
A Calculus for and Termination of RipplingDavid A. Basin �Max-Planck-Institut f�ur Informatik, Saarbr�ucken, Germanyemail: basin@mpi-sb.mpg.deandToby Walsh yMechanized Reasoning Group, DIST, Genova and IRST, Trento, Italyemail: toby@irst.itAbstract. Rippling is a type of rewriting developed for inductive theorem proving which usesannotations to direct search. Rippling has many desirable properties: for example, it is highly goaldirected, usually involves little search, and always terminates. In this paper we give a new andmore general formalization of rippling. We introduce a simple calculus for rewriting annotatedterms, close in spirit to �rst-order rewriting, and prove that it has the formal properties desiredof rippling. Next we develop criteria for proving the termination of such annotated rewriting, andintroduce orders on annotated terms that lead to termination. In addition, we show how to makerippling more 
exible by adapting the termination orders to the problem domain. Our work haspractical as well as theoretical advantages: it has led to a very simple implementation of ripplingthat has been integrated in the Edinburgh CLAM system.Key words: Mathematical Induction, Inductive Theorem Proving, Term Rewriting1. IntroductionRippling is a form of rewriting developed by Bundy et al [6, 8] which uses anno-tations to restrict rewriting and to guide the derivation towards a particular goal.Rippling applies naturally in inductive theorem proving where the induction con-clusion typically di�ers from the induction hypothesis by the addition of someconstructors or destructors. These di�erences are marked by annotations. Ripplinguses annotated rewrite rules, called wave-rules, to move these marked di�erences;when successful, the di�erences are either removed completely or moved to posi-tions like the top of the term that enable the use of the induction hypothesis.Rippling has many attractive properties. It is highly goal directed, manipu-lating just the di�erences between the induction conclusion and hypothesis whileleaving their common structure preserved; this is in contrast to rewriting based onnormalization, which is used in other inductive theorem provers such as NQTHM[4]. Rippling also involves little search since annotations severely restrict rewriting.� Funded by the German Ministry for Research and Technology under grant ITS 9102.y Supported by a Human Capital and Mobility Research Fellowship from the European Com-mission. Both authors thank members of the Edinburgh Mathematical Reasoning Group, as wellas Alan Bundy, Leo Bachmair, Dieter Hutter, and Michael Rusinowitch for their comments onprevious drafts. Additional support also received from the MInd grant EC-US 019-76094.



2 David Basin and Toby WalshIndeed, the use of annotation places such strong restrictions on the search spacethat it is often possible to analyze failed rippling proofs and to suggest missinglemmas or generalizations [15]In this paper we give a new account of rippling and its properties that is bothsubstantially simpler and more general than previous accounts. Conceptually, thestarting point of our work is the formal presentation of rippling given by Bundyet al. in [6]. There rippling is presented as �rst-order rewriting restricted by somesimple preconditions that ensure that annotations in the subterm being rewrittenmatch annotations in the applied wave-rule. We show that this is inadequate.Taken literally, it leads to an implementation of rippling too restrictive to carryout the derivations given in [6] (see x8). When the restrictions are loosened (asthey were in the implementation of the CLAM system [7]) other problems ariselike improperly annotated terms. We give a simple calculus for rippling which doesnot su�er from these problems.We also simplify, improve, and generalize the speci�cation of wave-rules andtheir associated termination orderings. Wave-rules have previously been present-ed using complex schematic de�nitions that combine the properties of structurepreservation and the reduction of a well-founded measure (see x8). Our de�nitionof wave-rules separates these two concerns and their demonstration. We presentmeasures that, despite their simplicity, admit strictly more wave-rules than theconsiderably more complex speci�cation given in [6].Another contribution of our work is to provide new termination orderings whichextend the power of rippling. Although rippling was designed primarily to proveinductive theorems, it has recently been applied to other problem domains. Forexample, it has been used to sum series [16], to prove limit theorems [17], and toperform normalization [1]. In rippling, as in conventional rewriting, the termina-tion ordering can be made domain dependent. We illustrate this idea by two neworderings.A practical contribution of our work is that it greatly simpli�es implementa-tion; our calculus leads to an implementation of rippling in the spirit of standard�rst-order rewriting. Moreover, systems implementing rippling require a procedurewhich annotates rewrite rules (here called a wave-rule parser) and our work eas-es the construction of such a routine. We report on our implementation of theseroutines which has been integrated into the CLAM system.The remainder of this paper is organized as follows. x2 provides a background onrippling, in particular on annotation and wave-rules. x3 formalizes properties of rip-pling and shows why �rst-order rewriting cannot directly satisfy these properties.x4 presents a new calculus that does satisfy these properties. Next, x5 introducesreduction orders under which rippling will terminate. x6 describes how our calcu-lus can be implemented and how unannotated rewrite rules can be annotated andoriented to give wave-rules. x7 presents two new orders which extend the power ofrippling. Finally, in x8 we survey related work.
final.tex; 17/05/1995; 13:26; no v.; p.3



A Calculus for and Termination of Rippling 32. Annotation and Wave-rulesIn this section, we give a brief overview of rippling and introduce notation andterminology. [6] should be consulted for additional motivation and examples.Rippling arose out of an analysis of inductive proofs, and of the heuristicsembedded within the NQTHM theorem prover [4]. As a simple example, supposewe wish to prove P (x) for all natural numbers, x. We assume P (n) and attemptto show P (s(n)). The hypothesis and the conclusion are identical except for thesuccessor function s(:) applied to the induction variable n. Rippling marks this dif-ference by the annotation, P ( s(n) "). The annotation in the induction conclusion,given by the box, arrow and underlining, marks the di�erences with the inductionhypothesis. Deleting the arrow and everything in the box that is not underlinedgives the skeleton, P (n); this is identical to the induction hypothesis, and is pre-served during rippling. By comparison, simply removing annotations gives theerasure, P (s(n)). The boxed but not underlined term parts are wave-fronts; theseare moved and transformed (and possibly deleted) by rippling. The underlinedparts are wave-holes; they represent terms in the wave-front that we wish to leaveunchanged. Wave-fronts are marked with arrows indicating if rippling should tryto move the wave-front up through the skeleton term tree or down towards theleaves. Wave-fronts with an up arrow are called outward directed, whilst thosewith a down arrow are inward directed.A wave-front can be viewed as a context, that is, it is a term with one, or more,proper subterms deleted. Schematically, an outward directed wave-front is of theform �(�1; : : : ; �n) " where n > 0 and the �i may be similarly annotated; whenn = 1 we call the wave-front simply annotated and when n > 1 we call it multi-hole annotated. A term is said to be simply annotated when all its wave-fronts aresimply annotated, and is multi-hole annotated otherwise.To formalize rippling, we extend the signature of the original theory with threenew unary function symbols: wfout, w�n and wh (representing outward and inwarddirected wave-fronts and wave-holes respectively). The requirement that a contexthas at least one hole and that terms in these holes may be further annotated canbe formally captured by de�ning the set of well-annotated terms with respect toa set of unannotated (�rst-order) terms unats.DEFINITION 1. Well-annotated terms (or wats) are the smallest set such that,1. t is a wat for all unannotated terms;2. wfout(f(t1; : : : ; tn)) is a wat i� for at least some i, ti = wh(si) and for eachi where ti = wh(si), si is a wat and for each i where ti 6= wh(si), ti is anunannotated term;3. w�n(f(t1; : : : ; tn)) is a wat under the same conditions in case (2).4. f(t1; : : : ; tn) is a wat where f is not wfout, w�n, or wh i� each ti is a wat .final.tex; 17/05/1995; 13:26; no v.; p.4



4 David Basin and Toby WalshFor example, wfout(s(wh(x))) � wfout(s(wh(y))) represents the well-annotatedterm s(x) "� s(y) ". To simplify the presentation of annotated terms, we shall stilluse boxes, arrows and holes. However, this is just syntactic sugar for wfout, w�nand wh. Note that in our formalization of annotation, wave-holes occur as imme-diate subterms of the function symbol in the wave-front. As additional syntacticsugar, we may merge adjacent wave-fronts and wave-holes when displaying anno-tated terms. For example, we will display the term s( s(x) ") " as the annotatedterm s(s(x)) ". Insisting that wave-fronts are \maximally split" both simpli�esthe presentation of rippling that follows and leads to a simpler implementationsince wave-fronts do not need to be dynamically split or merged during rippling,as in [6].We de�ne the skeleton of an annotated term to be the set of unannotated termsformed by deleting function symbols and variables within wave-fronts that are notwithin wave-holes.DEFINITION 2. The skeleton function skel :wats! P(unats) is de�ned by,1. skel(x) = fxg for all variables x;2. skel( f(t1; : : : ; tn) ") = fs j 9i:ti = t0i ^ s 2 skel(t0i)g;3. skel( f(t1; : : : ; tn) #) = fs j 9i:ti = t0i ^ s 2 skel(t0i)g;4. skel(f(t1; : : : ; tn)) = ff(s1; : : : ; sn) j 8i:si 2 skel(ti)g.For example, the skeleton of the annotated terms( s(a) " + (b� c) ") (1)is the set fs(a); s(b� c)g. Note that the skeleton of a simply annotated term is asingleton set; in this case, we refer to the member as the skeleton of the term.By erasing annotation, we construct the corresponding unannotated term.DEFINITION 3. The erasure function erase :wats! unats is de�ned by,1. erase(x) = x for all variables x;2. erase( f(t1; : : : ; tn) ") = f(s1; : : : ; sn) where if ti = t0i then si = erase(t0i) elsesi = ti;3. erase( f(t1; : : : ; tn) #) = f(s1; : : : ; sn) where if ti = t0i then si = erase(t0i) elsesi = ti;4. erase(f(t1; : : : ; tn)) = f(s1; : : : ; sn) where si = erase(ti).final.tex; 17/05/1995; 13:26; no v.; p.5



A Calculus for and Termination of Rippling 5For example, the erasure of (1) is s(s(a) + (b� c)).2.1. Wave-rules and RipplingWave-rules are formally de�ned in x4.4. Informally, they are rewrite rules betweenannotated terms that are skeleton preserving and measure decreasing under anappropriate ordering on annotated terms. This de�nition is simpler and more gen-eral to the one given in [6] where these two requirements were combined in thesyntactic speci�cation of a wave-rule.1Skeleton preservation in the simply-annotated case means that both the LHS(left-hand side) and RHS (right-hand side) of the wave-rule have an identical skele-ton. In the multi-hole case we demand that some of the skeletons on the LHSare preserved on the RHS and no new skeletons are introduced, i.e. skel(LHS)�skel(RHS).Measure reduction and orderings for annotated terms will be describedin considerable detail later. The intuition is that the position and orientation ofwave-fronts de�ne a measure. Rippling makes well-founded progress by movingannotations to decrease this measure; for example, moving outwards directed wave-fronts upwards in the rewritten term.To illustrate the di�erent types of wave-rules that our de�nition captures and tohelp motivate the de�nition of termination orders on annotated terms, we give someexamples of wave-rules used by rippling. To begin with, most recursive functionde�nitions and all primitive recursive function de�nitions can be annotated aswave-rules. For example, the recursive de�nition of times gives the wave-rules(U) " � V ! (U � V ) + V " : (2)Lemmas also can be often annotated as wave-rules, for example, algebraic lawslike associativity, distributivity, and cancellation (<> is in�x append on lists).( U + V ")�W ! U �W + V �W " (3)(U <> V ) " <> W ! U <> (V <> W ) " (4)U <> ( V <> W ") ! (U <> V ) <> W " (5)U + V " = W + Z " ! U = W ^ V = Z " (6)(4) and (5) demonstrate that rules like associativity can be wave-rules in both direc-tions; the precondition on rippling that annotations in wave-rules match those inthe rewritten term prevent looping. (6) is an example of a wave-rule with multi-holeannotation. Note that ! indicates rewriting, not implication; in fact, implicationin (6) holds only in the reverse direction. This is sensible since in inductive theorem1 This generalization is, however, brie
y discussed in their further work section.final.tex; 17/05/1995; 13:26; no v.; p.6



6 David Basin and Toby Walshproving, rippling reasons backwards from the induction conclusion to the inductionhypothesis and rewrite rules based on implication as opposed to equivalence maybe used; see [6] for further discussion on how such rewrite rules may be used inforward directed theorem proving.Wave-rules can also ripple wave-fronts inwards, or change the orientation ofwave-fronts from out to in (but not in to out).(U <> V ) <> W # ! U <> ( V <> W #) (7)( U <> V ") <> W ! U <> ( V <> W #) (8)A simple example of a proof guided by rippling is the proof of the associativityof multiplication (x� y)� z = x� (y � z) : (9)The proof uses structural induction on x. In the step-case, (9) is the inductionhypothesis and the induction conclusion is( s(x) " � y)� z = s(x) " � (y � z) :The wave-fronts in the induction conclusion mark the di�erences with the inductionhypothesis. Rippling on both sides of the induction conclusion using (2) yields( x� y + y ")� z = (x� (y � z)) + y � z " :Rippling with (3) on the left-hand side then gives(x� y)� z + y � z " = x� (y � z) + y � z " :As expected, the skeleton in each step of our proof is the induction hypothesis.At the end of this rewriting, the wave-fronts are at the root of each term. We cantherefore complete the proof by simplifying with the induction hypothesis.Rippling outward directed wave-fronts up towards the root of terms, like inthe previous example, is called rippling-out. Wave-rules can also ripple wave-frontsdownwards towards the position of universally quanti�ed variables in the inductionhypothesis. Such positions are called sinks because wave-fronts can be \absorbed"there: when we appeal to the induction hypothesis, universally quanti�ed variableswill be matched with the content of the sinks; an example of this is provided inx7.1. Rippling downward directed wave-fronts towards the leaves of the term treeusing rules like (7) is called rippling-in.3. Properties of RipplingWe now formalize the properties desired of rippling which motivate our calculus.final.tex; 17/05/1995; 13:26; no v.; p.7



A Calculus for and Termination of Rippling 7Well-formedness: if s is a wat , and s ripples to t, then t is also a wat ;Skeleton preservation: if s ripples to t then skel(t) � skel(s);Correctness: if s ripples to t then erase(s) rewrites to erase(t) in the original(unannotated) theory;Termination: rippling terminates.The �rst property means that terms manipulated by rippling stay well-formed.Hence we can always compute their skeleton and erasure. Skeleton preservationensures that rippling directs the derivation towards (at least) one of the induc-tion hypotheses. Correctness guarantees that we can perform the correspondingderivation in the underlying object-level theory; annotation merely guides search.Finally, termination is important for practical considerations; it means we can tryother possibilities (e.g., other inductions) when derivations fails.Unfortunately, rippling implemented directly by �rst-order rewriting in an anno-tated theory fails to achieve these properties. We demonstrate this negative resultby example. Consider using �rst-order rewriting to apply the wave-rule corre-sponding to the recursive de�nition of multiplication given in (2) to the terms(x) "� s(y) ". This is a wat but rewrites to x� s(y) " + s(y) " " which is nota wat since the second argument of plus contains a wave-front (a box) directlyinside another without an intermediate wave-hole. The reader may �nd it easierto carry out the rewrite step and verify this by removing the syntactic sugar andrepresenting the boxes and holes explicitly with wfout and wh.Termination also fails using �rst-order rewriting directly. Consider, for example,the equation h(f(U; s(V ))) = s(h(f(s(U); V ))). Under the width measure given inx5.2, this is a wave-rule in the left-to-right direction annotated ash( f(U; s(V )) ") ! s(h( f(s(U); V ) ")) " :It is also a wave-rule in the reverse direction with the annotations(h( f(s(U); V ) ")) " ! h( f(U; s(V )) ") :However, these wave-rules together lead to cycling as follows:h( f(a; s(a)) ") 7! s(h( f(s(a); a) ")) " 7! h( f(a; s(a)) ") 7! : : : :Note that unlike the multiplication example, all terms in this derivation are well-annotated and share the same skeleton. With two equations, we can constructlooping derivations. final.tex; 17/05/1995; 13:26; no v.; p.8



8 David Basin and Toby WalshBoth the problems of improperly annotated terms and non-termination arisewhen an annotated term replaces an unannotated term in a wave-front. This obser-vation motivates our de�nition of a calculus for rippling. We introduce a new notionof term replacement that erases annotation when replacing terms in a wave-front.The rede�nition of term replacement naturally gives rise to a new notion of sub-stitution, and thus matching. By means of these simple modi�cations, we developa calculus for rewriting annotated terms which is guaranteed to preserve well-formedness of annotation, skeletons, and correctness with respect to the underlyingtheory. In addition, this calculus allows us to design simple termination measureswhich are stable and monotonic. For unannotated terms and rewrite rules, ourcalculus performs conventional rewriting.4. A Calculus for Annotated RewritingNotational Convention: To simplify notation in proofs, in this section we assumethat the arguments of an annotated term like f(t1; : : : ; tn) " may be partitionedso that the �rst j arguments are headed by wave-holes, i.e., of the form ti = t0ifor i 2 f1; : : : ; jg, and the last n � j are unannotated. Hence the term may bewritten as f(t1; : : : ; tj ; tj+1; : : : ; tn) ", or even f(t1; : : : ; tn) ". This is without lossof generality as the proofs below do not depend on the order of wave-holes.4.1. Ground RewritingWe �rst consider rewriting using ground rewrite rules. As is typical (e.g., see [11]Section II), we distinguish between two kinds of variables: those in rewrite rulesand those in terms. We treat the later kind, \term variables", as constants.We begin by rede�ning subterm replacement. Let s[l] represent a wat with a dis-tinguished subterm l that is also a wat . Let rep(s[l]; r) denote subterm replacementof r for the distinguished occurrence of l in the term s; rep is de�ned identicallyto the usual subterm replacement of l by r in s except that if l occurs withina wave-front any annotations on r are erased before replacement. For example,replacing a in b+ s(a) " by s(a) " gives b+ s(s(a)) ", but replacing b by s(b) "gives s(b) " + s(a) ". From now on, we will perform all term replacement (includ-ing that occurring during substitution) using this function.In rewriting terms, we will use just proper rewrite rules.DEFINITION 4. l ! r is a proper rewrite rule when erase(l)! erase(r) is arewrite rule, l and r are wats, and skel(r) � skel(l).final.tex; 17/05/1995; 13:26; no v.; p.9



A Calculus for and Termination of Rippling 9The last two requirements are needed for well-formedness and skeleton preserva-tion. Note also that the requirement that erase(l)! erase(r) is a rewrite rulemeans that V ars(r) � V ars(l).Ground rewriting consists of rewriting using proper rewrite rules that containno (non-term) variables. Let R be a set of rewrite rules that are (for now) ground.If s[l] is a wat then ground rewriting with a rule l! r in R yields rep(s[l]; r); weuse s[l] 7!R s[r] to denote such ground rippling. In what follows we will assume aparticular rewrite rule set R, and drop subscripted references, e.g., writing simplys[l] 7! s[r].Ground rippling preserves the well-formedness of annotated terms, preservesskeletons, and corresponds to an annotated version of rewriting in the underlying(unannotated) theory.THEOREM 1. if s is a wat, l! r a proper rewrite rule between ground wats l andr and s[l] 7! s[r], then1. s[r] is a wat,2. skel(s[r]) � skel(s[l]),3. erase(s[l])! erase(s[r]).Proof. (sketch) The proof follows by structural induction on s. The only non-trivial case is when s is headed by a wave-front, e.g., s = f(s1; : : : ; sj ; sj+1; : : : ; sn) ",and l is strict subterm of one of the si (the case for inward directed wave-frontsis analogous). There are two cases depending on if i � j. In the �rst case, si is awat ; by the induction hypothesis, si[r] is a wat . Thus, s[r] is a wat . Also, by theinduction hypothesis skel(si[r]) � skel(si[l]). As no other subterm is changed, theunion of their skeletons is unchanged. Hence skel(s[r]) � skel(s[l]). Finally, by theinduction hypothesis, erase(si[l])! erase(si[r]). Again, as all the other subtermsare unchanged, their erasures stay the same. Thus, erase(s[l])! erase(s[r]). Inthe second case, si is an unannotated term within the wave-front. Thus, when wesubstitute r for l we will erase annotations on r. Hence, si[r] is unannotated, ands[r] is a wat . From the de�nition of the skeleton it follows that term replacement inwave-fronts has no e�ect on the skeleton, so skel(s[l]) = skel(s) = skel(s[r]). Final-ly si is unannotated and l! r is a proper equation, erase(si[l])! erase(si[r]) andthus erase(s[l])! erase(s[r]).By Theorem 1 it follows by induction on the number of rewrite steps that there
exive transitive closure of 7! on ground wats also preserves well-formedness,skeletons and correctness with respect to the theory.As a simple example, let h(a) " ! a be a proper rewrite rule. We can applythis rule only to the �rst subterm of the watf( h(a) "; h(a)) " (10)final.tex; 17/05/1995; 13:26; no v.; p.10



10 David Basin and Toby Walshand this results in f(a; h(a)) ". Alternatively, we could apply the proper rewriterule a! h(a) " to both occurrences of a in (10) resulting inf( h( h(a) ") "; h(h(a))) " : (11)Note that annotation was erased when substituting h(a) " for the second occur-rence of a. We can apply this rewrite rule again to both occurrences of a in (11).Whilst rippling with proper rewrite rules is structure preserving (the skeleton ofthe rewritten term is always the same as the skeleton of the original term), thisexample shows that it is not necessarily terminating; for termination we need fur-ther restrictions which will be introduced later.4.2. Annotated MatchingWhen rewrite rules contain (non-term) variables, they must be applied usingmatching. Since substitution depends on subterm replacement, our new de�nitionof subterm replacement gives rise to a new kind of substitution; during substitu-tion, terms replacing variables in wave-fronts are erased of annotation. This in turngives rise to a new kind of matching. We represent a well-annotated substitution(or was) by a set of pairs, X=t in which X is a variable and t is a wat , and X occursonly once in the set. The domain of a substitution �, written Dom(�) is the setfX j X=t 2 �g. Application of a well-annotated substitution � to a well-annotatedterm t, written �(t), is as normal except term replacement is performed with ournew subterm replacement function. Finally, if � is a was , we de�ne the erase(�),and skel(�) as the result of applying these functions to each element in the rangeof the substitution, i.e.,erase(�) = fX=t0 jX=t 2 � ^ t0 = erase(t)g :The following can be easily veri�ed by induction over the structure of wats .LEMMA 1. For � a well-annotated substitution we have�( f(t1; : : : ; tn) ") = f(�(t1); : : : ; erase(�)(tn)) " = f(�(t1); : : : ; erase(�(tn))) "and�( f(t1; : : : ; tn) #) = f(�(t1); : : : ; erase(�)(tn)) # = f(�(t1); : : : ; erase(�(tn))) #:final.tex; 17/05/1995; 13:26; no v.; p.11



A Calculus for and Termination of Rippling 11Annotated substitution preserves well-formedness, skeletons and erasure in thefollowing sense:THEOREM 2. if t is a wat and � is a well-annotated substitution then1. �(t) is a wat,2. skel(�(t)) = (skel(�))(skel(t)),3. erase(�(t)) = (erase(�))(erase(t)).Proof. (sketch) The proof follows by structural induction on t. As before, theonly interesting case is when t = f(t1; : : : ; tj ; tj+1; : : : ; tn) " (the inwards case isanalogous). (1) follows as�(t) = f(�(t1); : : : ; �(tj); erase(�(tj+1)); : : : ; erase(�(tn))) "and subterms in wave-fronts, i.e., �(ti) for i 2 f1; : : : ; jg are wats by the inductionhypothesis and the remaining subterms are unannotated and therefore also wats .(2) follows asskel(�(t)) = skel( f(�(t1); : : : ; �(tj); erase(�(tj+1)); : : : ; erase(�(tn))) ")= [ji=1fs j s 2 skel(�(ti))g= [ji=1fs j s 2 skel(�)(skel(t1))g= (skel(�))skel( f(t1; : : : ; tj ; tj+1; : : : ; tn) ")Finally (3) follows aserase(�(t)) = erase( f(�(t1); : : : ; erase(�(tn))) ")= f(erase(�(t1)); : : : ; erase(erase(�(tn))))= f(erase(�(t1)); : : : ; erase(�(tn)))= f((erase(�))(erase(t1)); : : : ; (erase(�))(erase(tn)))= (erase(�))(f(erase(t1); : : : ; erase(tn)))= (erase(�))(erase(t))To perform rewriting, we need a notion of annotated matching correspondingto this new notion of annotated substitution.DEFINITION 5. if s and t are wats , then � is an annotated match of s with t i�Dom(�) = V ars(s), � is a was and �(s) = t.final.tex; 17/05/1995; 13:26; no v.; p.12



12 David Basin and Toby WalshDELETE :S [ ft = t :Posg ) SDECOMPOSE :S [ ff(s1; : : : ; sn) = f(t1; : : : ; tn) :Posg ) S [ fsi = ti :Pos j 1 � i � ngS [ f f(s1; : : : ; sj ; sj+1; : : : ; sn) " = f(t1; : : : ; tj ; tj+1; : : : ; tn) " :skg )S [ fs1 = t1 :sk; : : : ; sj = tj :sk; sj+1 = tj+1 :wf; : : : ; sn = tn :wfgS [ f f(s1; : : : ; sj ; sj+1; : : : ; sn) # = f(t1; : : : ; tj ; tj+1; : : : ; tn) # :skg )S [ fs1 = t1 :sk; : : : ; sj = tj :sk; sj+1 = tj+1 :wf; : : : ; sn = tn :wfgFig. 1. Transformation rules for amatch(s; t).Observe that even restricting � to variables in s, annotated matching is notunitary. For example, fX=s(0)g and fX= s(0) "g are both annotated matches ofX � 0 " with s(0)� 0 ". It can be seen, however, that matches di�er only in theamount of annotation which appear on substitutions for variables that occur inwave-fronts but not in skeletons. Based on this observation, we can de�ne a notionof minimality of annotation so that annotated matching is unique. If � and �are well annotated substitutions for s and t then we write � � � i� there existsX=t1 2 � and X=t2 2 � with t1 = erase(t2) and all other pairs in � and � areidentical. We write �+ for the transitive (but not re
exive) closure of �.DEFINITION 6. if s and t are wats, then � is a minimal match of s with t i� �is an annotated match of s with t and there does not exist any annotated match� with � �+ �.It follows from this de�nition that if we have a minimal match, we cannot removeany annotation and have the result remain a match. We now give an algorithmfor computing minimal matches. We will use this afterwards to show that minimalmatches are unique.Our procedure, amatch(s; t), is based on the transformation rules given in Fig-ure 1. Because term replacement, and hence substitution is dependent on context(i.e. whether or not the term to be replaced is in a wave-front), our rules manip-ulate equations labeled with context information (wf for \in the wave-front" andsk for \in the skeleton"). As notational shorthand, Pos is a meta-variable thatmatches either wf or sk.Starting with the set containing the match problem fs = t :skg, we apply thesetransformation rules exhaustively. An equation set is normalized if no more trans-formation rules can be applied. A normalized equation set, S is compatible i� 1)final.tex; 17/05/1995; 13:26; no v.; p.13



A Calculus for and Termination of Rippling 13every equation is a variable assignment X = s :Pos where s is a wat , 2) for eachvariable X there exists at most one equation of the form X = s :sk, and 3) ifX = s :sk 2 S and X = t :wf 2 S then erase(s) = t. If a normalized equation setis not compatible, matching has failed; otherwise matching has succeeded and wereturn the answer substitutionfX=s j X = s :sk 2 S or (X = s :wf 2 S and X = t :sk 62 S)g:As an example, if we match X +X " with s(a) " + s(a)) " then our initialmatching problem is f X +X) " = s(a) " + s(a)) " : skgand applying DECOMPOSE yields fX = s(a) " : sk;X = s(a) : wfg. Thisnormalized equation set is compatible and yields the answer fX= s(a) "g. Notethat regular matching would fail on this example.It is easy to see that the application of these rules in any order terminates intime linear in the size of the smaller of s and t. Moreover, although there arechoice points concerning which rule is applied, these choices are AND choices: allequations must be reduced and each reduction is independent. It follows that whenthere is an answer substitution, it is unique. Below, when we show correctness, wedemonstrate that the algorithm returns all minimal answers, so it follows thatthere is a unique such answer.Note that the DELETE and the �rst DECOMPOSE rule implement regularmatching. For unannotated terms, the compatibility check reduces to the require-ment that the normalized equation set only contains variable assignments, andeach variable has a single substitution. Annotated matching therefore subsumesregular matching. As with regular matching, we can also add two failure rules forgreater e�ciency: CONFLICT which causes annotated matching to fail when theoutermost function symbols disagree; and INCOMPATIBLE which causes anno-tated matching to fail immediately if the set of equations of the form X = s :Posis not compatible. These additional failure rules are not, however, needed for thecompleteness or correctness of annotated matching.THEOREM 3. if s and t are wats then,1. amatch(s; t) = � i� � is the minimal match of s and t;2. amatch(s; t) fails i� s and t do not have an annotated match.Proof. (sketch) We prove a stronger result: a set of labeled equations S can betransformed to a compatible set of equations from which we extract � i� for alls = t :sk 2 S, �(s) = t, and for all s = t :wf 2 S, (erase(�))(s) = t. The minimalityof the answer substitution extracted holds by construction.final.tex; 17/05/1995; 13:26; no v.; p.14



14 David Basin and Toby Walsh()) We use induction on the length of the transformation. If S is already anormalized compatible set of equations, then the result follows directly from theway the answer substitution is computed. Alternatively, we must apply a trans-formation rule. The interesting case is when DECOMPOSE is applied, say tof(s1; : : : ; sn) " = f(t1; : : : ; tn) " :sk, giving the set of equations S 0. By the induc-tion hypothesis, for all s = t :sk 2 S0, �(s) = �(t), and for all s = t :wf 2 S 0,(erase(�))(s) = (erase(�))(t). By the de�nition of annotated substitution, wehave �( f(s1; : : : ; sn) ") = f(t1; : : : ; tn) ".(() We use induction on the height of the largest LHS of an equation. If thisis atomic then, possibly after applications of DELETE, the equation set will becompatible. If it is not atomic, then the equation with the largest LHS will be ofthe form f(s1; : : : ; sn) = t :Pos, f(s1; : : : ; sn) " = t :sk, or f(s1; : : : ; sn) # = t :sk.In all three cases, we can apply DECOMPOSE and appeal to the inductionhypothesis.Note that the normalized equation set is not compatible i� either two occur-rences of a variable in the skeleton need a di�erent substitution, or a variable inthe wave-front needs a substitution which is not the erasure of the substitutionneeded by an occurrence in the skeleton, or there is a con
ict in function symbolsor annotation preventing application of DECOMPOSE. But this occurs i� s andt do have an annotated match.4.3. First-Order Annotated RewritingWe now consider rippling with proper rewrite rules that may contain variables.First, we de�ne non-ground rippling. Let s[t] be a wat with a distinguished subtermt and l! r be a proper rewrite rule. Further, let � = amatch(l; t). Then s[t]rewrites to s[�(r)], which we write as s[�(l)] 7! s[�(r)]. Correctness parallels theground case. The proof relies on the fact that � is a well-annotated substitution andwe can thus reduce the problem to the correctness of ground rippling.THEOREM 4. if s is a wat, l! r a proper rewrite rule, and s[�(l)] 7! s[�(r)],then1. s[�(r)] is a wat,2. skel(s[�(r)])� skel(s[�(l)]),3. erase(s[�(l)])! erase(s[�(r)]).Proof. Annotated matching guarantees that � is a was . By Theorem 2, �(l) and�(r) are wats , skel(�(r)) � skel(�(l)) and erase(�(l))! erase(�(r)). Now, since�(l) is syntactically identical to a subterm of s, it is ground (no non-term variablesoccur in s). Furthermore �(r) is also ground because l ! r is a rewrite rule andthus V ars(r) � V ars(l). Hence the rewriting of s[�(l)] 7! s[�(r)] is equivalentfinal.tex; 17/05/1995; 13:26; no v.; p.15



A Calculus for and Termination of Rippling 15to rewriting s[�(l)] with the ground proper rewrite rule �(l)! �(r). Thus, byTheorem 1, the three properties hold.Let 7!� be the re
exive transitive closure of 7!. By induction on the numberof rewrite steps, it follows from Theorem 4 that rippling is correct and preservesskeletons. That is, if we erase annotations, we can perform the same (object-level)rewriting; annotations merely guide rewriting in a skeleton preserving way.THEOREM 5. if s is a wat and s 7!� t then1. t is a wat,2. skel(t) � skel(s),3. erase(s)!� erase(t).4.4. TerminationWe now have a calculus which satis�es the �rst three properties required of rip-pling. Now we address the fourth: termination. As is conventional, we guaranteetermination by placing an additional restriction on (proper) rewrite rules: theymust reduce the measure of the rewritten term in a well-founded ordering.We �rst de�ne a weak kind of monotonicity that ensures monotonicity withrespect to replacement of wats by wats . This is adequate to show terminationwhen our rewrite rules are between wats .DEFINITION 7. An order > is monotonic with respect to wats i� for all wats sand for all ground wats l and r, if l > r, then s[l] > s[r].We now consider termination restricted to the ground case.LEMMA 2. Let R be a set of (not necessarily proper) rewrite rules between groundwats. If > is well-founded and monotonic with respect to wats, and for all l! r 2R we have l > r then rippling with R is terminating.Proof. By monotonicity, an in�nite rewrite sequence t1 7! t2 7! : : : gives anin�nite sequence of wats t1 > t2 > : : :, contradicting the well-foundedness of >.For non-ground rippling we consider a restricted form of stability.DEFINITION 8. An order > is stable with respect to wats i� for all well-annotatedsubstitutions � and wats s and t where s > t, we have that �(s) > �(t). An orderon annotated terms that is well-founded, monotonic, and stable with respect towats is an annotation reduction order.final.tex; 17/05/1995; 13:26; no v.; p.16



16 David Basin and Toby WalshNote that annotation reduction orders are strictly weaker than normal reductionorders which are monotonic and stable over all terms in the signature, as opposedto just well-annotated ones. We will call our orders simply reduction orders whenno confusion can arise.Based on these de�nitions, we can at last formally de�ne a wave-rule.DEFINITION 9. Let > be an annotation reduction order. Then a proper rewriterule l! r is a wave-rule with respect to > i� l > r.THEOREM 6. for an annotation reduction order > and R a set of wave-rules withrespect to >, rippling using wave-rules in R is terminating.Proof. We again reduce the problem to the ground case. If s 7! t using l! rthen this is equivalent to rippling with a rewrite rule �(l)! �(r) between groundwats . Since > is stable with respect to wats , �(l) > �(r). By the termination ofground rippling, we have termination in the general case.Note that our proof is similar to the one given in [11] (Corollary to Theorem5) as we need not show that the ordering is a reduction ordering, but rather onlymonotonic and stable with respect to possible instances of the rewrite rules.5. Annotation OrdersTo prove the termination of rippling using Theorem 6, we need to de�ne a suitableorder on annotated terms. We begin with simply annotated terms, those whosewave-fronts have a single wave-hole. We then generalize to orders for terms withmulti-hole annotation. The orders we de�ne are similar, though simpler, to thatgiven by Bundy et al. in [6]. We can order all the wave-rules given in [6] and admitwave-rules not possible in their setting (see x8).5.1. Single Wave-holesWe consider annotated terms as decorated trees where the tree is the skeleton andthe wave-fronts are boxes decorating the nodes. See, for example, the �rst treein Fig. 2 which represents the term s(U) " � s(V ) ". Our orders are based onassigning measures to annotation in these trees. We de�ne orders by progressivelysimplifying these annotated trees to capture the notion of progress during ripplingthat we wish to measure.To begin with, since rippling is skeleton preserving, we need not account for thecontents of the skeleton in our orderings. That is, we can abstract away functionsymbols in the skeleton, for example, mapping each to a variadic function constant\*". This gives, for example, the second tree in Fig. 2.final.tex; 17/05/1995; 13:26; no v.; p.17
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Fig. 2. De�ning a measure on annotated terms.A further abstraction is to ignore the names of function symbols within wave-fronts and assign a numeric weight to wave-fronts. For example, we may tally up thevalues associated with each function symbol as in a Knuth-Bendix ordering. Twoof the simplest kinds of weights that we may assign to wave-fronts measure theirwidth and their size. Width is the number of nested function symbols between theroot of the wave-front and the wave-hole. Size is the number of function symbolsand constants in a wave-front. In what follows we will restrict our attention to thewidth measure. This gives, for example, the third tree in Fig. 2. Of course, thereare problem domains where we want our measure to re
ect more of the structureof wave-fronts. x7.1 contains an example of this where the actual contents of thewave-front are compared using a conventional term ordering.Finally, a very simple notion of progress during rippling is that wave-frontsmove up or down through the skeleton tree. Under this view, the tree structuremay be ignored: it is not important which branch a wave-front is on, only its depthin the skeleton tree. Hence, we can apply an abstraction that maps the tree ontoa list, level by level. For instance, we can use the sum of the weights at a givendepth. Applying this abstraction gives the �nal list in Fig. 2. Note that depths arerelative to the skeleton as opposed to depth in the erased term; measuring depthrelative to a �xed skeleton is one of the key ideas in the measures proposed here.To formalize the above ideas, we introduce the following de�nitions. As is stan-dard, a position is simply a path address represented by a string and is de�ned asfollows: the set of positions in the term t is Pos(t) where,Pos(f(s1; : : : ; sn)) = f�g [ fi:p j 1 � i � n ^ p 2 Pos(si)g� represents the empty string and \." is the string concatenation operator. Thesubterm of a term t at position p is t=p where:t=� = tf(s1; : : : ; sn)=i:p = si=pIf s is a subterm of t at position p, its depth is the length of p. The height of t,written jtj, is the maximal depth of any subterm in t.Because we are interested in measures based on weight relative to the skeleton,during the remainder of this paper, positions, depth, and height, will always befinal.tex; 17/05/1995; 13:26; no v.; p.18



18 David Basin and Toby Walshrelative to the skeleton of simply annotated terms. That is, we picture such termsas in the �rst tree in Figure 2. The positions in the term tree are only thosein the skeleton; annotation and function symbols in wave-fronts are treated asmarkings of function symbols in the skeleton. For example, the term in Figure 2 iss(U) " � s(V ) " which has skeleton U � V . The height of this term is 1 since thedeepest subterms, U and V , have positions 1 and 2 respectively. Another exampleis f(s(f(a; s(b))); c) " with the skeleton f(a; s(b)). The deepest subterm is b atposition 2.1 and hence the height of the annotated term is 2.For an annotated term t, the out-weight of a position p is the sum of the weightsof the (possibly nested) outwards oriented wave-fronts at p. The in-weight is de�nedanalogously except for inward directed wave-fronts. We now de�ne a measure onterms corresponding to the �nal list in Fig. 2 based on weights of annotationrelative to their depths.DEFINITION 10. The out-measure, MO(t) of an annotated term t is a list oflength jtj + 1 whose i-th element is the sum of out-weights for all term positionsin t at depth i. The in-measure, MI(t) is a list whose i-th element is the sumof in-weights for all term positions in t at depth i. The measure of an annotatedterm, M(t) is the pair of out and in-measures, hMO(t);MI(t)i.Consider, for example, the following palindrome function (\::" is in�x cons)palin( H :: T "; Acc)! H :: palin(T; H :: Acc) #) " (12)The skeleton of both sides is palin(T;Acc). The out-measure of the left-hand side is[0,1] and that of the right-hand side is [1,0]. The in-measures are [0,0] and [0,1].We now de�ne a well-founded ordering on these measures which re
ects theprogress that we want rippling to make. Consider, a simple wave-rule like (2),s(U) " � V ! (U � V ) + V ":The LHS out-measure is [0; 1], and the RHS is [1; 0]. Rippling with this rule makesprogress because it moves one wave-front upwards towards the root of the term.In general, rippling progresses if one out-oriented wave-front moves up or disap-pears, while nothing deeper moves downwards. If the out-measure of a term beforerippling is [l0; : : : ; lk] and after [r0; : : : ; rk] then there must be some depth d whereld > rd and for all i > d we have li = ri. This is simply the lexicographic orderon the reverse of the two lists where components are compared using > on thenatural numbers. Progress for in-oriented wave-fronts is similar and re
ects thatthese wave-fronts should move towards leaves; that is just the lexicographic orderon the in-measures. Of course, both outward and inward oriented wave-fronts mayfinal.tex; 17/05/1995; 13:26; no v.; p.19



A Calculus for and Termination of Rippling 19occur in the same rule, e.g., (12). Similar to [6], we de�ne a composite ordering onthe out and in-measures. We order the out-measure before the in-measure sincethis enables us to ripple wave-fronts out and either to reach the root of the term,or at some point to turn wave-fronts down and to ripple in towards the leaves.DEFINITION 11. t � s i�M(t) >M(s) and skel(s) = skel(t). Here > representsthe lexicographic order on pairs with >revlex (the reversed lexicographic order onlists) used to compare the out-measure and >lex (the lexicographic order on lists)to compare the in-measure.This de�nition is sensible as the restriction that skel(s) = skel(t) means thatthe measure lists are the same length and may be compared. Although a skeletonindependent measure would be desirable there is a deeper reason for this restriction:our order would not be stable without it. As a simple example, consider the termss = X + s(s(Y )) " and t = s(X) + Y ) ". If we ignore the skeleton restriction andjust compare annotation measures then s � t. However, under the substitution� = fX= s(s(a)) "g we have �(t) � �(s). We will shortly show the stability of ourmore restricted ordering.Given the well-foundedness of > on the natural numbers and that lexicographiccombinations of well-founded orders are well-founded we can conclude:THEOREM 7. The composite ordering is well-founded.5.2. Multiple Wave-holesWe now generalize our order to multi-hole annotation; that is, multiple wave-holesin a single wave-front. Wave-rules involving such terms are called multi-wave-rulesin [6]. We have already seen an example of this in (6). The binomial equation isanother example.binom( s(X) "; s(Y ) ") = binom(X; s(Y ) ") + binom(X; Y ) " (13)Both sides have the same skeleton, namely fbinom(X; Y )g. In general, however,the skeletons of the right-hand side of a multi-wave-rule need only be a subset ofthe skeletons of the left-hand side.We de�ne orders for terms with multi-hole annotation in a uniform way fromthe previous single hole ordering by reducing terms with multi-hole annotation tosets of simply annotated terms and extending the single hole ordering to these sets.This reduction is accomplished by considering ways that multi-hole annotation canbe weakened to simple annotation by \absorbing" wave-holes. Weakening a multi-wave term like (13) erases some of the wave-holes (underlining) though alwaysfinal.tex; 17/05/1995; 13:26; no v.; p.20



20 David Basin and Toby Walshleaving at least one wave-hole. By erasing a wave-hole ti we mean removing theunderline annotation and erasing any further annotation in ti. A wave-front ismaximally weak when it has exactly one wave-hole. A term is maximally weakwhen all its wave-fronts are maximally weak. Maximally weak terms are simplyannotated and we can apply the previously de�ned single hole measure to them.Returning to the binomial example, (13) has precisely two weakenings.binom( s(X) "; s(Y ) ") = binom(X; s(Y ) ") + binom(X; Y ) " (14)binom( s(X) "; s(Y ) ") = binom(X; s(Y )) + binom(X; Y ) " (15)Both are maximally weak as each wave-front has a single hole. As another example,the left-hand side of (6) has four maximal weakenings (and four non-maximalweakenings) whilst the right-hand side has two weakenings, both maximal.Let weakenings(s) be the set of maximal weakenings of s. It is easily computedby constructing the closure of all weakenings of s and returning the set of simplyannotated results. As elements of these sets are simply annotated, we can applythe single hole measure to them. A natural order to de�ne on such sets is thereforethe multi-set extension of the order used to compare simply annotated terms. Amulti-set extension of an ordering is de�ned as follows [11].DEFINITION 12. A multi-set ordering >> is induced from a given ordering >wherebyM >> N i� N can be obtained fromM by replacing one or more elementsin M by any �nite number of elements each of which is smaller (under >) thanone of the replaced elements.We extend the single hole ordering to multi-hole annotated terms as follows.DEFINITION 13. l �? r i� weakenings(l) �� weakenings(r) where �� is themulti-set extension of the single hole order �.This order is well-de�ned as maximal weakenings are simply annotated and canbe compared using the single hole order. Note that if l and r are simply annotatedthen their weakenings are flg and frg, and l �? r and l � r are equivalent. Wewill drop the superscript on �? when context makes our intention clear.As an example consider (13). The LHS weakenings arefbinom( s(X) "; s(Y ) ")g :The RHS weakenings aref binom(X; s(Y ) ") + binom(X; Y ) "; binom(X + s(Y )) + binom(X; Y ) "g :final.tex; 17/05/1995; 13:26; no v.; p.21



A Calculus for and Termination of Rippling 21The only member of the �rst set is �-greater than both members of the secondset. This wave-rule is thus measure decreasing.5.3. Termination under �?Since �? is de�ned via a multi-set extension of a well-founded order it too iswell-founded.LEMMA 3. �? is well-founded.We now show that �? is monotonic and stable. To simplify proofs, we ignorecomplications caused by inwards oriented wave-fronts. Reincorporating these isconceptually simple but notationally involved since measures expand to pairs.As measures are lists, term replacement corresponds to operations on lists.Hence we begin with relevant terminology. Let l and r be list of integers and l+ rand l � r be componentwise addition and subtraction. When one list is shorterthan the other, we \pad" it out by appending additional 0s to the end so that itslength is the same as the longer. For n a natural number, let l "n be the result of\right shifting" l by n positions by appending l to the end of the list containing nzeros. If the length of l is n+ 1, then for any d 2 f0; : : : ; ng we de�ne the splice ofr into l at depth d, which we write as l +d r, to be l + (r "d). Splicing can resultin a longer list; for example, if l = [l0; l1; l2; l3] and r = [r0; r1; r2], thenl +2 r = l + (r"2) = [l0; l1; l2; l3] + [0; 0; r0; r1; r2] = [l0; l1; l2 + r0; l3+ r1; r2]:We will use some simple properties about splice and list arithmetic below.LEMMA 4. Let l and l0 be lists of length i+ 1 and l >revlex l0. Let r; r1; : : : ; rk belists of length j + 1 then1. 8d 2 f0; : : : ; jg: r >revlex r +d l0 � l2. 8d 2 f0; : : : ; ig: l +d r >revlex l0 +d r3. 8d1; : : : ; dm 2 f0; : : : ; ig: (: : :((l +d1 r1) +d2 r2) : : :+dm rl) >revlex (: : :((l0 +d1r1) +d2 r2) : : : +dm rl)The �rst lemma says we can splice in the di�erence between l0 and l where l >revlexl0 and the result will be smaller. The second says we can splice a list r into l andl0 and preserve the ordering of l and l0. The third lemma is essentially an iteratedversion of the second for performing multiple splices with di�erent lists at multiplepositions. We use these results to prove theorems about stability and monotonicityas such theorems can be seen as statements about splicing measures.LEMMA 5. �? is monotonic with respect to wats.final.tex; 17/05/1995; 13:26; no v.; p.22



22 David Basin and Toby WalshProof. (sketch) Let s[l] be a term with a distinguished subterm l. Note thatif l � r then l must be annotated. We argue by cases. Suppose �rst that s, l,and r are simply annotated. Let ml = MO(l) be the measure of l; similarly letmr =MO(r) and ms =MO(s). Let d be the depth of l in the skeleton of s. Themeasure of s[r] is the measure of s altered by splicing at depth d the di�erencebetween the measures of r and l, i.e.,ms+d (mr�ml). Since l � r we can conclude,using the �rst part of Lemma 4, that s[l] �? s[r].Now suppose l and r contain multi-hole annotation and the only multi-holeannotation in s[l] occurs in l itself. Let the maximal weakenings of l and r be thesets L = fl1; : : : ; ljg and R = fr1; : : : ; rkg respectively. The maximal weakenings ofs[l] and s[r] then are the sets Sl = fs[l1]; : : : ; s[lj]g and Sr = fs[r1]; : : : ; s[rk]g. Nowunder the de�nition of �? and multi-sets, l �? r if we can replace some collectionof the li 2 L by smaller elements (under �) resulting in the set R. But we can dothe identical replacements in the context s[:] hence transforming the set Sl to Sr.Consider such a replacement, say replacing l1 2 L by r1; : : : ; rp; now l1 � ri and itfollows (by the previously considered case) that s[l1] � s[ri] for each i 2 f1; : : : ; pg.Hence the transformation of Sl to Sr shows that s[l] �? s[r].The �nal case to consider is when s itself has multiple skeletons, independentof the number of skeletons of l. We argue as above except that rather than justcomparing sets composed from s[li] and s[ri] we have to consider weakings of s aswell. But any steps in weakening s (not in the subterm l) can be made identicallyin both s[li] and s[ri] and s[l] �? s[r] follows.LEMMA 6. �? is stable with respect to wats.Proof. (sketch) Let s and t be wats with s �? t. To show that �(s) �? �(t) itsu�ces to consider a substitution � that replaces a single variable x with a wat rsince substitution for multiple variables can be achieved by iterating substitutionsfor single variables. We consider two cases: �rst, when s, t are simply annotated,and second, when they may contain multi-hole wave-fronts.Case 1: s and t are simply annotated. As s � t, both is terms have the samesingle skeleton. Note that substitutions for occurrences of x in wave-fronts have noe�ect on our width measure (although they can change the size of a wave-front).Assume x occurs p times in each skeleton. If weakenings(r) = fr1; : : : ; rmg thenS = weakenings(�(s)) = fs1; : : : ; sngand T = weakenings(�(t)) = ft1; : : : ; tngwhere n = p �m. Each of these weakenings can be constructed by replacing thevariables x in s and t with maximal weakenings of r; each si thus has a \partner"ti in which the occurrences of x are replaced by the same weakening of r. Nowto show that S is greater than T under the multi-set ordering we must give atransformation of S to T where each term is replaced by a �nite number of smallerfinal.tex; 17/05/1995; 13:26; no v.; p.23



A Calculus for and Termination of Rippling 23(under �) terms. Our transformation is simply to replace si by its partner ti. Ifwe order (arbitrarily) the occurrences of x in the skeleton of s (and therefore alsot), x1; : : : ; xp, then if si and ti were formed by replacing xj , occurring at depth djwith a weakening of t that has a measure rj , then the measures of the two termssi and ti are (: : : ((s +d1 r1) +d2 r2) : : : +dp rp)and (: : :((t +d1 r1) +d2 r2) : : : +dp rp)respectively. But now, using part 3 of Lemma 4 we have that the former is greaterunder >revlex than the latter, hence �(l) � �(r).Case 2: all terms may contain multi-hole annotation. Let S = fs1; : : : ; sjg andT = ft1; : : : ; tkg be the maximal weakenings of s and t. As s �? t, there is atransformation (respecting �) of S to T . We must construct a transformationfrom the maximal weakenings of �(s) to the maximal weakenings of �(t). Weproceed as follows. Consider a replacement of, say, s1 in S with some t1; : : : ; tpthat takes place in transforming S to T . Now suppose the maximal weakeningsof r are fr1; : : : ; rmg then �(s1) and the �(ti) each have n maximal weakeningswhere n is a multiple of m dependent on the number of occurrences of x in theskeleton of s1. In particular, weakenings(�(s1)) = fs1;1; : : : ; s1;ng and for each ti,weakenings(�(ti)) = fti;1; : : : ; ti;ng. Again we may speak of \partners": each s1;jhas as partners ti;j , for i 2 f1; : : : ; pg and j 2 f1; : : : ; ng where the weakeningsof ti;j come from weakening the occurrences t identically to their weakenings ins1;j . Furthermore, because for each i 2 f1; : : : ; pg, s1 � ti, we can use case 1 toconclude that each maximal weakening of �(s1) is larger than its partners. Hencereplacing each s1;i with its partners de�nes an appropriate transformation fromweakenings(�(s)) to weakenings(�(t)).As �? is an annotation reduction ordering we can conclude:THEOREM 8. Rippling using proper rewrite rules l! r for which l �? r is ter-minating. 6. Implementing RipplingWe have completed our development of a calculus for rippling and terminationorderings for annotated terms. We now consider the more practical problem ofmechanizing such a calculus. In particular, given an ordering, how do we thenrecognize wave-rules and apply them? We have implemented the rewrite calculusdescribed and here we indicate how the simplicity of our calculus and orderings ledto a simple implementation, which now comprises part of the Edinburgh CLAMfinal.tex; 17/05/1995; 13:26; no v.; p.24



24 David Basin and Toby Walshsystem. To give the reader a feel for this, and the issues involved, we brie
y sketcha couple of the core routines.Much of the work in implementing rippling concerns turning unannotated rewriterules into wave-rules; we call this wave-rule parsing. A wave-rule parser must, giv-en unannotated rewrite rules, return wave-rules, that is a collection of annotatedcopies of the rule that are proper rewrite rules and measure decreasing. We canachieve the requirements of proper annotation and measure decreasingness sepa-rately. An annotation phase �rst annotates l and r with unoriented wave-fronts sotheir skeletons are identical; this guarantees that rippling is skeleton preserving.An orientation phase then orients the wave-fronts with up and down arrows sothat l � r. We sum this up by the sloganWAVE-RULE = ANNOTATION + ORIENTATION :As an example, consider parsing a rewrite rule likes(U)� V ! (U � V ) + V : (16)We may proceed by annotating this so the two sides have identical skeletons, i.e.,s(U) � V ! (U � V ) + V : (17)Afterwards we can orient the annotation yielding the wave-rule,s(U) " � V ! (U � V ) + V " : (18)Both sides of (12) now have the same skeleton and the measure of the left-handside is greater than that of the right-hand side.Any implementation, however, must cope with the problem that under ourde�nition of wave-rules, a given rewrite rule can generate exponentially many (inthe size of the input rule) wave-rules. Computing and storing all possible wave-rulesis expensive both in time and space and complicates e�cient wave-rule lookup. Forexample, in the previous example, there are other possible legal parsing such as:s(U)� V " ! U � V + V # (19)s(U)� V " ! U � V + V # (20)s(U)� V " ! U � V + V # (21)These additional parsings are problematic; while they are not really in the\spirit" of wave-rules as originally proposed by [6] (nor admissible under theirde�nition), and are seldomly useful in practice, they are admissible under our moreliberal de�nition and on occasion �nd use in, for example, wave-front normalizationfinal.tex; 17/05/1995; 13:26; no v.; p.25



A Calculus for and Termination of Rippling 25rewrite(T,NT) :- % rewrite at some term positionsubterm(Pos,T,ST), % find a subterm ST in Tpick_rule(L,R), % pick a rule L -> Rmatch_rule(L,R,ST,NR), % can rule be annotated to match STreplace(Pos,T,NR). % replace subtern ST with NRmatch_rule(L,R,ST,NR) :-copy_an(ST,L,AL), % copy annotation from ST onto Lamatch(AL,ST,Sigma), % annotated match of AL with STparse(AL,R,AR), % find annotations for Rapply_subs(Sigma,AR,NR). % apply substitution to ARparse(AL,R,AR) :-pick_an(R,A), % annotate Rskel_preserving(AL,A), % skeletons equal?orient(AL,A,AR). % Orient RFig. 3. Wave-rule parser (Top Level Routines)(we discuss this in x7.1). Rather than trying to say in advance which wave-rulescould be useful in practice, our solution to this problem is to compute wave-rulesdynamically, by parsing \on demand". We describe this in the following section.6.1. Dynamic Wave-rule ParsingWe have implemented a dynamic parser that, given a data-base of unannotatedrewrite rule, uses them for rippling by annotating them only as required duringrewriting. That is, given a term s[t] to be rewritten, we look for an unannotated rulel! r where l matches the erasure of t. When this is the case, l ! r is a candidatewave-rule. We proceed by computing annotations for l that allow for an annotatedmatch with t; afterwards, based on these annotations and their orientations, wecompute annotations and orientations for r so that l! r is a wave-rule.Figure 3 contains the actual Prolog (we assume the reader is familiar withProlog in the following) that implements the top level \architecture" of ripplingbased on dynamic parsing. We illustrate the procedure through an example. Sup-pose we wish to perform one step of rewriting of the term T = s(x) " � s(y) "using a collection of unannotated rewrite rules that includes (16), the recursivede�nition of multiplication. Rewrite picks a subterm ST of T and a rule L! R.In our example, a solution to this (there may be others which are returned onbacktracking) is where ST is T itself and the rule selected is (16). In dynamicparsing we need only generate annotations for the right-hand sides of wave-ruleswhose left-hand sides arise during the proof. This is performed in match_rulewhich starts by copying annotations from ST onto L; this yields AL, an anno-final.tex; 17/05/1995; 13:26; no v.; p.26



26 David Basin and Toby Walshtated version of L. Copying annotation fails if ST and L have erasures whichdo not match. In our example, AL = s(U) � V . We then annotated match ALwith ST to �nd a suitable substitution for the rewriting step. In our example, weget the substitution fU=x; V= s(y) " g. After, we call parse to �nd an annotationof R with the same skeleton as AL, and with a maximum2 orientation, in thiscase (U � V ) + V ". We then apply the substitution to this annotated right-handside, giving (x� s(y) ") + s(y) ". Note that substitution application uses our newnotion of subterm replacement (from x4). Here, regular substitution would gen-erate an improperly annotated term. The �nal step in rewriting is to replace therewritten subterm within the context of the superterm from which it came, againusing our new notion of subterm replacement.The supporting subroutines for parsing are fairly straightforward. We used gen-erate (pick_an) and test (skel_preserving) to generate skeleton preserving anno-tations of the right-hand side of rewrite rules. This takes exponential time but thee�ciency can be considerably improved by interleaving generation and testing (i.e.,testing during generation) or via dynamic programming. A dynamic programmingapproach to such di�erence matching problems is described in [1]. In our experi-ence, naive generate and test has acceptable performance.The routine orient �nds an orientation of the wave-fronts on the right-handside that yields a measure smaller than the left-hand side. This can be implementednaively by generating orientations (there are two possibilities for each wave-front)and comparing the two sides of the proposed rule under the given measure. Bycomparing possible orientations against each other, we can return the maximumpossible right-hand side orientations. As with annotation, there are algorithms toimplement orientation more e�ciently. In particular when all annotation is simple(single wave-holes) it is possible to orient the right-hand side in linear time (in thesize of the term). An algorithm for this is given in [2].6.2. Sinks and ColoursOne kind of annotation we have not discussed in our measures or parsing is sinks.This is deliberate as we can safely ignore sinks in both the measure and the parser.Sinks only serve to decrease the applicability of wave-rules by creating additionalpreconditions; that is, we only ripple inwards if there is a sink underneath the wave-front. Hence sinks decrease the search space of rippling and termination withoutthis restriction implies termination with this restriction. The value of sinks is theyrestrict search without reducing the utility of rippling: their use guides rippling ina way that allows the induction hypothesis to be successfully applied.2 Maximum under our order. When there are multiple choices with the same measure we returnthem all on backtracking. final.tex; 17/05/1995; 13:26; no v.; p.27



A Calculus for and Termination of Rippling 27Another type of annotation introduced in [17] are wave-holes marked withcolours. Di�erent colours are used to distinguish di�erent skeletons. Colours areuseful in inductive proofs with multiple induction hypotheses (for example, induc-tions on binary trees). The motivation behind the introduction of colours is thatrippling only preserves a subset of the skeletons, and colours helps prevent us end-ing up with the wrong subset. Since coloured rippling is a restriction of uncolouredrippling, termination follows immediately from termination in the uncoloured case.Colours thus increase the utility of rippling. Although colours are not needed forshowing the termination of rippling, they actually played an implicit role in ourdiscussion about termination. The reduction order de�ned in x5 compares the mea-sures of di�erent colours separately. Since each colour has a single skeleton, andthe measure is stable for single skeletons, the resulting order is stable.7. Extensions to RipplingOur de�nition of wave-rules is parameterized by a reduction ordering. This givesus 
exibility in exploring new orderings and hence new applications for rippling.To illustrate this potential, we give two examples for inductive and non-inductivetheorem proving. The �rst highlights a problem occurring in induction: duringrippling we may need to normalize the contents of wave-fronts when rippling getsstuck. The second explores orderings useful for algebraic problem solving.7.1. UnblockingHere we consider new reduction orderings motivated by unblocking rippling. Thatis, sometimes rippling fails because no wave-rule is applicable, but not all wave-fronts have been moved \out of the way" (to the root of the term or to sinks). Thiscan occur because a lemma is needed; these missing wave-rules can sometimes bespeculated automatically using techniques presented by Ireland and Bundy in [15].Rippling can also become blocked simply because a wave-front itself needs to berewritten so that it matches either an existing wave-rule (to allow further rippling)or a sink (to allow use of the induction hypothesis). This is best illustrated by anexample taken from [6].Consider the following theorem, where rev is naive reverse, qrev is tail-recursivereverse using an accumulator, <> is in�x append, and :: in�x cons.8L;M: qrev(L;M) = rev(L) <> M (22)We proceed by induction on L. The induction hypothesis isqrev(l;M) = rev(l) <> Mwhere M is a universally quanti�ed variable. The induction conclusion isqrev( h :: l "; bmc) = rev( h :: l ") <> bmc (23)final.tex; 17/05/1995; 13:26; no v.; p.28



28 David Basin and Toby Walshwhere m is a skolem constant which sits in a sink, annotated with \b c".We use wave-rules taken from the recursive de�nition of qrev, and rev.rev( H :: T ") ! rev(T ) <> (H :: nil) " (24)qrev( H :: T "; L) ! qrev(T; H :: L #) (25)On the LHS, we ripple with (25) to giveqrev(l; � h ::m #�) = rev( h :: l ") <> bmc :The sink stays in the same position relative to the skeleton and absorbs the wave-front rippled across by (25). On the RHS, we ripple with (24) and then (8), theassociativity of <>, to getqrev(l; � h ::m #�) = rev(l) <> (� (h :: nil) <> m #�): (26)Again note how the sink has absorbed the wave-front rippled across. Unfortunately,the proof is now blocked. We cannot ripple any further nor apply the inductionhypothesis. The problem is that we need to simplify the wave-front on the right-hand side so that the two sinks become identical. CLAM currently uses an ad-hocmethod to try to perform wave-front simpli�cation when rippling becomes blocked.In this case (26) is rewritten using conventional rewriting toqrev(l; � h ::m #�) = rev(l) <> (� h ::m #�) :Simpli�cation with the induction hypothesis can now occur.Unblocking steps that manipulate just wave-fronts will use proper rewrite rules;for example, here we use another parsing for the recursive de�nition of append.(H :: T ) <> L # ! H :: (T <> L) # (27)In [6] such a rule is not admitted as a wave-rule (see x8). It is also not admissibleunder our ordering �? as �? measures the width of wave-fronts and the right-hand side is wider than the left-hand side. However, both sides have the same size(number of function symbols and constants). If we extend our measure to accountfor the contents of wave-fronts then we can �nd a reduction ordering based on sizeof wave-fronts that includes the above rule.We do this as follows. As before, we give an ordering on simply annotatedterms, which can then be lifted to an order on multi-wave terms. To order simplyannotated terms, we take the lexicographic order of the simple wave-rule measureproposed above (using size of the wave-front as the notion of weight) paired withfinal.tex; 17/05/1995; 13:26; no v.; p.29



A Calculus for and Termination of Rippling 29>wf , an order on the contents of wave-fronts. As a simply annotated term maycontain multiple wave-fronts, this second order is lifted to a measure on sets ofwave-fronts by taking its multi-set extension. The �rst part of the lexicographicordering ensures that anything which is normally measure decreasing remains mea-sure decreasing and the second part allows us to orient rules that only manipulatewave-fronts. This combination can provide a reduction ordering that allows us touse rippling to move wave-fronts about the skeleton and conventional rewriting tomanipulate the contents of these wave-fronts.In our reverse example, (27) doesn't change the size of the wave-front or itsposition but only its form. Hence we want this to be decreasing under some orderingon the contents of wave-fronts. There are many such orderings; here we take >wfto be the recursive path ordering [12] on the terms in the wave-front where <>has a higher precedence than :: and all other function symbols have an equivalentbut lower priority. The measure of the LHS of (27) is now greater than that of theRHS as its wave-front is (H :: T ) <> � which is greater than H :: (T <> �) in therecursive path ordering (to convert wave-fronts into well-formed terms, wave-holesare marked with the new symbol *).Unblocking steps which simplify wave-fronts are useful in many proofs enablingboth immediate application of the induction hypothesis (as in this example) andcontinued rippling. By de�ning new orders we can combine rippling with conven-tional term rewriting so that rules to rewrite wave-fronts are measure decreasingwave-rules accepted by the parser and applied like other wave-rules.7.2. Algebraic Problem SolvingRippling has found several novel uses besides inductive theorem proving. For exam-ple, it has been used to sum series [16], to prove limit theorems [17], and guideequational reasoning [10]. However, new domains, especially non-inductive ones,require new orderings to guide proof construction. Here we sketch an applicationbased on the PRESS system [9].3 To solve algebraic equations, PRESS uses a set ofmethods which apply rewrite rules. The three main methods are: isolation, collec-tion, and attraction. Below are examples of rewrite rules used by these methods.ATTRACTION : log(U) + log(V ) " ! log(U � V ) "COLLECTION : U � U " ! U2 "ISOLATION : U2 " = V ! U = �pV #PRESS uses preconditions and not annotation to determine rewrite rule appli-cability. Attraction must bring occurrences of unknowns closer together. Collectionmust reduce the number of occurrences of unknowns. Finally, isolation must make3 The idea of reconstructing PRESS with rippling was suggested by Nick Free and Alan Bundy.final.tex; 17/05/1995; 13:26; no v.; p.30



30 David Basin and Toby Walshprogress towards isolating unknowns on the LHS of the equation. These require-ments can be captured by annotation and PRESS can thus be implemented byrippling. The above wave-rules suggest how this would work. The wave-rules inPRESS are structure preserving, where the preserved structure is the unknowns.The ordering used re
ects the well-founded progress achieved by the PRESS meth-ods. Namely, we lexicographically combine orderings on the number of wave-holesfor collection, their distance (shortest path between wave-holes in term tree) forattraction, and our width measure on annotation weight for isolation.8. Related Work8.1. CLAMOur starting point is rippling as developed at Edinburgh and implemented in theCLAM proof planning system. Our results improve those presented in [6] in anumber of respects.To begin with, rippling as described in [6] is not a rewriting calculus. Rather itis implemented by �rst-order rewriting with the strong precondition that \...eachwave-front in the expression [being rewritten] is matched with a wave-front of thesame kind in the rule" (De�nition 5, page 222). Saying this another way, variablesin wave-rules cannot be instantiated with annotated terms. This is su�cient forrippling to be structure preserving and terminating, but it is an unacceptably largerestriction on the applicability of rippling. Indeed, under this restriction, not allof the examples in [6] are valid. For example (see page 222) we cannot rewrite theimmediate subterm of even( s( s(x) ") " + y)with the recursive de�nition of plus given by s(U) "+V ! s(U + V ) ", since theleft-hand side of this wave-rule is s(U) " + V and there is an extra wave-front inthe subterm being rewritten.Rippling was implemented in the CLAM system without the above restrictionand it su�ered from the problems described in x3 that arise when �rst-order rewrit-ing is used to implement rippling directly. In particular, ill-formed terms appearedduring rewriting and an auxiliary routine occasionally would \clean-up" annota-tions (e.g., consider the multiplication example given in x3). The CLAM imple-mentation of rippling has been replaced with the calculus and parser describedhere.The measures and orders we give are considerably simpler than those in [6]where the properties of structure preservation and the reduction of a measure areintertwined. Bundy et al. describe wave-rules schematically and show that anyfinal.tex; 17/05/1995; 13:26; no v.; p.31



A Calculus for and Termination of Rippling 31instance of these schemata is skeleton preserving and measure decreasing under anappropriately de�ned measure. Mixing these two properties makes the de�nitionof wave-rules very complex. For example, the simplest kind of wave-rule proposedare longitudinal outward directed wave-rules, de�ned as rules of the form,�( �1(�11; : : : ; �p11 ) "; : : : ; �n(�1n; : : : ; �pnn ) ")! �(�($11; : : : ; $1n); : : : ; �($k1; : : : ; $kn)) "that satisfy a number of side conditions. These include: each $ji is either an unrip-pled wave-front, �i(�1i ; : : : ; �pii ) , or is one of the wave-holes, �li; for each j, at leastone $ji must be a wave-hole. �, the �is, and � are terms with distinguished argu-ments; � may be empty, but the �is and � must not be. There are other schematafor transverse wave-rules and creational wave-rules4. These schemata are combinedin a general format, so complex that in [6] it takes four lines to print. It is notation-ally involved although not conceptually di�cult to demonstrate that any instanceof these schemata is a wave-rule under both our size and width measures.Consider the longitudinal schema given above. Every skeleton on the LHS is askeleton of the RHS because of the constraint on the $ij . What is trickier to seeis that it is measure decreasing. Under our order this is the case if LHS �? RHS.We can show something stronger, namely, for every r 2 weakenings(RHS): 9l 2weakenings(LHS): l � r. To see this observe that any such r must be a maximalweakening ofr0 = �(�($11; : : : ; $1n); : : : ; �($j1; : : : ; $jn); : : :�($k1; : : : ; $kn)) "for some j 2 f1; : : : ; kg. Corresponding to r0 is an l0 which is a weakening of the LHSwhere l0 = �(t1; : : : ; tn) and the ti correspond to the ith subterm of �($j1; : : : ; $jn)in r0: if $ji is an unrippled wave-front then ti = $ji = �i(�1i ; : : : ; �pii ) , and alter-natively if $ji a wave-hole �li then ti = �i(�1i ; : : : ; �li; : : : ; �pii ) . Now r is a maximalweakening of r0 so there is a series of weakening steps from r to r0. Each of theseweakenings occurs in a $ji and we can perform the identical weakening steps inthe corresponding ti in l0 leading to a maximal weakening l. l and r have the sameskeleton and as they are maximally weak they may be compared under �. Theironly di�erences are that r has an additional wave-front at its root and is missinga wave-front at each $ji corresponding to a wave-hole. The depth of $ji is greaterthan the root and at this depth the out-measure of l is greater than r and at allgreater depths they are identical. Hence l � r.4 Creational wave-rules are used to move wave-fronts between the hypotheses and conclusionduring proofs by destructor induction. They complicate rippling in a rather specialized and unin-teresting way. Our measures could be easily generalized to include these.final.tex; 17/05/1995; 13:26; no v.; p.32



32 David Basin and Toby WalshSimilar arguments hold for the other schemata given in [6] and from this wecan conclude that wave-rules acceptable under their de�nition are acceptable underours. Moreover simple examples are wave-rules under our formalism but not theirs,e.g., the base-case of addition 0 + x " ! x.8.2. INKAHutter, in [14, 13], describes a calculus for rippling implemented in the INKAsystem [3]. Hutter rigorously develops an algebra of annotated terms, called C-terms. These are terms in an extended signature where functions and variableseach carry a \colour", which represents annotation, or a variable over colours,which restricts potential annotation. Hutter's motivations and developments aresimilar: he de�nes congruence relations corresponding to equality of terms aftererasure, equivalence of skeletons, and develops algorithms to unify and rewriteC-terms that respect these congruences.The calculus he develops is more general than ours. However, it is signi�cant-ly more complex, both conceptually, and in implementation. Wave-fronts can bethought of as contexts. In our calculus we augment the signature only as is requiredto specify these contexts: i.e., we introduce new function symbols so that we maymark the beginning of a context with a wave-front, and the end of the context withwave-holes. In Hutter's calculus, annotation is the primary concept and matchingand rewriting of such terms can be understood independently of contexts.Hutter has not addressed termination in his work. However, with minor restric-tions on his calculus, our results should carry over. For example, we can consider asetting with three colours (indicating skeleton, inwards wave-fronts and outwardswave-fronts) restricted to C-terms which are wats . In this setting we can de�nethe same kinds of well-founded orderings on terms based on annotation relativeto the skeleton. It should be possible to carry over our proofs of stability andmonotonicity in his setting, although we have not formally checked this.9. ConclusionsWe have de�ned a simple calculus for rippling where di�erences between the induc-tion conclusion and the induction hypothesis are marked with annotations andannotated rewrite rules move these di�erences away.We have proved that rewritingin this calculus has various desirable properties: well-formedness (well-annotatedterms rewrite to well-annotated terms), skeleton preservation (the unannotatedpart of terms are preserved), and correctness (the corresponding rewriting canbe performed in the original unannotated theory, i.e. annotation merely guidessearch). We have shown how this calculus admits simple termination orders whichare stable and monotonic. As well as providing a �rmer theoretical foundationfinal.tex; 17/05/1995; 13:26; no v.; p.33
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