identically to their weakenings in
s1,;. Furthermore, because for each ¢ € {1,...,p}, sy > t;, we can use case 1 to
conclude that each maximal weakening of o(s1) is larger than its partners. Hence
replacing each s;; with its partners defines an appropriate transformation from
weakenings(o(s)) to weakenings(o(t)). m

As »* is an annotation reduction ordering we can conclude:

THEOREM 8. Rippling using proper rewrite rules | — r for which | > r is ter-
minating.

6. Implementing Rippling

We have completed our development of a calculus for rippling and termination
orderings for annotated terms. We now consider the more practical problem of
mechanizing such a calculus. In particular, given an ordering, how do we then
recognize wave-rules and apply them? We have implemented the rewrite calculus
described and here we indicate how the simplicity of our calculus and orderings led
to a simple implementation, which now comprises part of the Edinburgh CLAM
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system. To give the reader a feel for this, and the issues involved, we briefly sketch
a couple of the core routines.

Much of the work in implementing rippling concerns turning unannotated rewrite
rules into wave-rules; we call this wave-rule parsing. A wave-rule parser must, giv-
en unannotated rewrite rules, return wave-rules, that is a collection of annotated
copies of the rule that are proper rewrite rules and measure decreasing. We can
achieve the requirements of proper annotation and measure decreasingness sepa-
rately. An annotation phase first annotates [ and r with unoriented wave-fronts so
their skeletons are identical; this guarantees that rippling is skeleton preserving.
An orientation phase then orients the wave-fronts with up and down arrows so
that [ > r. We sum this up by the slogan

WAVE-RULE = ANNOTATION + ORIENTATION .
As an example, consider parsing a rewrite rule like
sUyxV = (UxV)+V. (16)
We may proceed by annotating this so the two sides have identical skeletons, i.e.,
[s(@)]x V=[x v)+V]. (17)

Afterwards we can orient the annotation yielding the wave-rule,

SO xvo[oxv+v]. (15)

Both sides of (12) now have the same skeleton and the measure of the left-hand
side is greater than that of the right-hand side.

Any implementation, however, must cope with the problem that under our
definition of wave-rules, a given rewrite rule can generate exponentially many (in
the size of the input rule) wave-rules. Computing and storing all possible wave-rules
is expensive both in time and space and complicates efficient wave-rule lookup. For
example, in the previous example, there are other possible legal parsing such as:

s x V] = [Exv+v] (19)
) x V] = [Txv+v] (20)
sy x V] - [Uxv+r] (21)

These additional parsings are problematic; while they are not really in the
“spirit” of wave-rules as originally proposed by [6] (nor admissible under their
definition), and are seldomly useful in practice, they are admissible under our more
liberal definition and on occasion find use in, for example, wave-front normalization
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rewrite(T,NT) :- % rewrite at some term position
subterm(Pos,T,ST), % find a subterm ST in T
pick_rule(L,R), % pick a rule L -> R
match_rule(L,R,ST,NR), % can rule be annotated to match ST
replace(Pos,T,NR). % replace subtern ST with NR

match_rule(L,R,ST,NR) :-
copy_an(ST,L,AL), % copy annotation from ST onto L
amatch(AL,ST,Sigma), % annotated match of AL with ST
parse(AL,R,AR), % find annotations for R
apply_subs(Sigma,AR,NR). % apply substitution to AR

parse(AL,R,AR) :-
pick_an(R,4), % annotate R
skel_preserving(AL,A), % skeletons equal?
orient(AL,A,AR). % Orient R

Fig. 3. Wave-rule parser (Top Level Routines)

(we discuss this in §7.1). Rather than trying to say in advance which wave-rules
could be useful in practice, our solution to this problem is to compute wave-rules
dynamically, by parsing “on demand”. We describe this in the following section.

6.1. DyNAMIC WAVE-RULE PARSING

We have implemented a dynamic parser that, given a data-base of unannotated
rewrite rule, uses them for rippling by annotating them only as required during
rewriting. That is, given a term s[t] to be rewritten, we look for an unannotated rule
[ — r where [ matches the erasure of t. When this is the case, [ — r is a candidate
wave-rule. We proceed by computing annotations for [ that allow for an annotated
match with ¢; afterwards, based on these annotations and their orientations, we
compute annotations and orientations for r so that [ — r is a wave-rule.

Figure 3 contains the actual Prolog (we assume the reader is familiar with
Prolog in the following) that implements the top level “architecture” of rippling
based on dynamic parsing. We illustrate the procedure through an example. Sup-

pose we wish to perform one step of rewriting of the term 7' = |s(z)| x |s(y)

using a collection of unannotated rewrite rules that includes (16), the recursive
definition of multiplication. Rewrite picks a subterm ST of T" and a rule . — R.
In our example, a solution to this (there may be others which are returned on
backtracking) is where ST is T itself and the rule selected is (16). In dynamic
parsing we need only generate annotations for the right-hand sides of wave-rules
whose left-hand sides arise during the proof. This is performed in match_rule
which starts by copying annotations from ST onto L; this yields AL, an anno-
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tated version of L. Copying annotation fails if ST and L have erasures which
do not match. In our example, AL = x V. We then annotated match AL
with ST to find a suitable substitution for the rewriting step. In our example, we

get the substitution { U/x, V//|s(y)| }. After, we call parse to find an annotation
2

of R with the same skeleton as AL, and with a maximum

case | (U x V) + V| . We then apply the substitution to this annotated right-hand

orientation, in this

side, giving | (z x |s(y) | ) + s(y) | - Note that substitution application uses our new

notion of subterm replacement (from §4). Here, regular substitution would gen-
erate an improperly annotated term. The final step in rewriting is to replace the
rewritten subterm within the context of the superterm from which it came, again
using our new notion of subterm replacement.

The supporting subroutines for parsing are fairly straightforward. We used gen-
erate (pick_an) and test (skel_preserving) to generate skeleton preserving anno-
tations of the right-hand side of rewrite rules. This takes exponential time but the
efficiency can be considerably improved by interleaving generation and testing (i.e.,
testing during generation) or via dynamic programming. A dynamic programming
approach to such difference matching problems is described in [1]. In our experi-
ence, naive generate and test has acceptable performance.

The routine orient finds an orientation of the wave-fronts on the right-hand
side that yields a measure smaller than the left-hand side. This can be implemented
naively by generating orientations (there are two possibilities for each wave-front)
and comparing the two sides of the proposed rule under the given measure. By
comparing possible orientations against each other, we can return the maximum
possible right-hand side orientations. As with annotation, there are algorithms to
implement orientation more efficiently. In particular when all annotation is simple
(single wave-holes) it is possible to orient the right-hand side in linear time (in the
size of the term). An algorithm for this is given in [2].

6.2. SINKS AND COLOURS

One kind of annotation we have not discussed in our measures or parsing is sinks.
This is deliberate as we can safely ignore sinks in both the measure and the parser.
Sinks only serve to decrease the applicability of wave-rules by creating additional
preconditions; that is, we only ripple inwards if there is a sink underneath the wave-
front. Hence sinks decrease the search space of rippling and termination without
this restriction implies termination with this restriction. The value of sinks is they
restrict search without reducing the utility of rippling: their use guides rippling in
a way that allows the induction hypothesis to be successfully applied.

2 Maximum under our order. When there are multiple choices with the same measure we return
them all on backtracking.
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Another type of annotation introduced in [17] are wave-holes marked with
colours. Different colours are used to distinguish different skeletons. Colours are
useful in inductive proofs with multiple induction hypotheses (for example, induc-
tions on binary trees). The motivation behind the introduction of colours is that
rippling only preserves a subset of the skeletons, and colours helps prevent us end-
ing up with the wrong subset. Since coloured rippling is a restriction of uncoloured
rippling, termination follows immediately from termination in the uncoloured case.
Colours thus increase the utility of rippling. Although colours are not needed for
showing the termination of rippling, they actually played an implicit role in our
discussion about termination. The reduction order defined in §5 compares the mea-
sures of different colours separately. Since each colour has a single skeleton, and
the measure is stable for single skeletons, the resulting order is stable.

7. Extensions to Rippling

Our definition of wave-rules is parameterized by a reduction ordering. This gives
us flexibility in exploring new orderings and hence new applications for rippling.
To illustrate this potential, we give two examples for inductive and non-inductive
theorem proving. The first highlights a problem occurring in induction: during
rippling we may need to normalize the contents of wave-fronts when rippling gets
stuck. The second explores orderings useful for algebraic problem solving.

7.1. UNBLOCKING

Here we consider new reduction orderings motivated by unblocking rippling. That
is, sometimes rippling fails because no wave-rule is applicable, but not all wave-
fronts have been moved “out of the way” (to the root of the term or to sinks). This
can occur because a lemma is needed; these missing wave-rules can sometimes be
speculated automatically using techniques presented by Ireland and Bundy in [15].
Rippling can also become blocked simply because a wave-front itself needs to be
rewritten so that it matches either an existing wave-rule (to allow further rippling)
or a sink (to allow use of the induction hypothesis). This is best illustrated by an
example taken from [6].

Consider the following theorem, where rev is naive reverse, grev is tail-recursive
reverse using an accumulator, <> is infix append, and :: infix cons.

VL, M. qrev(L, M) =rev(L) <> M (22)
We proceed by induction on L. The induction hypothesis is
grev(l, M) =rev(l) <> M

where M is a universally quantified variable. The induction conclusion is

grev(h =1, |m]) = rev((h = 1]) <> |m] (23)
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where m is a skolem constant which sits in a sink, annotated with “| |”.
We use wave-rules taken from the recursive definition of ¢rev, and rev.

rev() — |rev(T) <> (H :: nil) (24)
qrev(,L) — qrev(T, mi) (25)

On the LHS, we ripple with (25) to give

qrev(l, {J) = rev(|h L) <> [m].

The sink stays in the same position relative to the skeleton and absorbs the wave-
front rippled across by (25). On the RHS, we ripple with (24) and then (8), the
associativity of <>, to get

qrev(l, {iJ) = rev(l) <> (U (h o nil) <> mH) (26)

Again note how the sink has absorbed the wave-front rippled across. Unfortunately,
the proof is now blocked. We cannot ripple any further nor apply the induction
hypothesis. The problem is that we need to simplify the wave-front on the right-
hand side so that the two sinks become identical. CLAM currently uses an ad-hoc
method to try to perform wave-front simplification when rippling becomes blocked.
In this case (26) is rewritten using conventional rewriting to

qrev(l, {iJ) =rev(l) <> ({iJ) :

Simplification with the induction hypothesis can now occur.
Unblocking steps that manipulate just wave-fronts will use proper rewrite rules;
for example, here we use another parsing for the recursive definition of append.

(H::T)<>L¢—> H::(T<>L)¢ (27)

In [6] such a rule is not admitted as a wave-rule (see §8). It is also not admissible
under our ordering >* as >* measures the width of wave-fronts and the right-
hand side is wider than the left-hand side. However, both sides have the same size
(number of function symbols and constants). If we extend our measure to account
for the contents of wave-fronts then we can find a reduction ordering based on size
of wave-fronts that includes the above rule.

We do this as follows. As before, we give an ordering on simply annotated
terms, which can then be lifted to an order on multi-wave terms. To order simply
annotated terms, we take the lexicographic order of the simple wave-rule measure
proposed above (using size of the wave-front as the notion of weight) paired with
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>, an order on the contents of wave-fronts. As a simply annotated term may
contain multiple wave-fronts, this second order is lifted to a measure on sets of
wave-fronts by taking its multi-set extension. The first part of the lexicographic
ordering ensures that anything which is normally measure decreasing remains mea-
sure decreasing and the second part allows us to orient rules that only manipulate
wave-fronts. This combination can provide a reduction ordering that allows us to
use rippling to move wave-fronts about the skeleton and conventional rewriting to
manipulate the contents of these wave-fronts.

In our reverse example, (27) doesn’t change the size of the wave-front or its
position but only its form. Hence we want this to be decreasing under some ordering
on the contents of wave-fronts. There are many such orderings; here we take >, ¢
to be the recursive path ordering [12] on the terms in the wave-front where <>
has a higher precedence than :: and all other function symbols have an equivalent
but lower priority. The measure of the LHS of (27) is now greater than that of the
RHS as its wave-front is (H :: T') <>  which is greater than H :: (' <> %) in the
recursive path ordering (to convert wave-fronts into well-formed terms, wave-holes
are marked with the new symbol *).

Unblocking steps which simplify wave-fronts are useful in many proofs enabling
both immediate application of the induction hypothesis (as in this example) and
continued rippling. By defining new orders we can combine rippling with conven-
tional term rewriting so that rules to rewrite wave-fronts are measure decreasing
wave-rules accepted by the parser and applied like other wave-rules.

7.2. ALGEBRAIC PROBLEM SOLVING

Rippling has found several novel uses besides inductive theorem proving. For exam-
ple, it has been used to sum series [16], to prove limit theorems [17], and guide
equational reasoning [10]. However, new domains, especially non-inductive ones,
require new orderings to guide proof construction. Here we sketch an application
based on the PRESS system [9].? To solve algebraic equations, PRESS uses a set of
methods which apply rewrite rules. The three main methods are: isolation, collec-
tion, and attraction. Below are examples of rewrite rules used by these methods.

ATTRACTION : log(U) +log(V) | — |log(U x V)
COLLECTION : UxU] - [v?

2 i
ISOLATION : U =V = U=|+JV

PRESS uses preconditions and not annotation to determine rewrite rule appli-
cability. Attraction must bring occurrences of unknowns closer together. Collection
must reduce the number of occurrences of unknowns. Finally, isolation must make

3 The idea of reconstructing PRESS with rippling was suggested by Nick Free and Alan Bundy.
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progress towards isolating unknowns on the LHS of the equation. These require-
ments can be captured by annotation and PRESS can thus be implemented by
rippling. The above wave-rules suggest how this would work. The wave-rules in
PRESS are structure preserving, where the preserved structure is the unknowns.
The ordering used reflects the well-founded progress achieved by the PRESS meth-
ods. Namely, we lexicographically combine orderings on the number of wave-holes
for collection, their distance (shortest path between wave-holes in term tree) for
attraction, and our width measure on annotation weight for isolation.

8. Related Work
8.1. CLAM

Our starting point is rippling as developed at Edinburgh and implemented in the
CLAM proof planning system. Our results improve those presented in [6] in a
number of respects.

To begin with, rippling as described in [6] is not a rewriting calculus. Rather it
is implemented by first-order rewriting with the strong precondition that “...each
wave-front in the expression [being rewritten| is matched with a wave-front of the
same kind in the rule” (Definition 5, page 222). Saying this another way, variables
in wave-rules cannot be instantiated with annotated terms. This is sufficient for
rippling to be structure preserving and terminating, but it is an unacceptably large
restriction on the applicability of rippling. Indeed, under this restriction, not all
of the examples in [6] are valid. For example (see page 222) we cannot rewrite the
immediate subterm of

even((s((s(@)|)| +y)

with the recursive definition of plus given by |s(U) | +V —|s(U 4+ V)|, since the

left-hand side of this wave-rule is mT 4+ V and there is an extra wave-front in

the subterm being rewritten.

Rippling was implemented in the CLAM system without the above restriction
and it suffered from the problems described in §3 that arise when first-order rewrit-
ing is used to implement rippling directly. In particular, ill-formed terms appeared
during rewriting and an auxiliary routine occasionally would “clean-up” annota-
tions (e.g., consider the multiplication example given in §3). The CLAM imple-
mentation of rippling has been replaced with the calculus and parser described
here.

The measures and orders we give are considerably simpler than those in [6]
where the properties of structure preservation and the reduction of a measure are
intertwined. Bundy et al. describe wave-rules schematically and show that any
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instance of these schemata is skeleton preserving and measure decreasing under an
appropriately defined measure. Mixing these two properties makes the definition
of wave-rules very complex. For example, the simplest kind of wave-rule proposed
are longitudinal outward directed wave-rules, defined as rules of the form,

n(fl(u_%,...,,uzfl) ,...,fn(ﬁ,...,u_%l) )= ¢l @l (L @)

that satisfy a number of side conditions. These include: each wf is either an unrip-

pled wave-front, | &; (,u_ll, .., 47y | or is one of the wave-holes, ,uﬁ»; for each j, at least

one w! must be a wave-hole. 7, the &;s, and ¢ are terms with distinguished argu-
ments; ¢ may be empty, but the s and 1 must not be. There are other schemata
for transverse wave-rules and creational wave-rules®. These schemata are combined
in a general format, so complex that in [6] it takes four lines to print. It is notation-
ally involved although not conceptually difficult to demonstrate that any instance
of these schemata is a wave-rule under both our size and width measures.

Counsider the longitudinal schema given above. Every skeleton on the LHS is a
skeleton of the RHS because of the constraint on the w®. What is trickier to see
is that it is measure decreasing. Under our order this is the case if LHS »>* RHS.
We can show something stronger, namely, for every r € weakenings(RHYS).3l €
weakenings(LHS).l > r. To see this observe that any such r must be a maximal
weakening of

r = C(n(wl,...,wn),...,n(w{,...,w%),...n(wl,...,wn))

forsome j € {1,...,k}. Corresponding to r’is an I which is a weakening of the LHS
where I’ = (t1,...,t,) and the t; correspond to the ith subterm of (i, ..., @)

in r’: if wf is an unrippled wave-front then ¢; = @] = fz(u_ll, .. .,,ui”) , and alter-

natively if wf a wave-hole ,uﬁ» then t; = | & (ul, .. .,,uﬁ», oy 1Y | Now r is a maximal

weakening of r’ so there is a series of weakening steps from r to r’. Each of these
weakenings occurs in a w] and we can perform the identical weakening steps in
the corresponding t; in !’ leading to a maximal weakening /. [ and r have the same
skeleton and as they are maximally weak they may be compared under >. Their
only differences are that r has an additional wave-front at its root and is missing
a wave-front at each w?] corresponding to a wave-hole. The depth of w/ is greater
than the root and at this depth the out-measure of [ is greater than r and at all
greater depths they are identical. Hence [ > r.

* Creational wave-rules are used to move wave-fronts between the hypotheses and conclusion
during proofs by destructor induction. They complicate rippling in a rather specialized and unin-
teresting way. Our measures could be easily generalized to include these.
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Similar arguments hold for the other schemata given in [6] and from this we
can conclude that wave-rules acceptable under their definition are acceptable under
ours. Moreover simple examples are wave-rules under our formalism but not theirs,

e.g., the base-case of addition — .
8.2. INKA

Hutter, in [14, 13], describes a calculus for rippling implemented in the INKA
system [3]. Hutter rigorously develops an algebra of annotated terms, called C-
terms. These are terms in an extended signature where functions and variables
each carry a “colour”, which represents annotation, or a variable over colours,
which restricts potential annotation. Hutter’s motivations and developments are
similar: he defines congruence relations corresponding to equality of terms after
erasure, equivalence of skeletons, and develops algorithms to unify and rewrite
C-terms that respect these congruences.

The calculus he develops is more general than ours. However, it is significant-
ly more complex, both conceptually, and in implementation. Wave-fronts can be
thought of as contexts. In our calculus we augment the signature only as is required
to specify these contexts: i.e., we introduce new function symbols so that we may
mark the beginning of a context with a wave-front, and the end of the context with
wave-holes. In Hutter’s calculus, annotation is the primary concept and matching
and rewriting of such terms can be understood independently of contexts.

Hutter has not addressed termination in his work. However, with minor restric-
tions on his calculus, our results should carry over. For example, we can consider a
setting with three colours (indicating skeleton, inwards wave-fronts and outwards
wave-fronts) restricted to C-terms which are wats. In this setting we can define
the same kinds of well-founded orderings on terms based on annotation relative
to the skeleton. It should be possible to carry over our proofs of stability and
monotonicity in his setting, although we have not formally checked this.

9. Conclusions

We have defined a simple calculus for rippling where differences between the induc-
tion conclusion and the induction hypothesis are marked with annotations and
annotated rewrite rules move these differences away. We have proved that rewriting
in this calculus has various desirable properties: well-formedness (well-annotated
terms rewrite to well-annotated terms), skeleton preservation (the unannotated
part of terms are preserved), and correctness (the corresponding rewriting can
be performed in the original unannotated theory, i.e. annotation merely guides
search). We have shown how this calculus admits simple termination orders which
are stable and monotonic. As well as providing a firmer theoretical foundation
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to rippling, this work has led to a simpler and more complete implementation of
rippling within the Edinburgh CLAM system.
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