
Istituto per la Ricerca Scientifica e TecnologicaI 38100 Trento � Loc. Pant�e di Povo � tel. 0461�314444Telex 400874 ITCRST � Telefax 0461�302040
The Inevitability of Inconsistent AbstractSpacesF. Giunchiglia, T. WalshJune 1990Technical Report # 9006-16Published in Journal of Automated Reasoning, Vol. 11, pp. 23{41, 1993.

Istituto Trentino di Cultura

The Inevitability of Inconsistent AbstractSpaces �Fausto GiunchigliaMechanized Reasoning GroupIRST, Povo, 38100 Trento, ItalyDIST, University of Genoa, Genoa, Italyfausto@irst.itToby WalshDepartment of Arti�cial IntelligenceUniversity of Edinburgh80 South Bridge, EH1 1HN Edinburgh, ScotlandT.Walsh@uk.ac.edinburghSeptember 8, 1992AbstractAbstraction has been widely used in automated deduction; a major prob-lem with its use is that the abstract space can be inconsistent even though theground space is consistent. We show that, under certain very weak conditionstrue of practically all the abstractions used in the past (but true also of amuch wider class of abstractions), this problem cannot be avoided.�This work was begun when the �rst author was at the AI Department of Edinburgh Uni-versity. In Edinburgh, �nancial support to the �rst author was by SERC grant GR/E/4459.8.Financial support to the second author is provided by a SERC PostDoctoral Fellowship. Theresearch described in this paper owes a lot to the openess and sharing of ideas which exists inthe Mathematical Reasoning group in Edinburgh and Mechanized Reasoning group in Trento. Inparticular the authors thank Alan Bundy, Alessandro Cimatti, Craig Knoblock, Luciano Sera�ni,Alex Simpson, for their comments and for their careful reading of many earlier versions of thispaper. 1

1 IntroductionAbstraction has been frequently used in Arti�cial Intelligence and Automated De-duction (eg. problem solving [NSS63], planning [Sac74], theorem proving and logicprogramming [Plu87, Pla81], cognitive modelling/ learning [UR89]), within manydi�erent formal systems (eg. production systems, planning systems, natural de-duction systems, refutation systems). In [GW89a, GW92] we provide a formalframework where all these di�erent applications are interpreted uniformly.The central idea underlying the use of abstraction is that of mapping a representationof a problem, the \ground" representation, onto a new representation, the \abstract"representation; this mapping helps solve the problem in the original search spaceby preserving certain desirable properties and by being simpler to handle. In mostcases the goal is to prove the abstracted theorem and then to use the structureof this proof to help construct a proof of the original theorem. This relies uponthe assumption that the structure of the two proofs is \similar". The class ofabstractions we concentrate on in this paper corresponds exactly to those used inthis way. In [GW92] this and other uses of abstraction are studied in detail.Various researchers have noticed that the abstraction of a consistent set of groundaxioms can be inconsistent [Nil80, Pla80, Ten87]. We call this the \problem ofinconsistent abstract spaces". The aim of this paper is:� to understand what causes the generation of inconsistent abstract spaces. Weshow that inconsistent abstract spaces are generated because the set of theo-rems of the abstract space is a strict superset of the abstraction of the set oftheorems of the ground space.� to study to what extent the problem can be avoided. We show that it is im-possible to guarantee in advance the consistency of the abstract space. Therewill always exist a consistent set of axioms whose abstraction is inconsistent.As a consequence the problem of inconsistent abstract spaces must be dealtwith at runtime.Section 2 informally describes the problem. Section 3 introduces the theory, whilstsection 4 gives the main results. We end in section 5 with some concluding remarks.2 The ProblemIntuitively, the problem of generating an inconsistent abstract space can be describedas follows. Let us suppose we have a set of axioms which constitute the groundtheory. For instance, let us suppose that we have a very simple theory which has2

only one axiom, namely the formula P (a) ^ :P (b). This theory is consistent; thatis, it has a model. Now let us suppose that our abstraction deletes all the argumentsfrom the predicate symbols transforming them into propositional constants. In thisexample the result is the formula P ^:P which is clearly inconsistent (provided thatnegation and conjunction have their \usual meaning"). The informal explanation ofwhy this happens is as follows. In order to build the abstract space \simpler" thanthe ground space, we needed to \forget" some \irrelevant" details, keeping aroundthose details that were judged important. The problem is that the irrelevant lookingdetails may be exactly those that are preserving the theory from being inconsistent,making them rather relevant.This problem occurs with the abstraction used in Abstrips which deletes precon-ditions to Strips operators [Sac74, GW92]. Nilsson, for example, in �gure 8.13 onpage 353 of [Nil80], gives an example where the contradictory facts ON(A;C) andON(C;A) both hold in the abstract space. The problem of inconsistent abstractspaces was also noticed by Plaisted [Pla80, Pla81] and Tenenberg [Ten87, Ten88].In one example, Tenenberg shows how collapsing two predicate names together cangive an inconsistent abstract space. For example, the axiom P (a) ^ :Q(a) mapsonto R(a) ^ :R(a) if the predicate names, P and Q are both abstracted onto R.Both Tenenberg and Plaisted worked in a refutation system; thus the problem isnot an inconsistent abstract space (which a refutation system seeks when trying toprove an abstracted goal) but rather that the abstraction of the axioms without thenegated goal is inconsistent. In such a situation, any abstracted goal can be proven.Worse still, the structure of the abstract proof will often have nothing informativeto say.But is this really so bad? The answer is not immediately obvious. For instanceNilsson, in page 352 of [Nil80], argues that \... A contradictory state descriptionmay result, but this causes no problems. ...". Tenenberg in page 39 of [Ten88] arguesthe contrary, \... once such a situation is reached, there are no constraints on thefuture choice of actions. ...".There is a point behind Nilsson's statement as it is not always worthwhile worry-ing about the consistency of the abstract space. In general, testing consistency isneither decidable nor tractable. Even if the abstract space is inconsistent, the struc-ture of the abstract proof could still be used to guide the search for a proof in theground space. After all, we are always working with �nite resources and many ofthe branches of the proof tree do not use the fact that the theory is inconsistent (eg.they do not use the fact that ? is a theorem and that anything can be derived from?). If the procedure for mapping abstract proofs back onto ground proofs does notuse much information from the abstract space the chances of using inconsistent in-formation are slight. This is what happens in Nilsson's example: no further abstractspaces are generated from the inconsistent abstract space and extensive reasoningis not performed in the abstract space. 3

Besides the theoretical issue, which we think is of substantial importance, we wouldargue that this problem is very important for any implementation that uses ab-straction. The inconsistency of the abstract space is always a bad thing as it meansthat something has gone wrong. The decision to worry about this problem, or toignore it, should be made at runtime, on a case by case basis. It should not be anassumption made in designing the system. Of course, there is in general no guar-antee that abstract proofs will map back onto ground proofs. However, abstractproofs which exploit the inconsistency of the abstract space will never map back.If theorem proving in the abstract space is not suitably restrained, ine�ciency willbe introduced by such false attempts (what Plaisted called \false proofs" [Pla81]);this could make reasoning with abstraction less e�cient than reasoning without ab-straction. If arbitrary theorem proving is allowed in the inconsistent abstract space,any abstract formula is a theorem; none of the formulae which are not theorems inthe ground space are therefore �ltered out. For this reason, theorem proving in aninconsistent abstract space in general provides too little information.3 A Theory of AbstractionThe aim of this section is to provide a formal description of abstraction. The de�ni-tions introduced here characterise all previous abstractions of which we are aware,and give general properties which should be satis�ed by any \useful" abstraction. In[GW89a], we show how Abstrips [Sac74], Plaisted's ordinary and weak abstractions[Pla80], Hobb's granularity [Hob85] and many other types of abstraction �t into thisframework. Many more examples are described in [GW92].3.1 The basic conceptsAn abstraction is de�ned as a mapping between the representations of two problems.We formalise the notion of \representation of a problem" as an axiomatic formalsystem. In other words, we take it to be a set of known facts,
 (the axioms) writtenin a certain language, � (which contains all the well formed formulas) plus a setof inference rules, � (the deductive machinery) which allows us to derive new factsfrom old.De�nition 1 (Formal system) : A formal system � is a triple h�;�;
i, where� is the language,
 is the set of axioms and � is the set of inference rules, calledthe deductive machinery, of �.For the sake of simplicity we restrict ourselves to logical �rst order systems, wherethe logical axioms and logical inference rules are those of any formal system completefor classical �rst order logic, eg. natural deduction, resolution. Even if the results4

presented in the following can be generalised to some signi�cant subsets of �rstorder logic, eg. propositional calculus, intuitionistic logic, we will not deal with thisissue in this paper. As a further simpli�cation we consider those formal systemswith no logical axioms and no theoretic inference rules; the only possible axioms arethe theoretic ones while the only possible inference rules are the logical ones. Thismeans, for instance, that we do not consider Hilbert systems (like those describedin [Men64]) nor systems where the theory is given in terms of inference rules (eg.Peano arithmetics, as given in [Pra71]). These last restrictions are not constrainingas we still capture all the work in abstraction. In addition, they could be lifted bymaking proofs technically more complicated.We can now de�ne an abstraction as a mapping between formal systems.De�nition 2 (Abstraction) : If �1 = h�1;
1;�1i and �2 = h�2;
2;�2i are twoformal systems, an abstraction f is a pair h�1;�2i and a triple of e�ective, totaland surjective functions hf�; f
; f�i such that:f� : �1 ! �2f
 :
1 !
2f� : �1 ! �2Following historical convention [Sac74], we call �1 the ground space and �2 theabstract space. The idea behind the de�nition of abstraction is that, in abstractinga representation of a problem, we chose how to abstract the language, the axioms andthe inference rules. E�ectiveness of the mapping functions is required to guaranteethat the abstract space is generated in a �nite amount of time. Totality allows usto translate any well formed formula (w�, from now on), axiom or inference rule ofthe ground space into the abstract space. Surjectivity guarantees that the abstractspace is completely de�ned by the ground space and the abstraction mapping. Thishypothesis is always satis�ed by the abstractions described in the introduction;moreover it is necessary to make proofs go through. For the sake of brevity, andwherever there is no ambiguity, we will write f(�) instead of f�(�).The use of abstraction considered here is to build an abstract proof and then to mapthis proof back onto a proof in the ground space. Such abstractions should preservecompleteness: if a w� is a theorem of the ground space, then its abstraction is atheorem of the abstract space. We write TH(�) to mean the set of theorems of �,ie. the minimal set of w�s containing the axioms and closed under the inferencerules.De�nition 3 (TI abstractions) : An Abstraction f : �1) �2 is said to be a TIAbstraction i�, for any w� �, if � 2 TH(�1) then f�(�) 2 TH(�2). TI Abstractionsare also called truthful abstractions. 5

\TI" means \Theorem Increasing". Provability is a minimal property which anabstraction should preserve; there is no reason to make your abstract theorem proverincomplete and certainly not in an uncontrolled fashion. Note that TH(�2) containsat least the abstraction of all the theorems of �1. When TH(�2) contains just theabstraction of the theorems of �1 we say that the abstraction is \TC" (meaning\Theorem Constant"). Nearly all the abstractions de�ned in the past are TI andnot TC.Figure 1 describes graphically the behaviour of TI abstractions. In this and the fol-lowing �gure the two boxes represent the sets of w�s belonging to the two languages.The dashed lines show the behaviour of the abstraction mapping. If no dashed linesare shown, then there is no restriction on how a subset of the ground languageis mapped into the respective subset of the abstract language. The dimensions ofboxes and circles are irrelevant.3.2 An ExampleAs an example, we give below a rational reconstruction of the Abstrips abstraction,originally proposed in [Sac74] and proved to be TI in [GW92]. This abstractionhas been chosen for many reasons. First, it is of historical interest, being one ofthe �rst abstractions ever proposed. Second, it is one the most widely used inproblem solving. Finally, if applied in refutation systems (see next section), it isone of the few interesting abstractions which does not fall into any of the classes ofabstractions proposed by Plaisted [Pla80, Pla86, Pla81]. The description given herefollows closely that originally presented in [GW89a] and then extended in [GW92].Abstrips built plans in which operators applied to states of the world and generatednew states. Operators had preconditions, consisting of atomic formulae which hadto be satis�ed for them to be applied. Preconditions were abstracted according toa natural number associated to them, called criticality. The idea was to build ahierarchy of abstract spaces, each level in the hierarchy containing all and only thepreconditions above a given criticality. We write that i 2 crit(�) to mean that thecriticality of the precondition pi is greater than �.To put Abstrips into a theorem proving context we use the situation calculus nota-tion [MH69] and follow Green's \logical reconstruction" of Strips planning [Gre69].The ground space is therefore a situation calculus with a �rst order language, frame,operator and theoretic axioms. Operators are w�s of the form \ 8s: (V1�i�n pi(s)! q(f(s))) " where pi is a precondition, s is a situation, f is some action, and qdescribes the new situation. Goals are w�s of the form \9s r(s)".We can now formalize Abstrips as an abstraction, fAB : �1) �2 where both �1and �2 are �rst order calculi using some set of inference rules complete for �rstorder clasical logic, eg. natural deduction. The mapping on the inference rules, f�6

�1 ����TH(�1)����NTH(�1) �2&%'$����TH(�2)����NTH(�2)--Figure 1: TI abstractions (Truthful abstractions)becomes the identity mapping. f� is de�ned as follows:fAB(�) = �, if � is atomic;fAB(:�) = :fAB(�);fAB(� � �) = fAB(�) � fAB(�), where \�" is \^" or _";fAB(]x:�) =]x:fAB(�), where \]" is \9" or \8";fAB(�! �) = fAB(�)! fAB(�), if \� ! �" is not an operator;fAB(V1�i�n pi(s) ! r) = Vi2crit(�) pi(s) ! fAB(r), for any operator.f
 is de�ned to work the same as f� on the axioms.For example, the operator for going through a doorat(z; x; s) ^ open(door; z; s) ! at(z; x; gothrough(door; z; s)) (1)might abstract to one in which we do not bother to check that the door is open,that is at(z; x; s)! at(z; x; gothrough(door; z; s)) (2)3.3 Preserving InconsistencyIf we are also to capture the use of abstraction in refutation systems, we need tointroduce a new and apparently di�erent class of abstractions; this class of abstrac-tions maps inconsistent systems onto inconsistent systems preserving completeness.An important distinction is between absolute inconsistency (a theory is absolutelyinconsistent i� any w� is provable) and inconsistency (a theory is inconsistent i�there exist a w� � such that both � and :� are provable). The problem of in-consistent abstract spaces therefore arises when the abstract space is absolutelyinconsistent. In classical logic (and in all the cases considered here, see lemma 1below) the two concepts coincide. 7

�1 ����TH(�1)����NTH(�1) �2����TH(�2)����&%'$NTH(�2)--Figure 2: NTI abstractions (Falseful abstractions)We write NTH(�) to mean the minimal set of all the w�s, such that, if added asan assumption, make � inconsistent. The elements of NTH(�) are called nonthe-orems. (Notice that assumptions are not axioms, the di�erence a�ecting the prooftheory only in the case of open formulas. For instance, assumptions, di�erently fromaxioms, in natural deduction may prevent the application of forall introduction andexists elimination [Pra65]. In Hilbert calculi they may cause the non applicabilityof the deduction theorem [Men64]. In resolution the distinction between axiomsand assumptions is irrelevant. As the mapping of the set NTH(�) is importantonly in the case of refutation systems, we will use the word \axiom" and the word\assumption" synonymously.) TH(�) and NTH(�) are obviously related. For in-stance in classical �rst order logics, � 2 NTH(�) i� :� 2 TH(�); � is inconsistenti� TH(�) = NTH(�) = ��. Entirely dual to the class of TI abstractions is thusthe class of NTI abstractions.De�nition 4 (NTI abstractions) : An Abstraction f : �1) �2 is said to be anNTI Abstraction i�, for any w� �, if � 2 NTH(�1) then f�(�) 2 NTH(�2). NTIabstractions are also called falseful abstractions.\NTI" means \NonTheorem Increasing". Figure 2 describes graphically the be-haviour of NTI abstractions. We use the notion of NTC abstraction analogously tothat of TC abstractions.TI and NTI abstractions (from now on we write TI* abstractions to mean eitherclass) coincide under some very weak assumptions captured by the following twode�nitions.De�nition 5 (System with negation) : � is a formal system with negation i�its language contains negation (written \:") and is such that, for any expression �,1. � is a w� i� :� is w�;2. � 2 TH(�) i� :� 2 NTH(�);3. :� 2 TH(�) i� � 2 NTH(�). 8

All the most common �rst order systems (eg. Hilbert systems, all the ND calculi,resolution) are systems with negation. Note that for any \reasonable" system, con-ditions (1) and (2) imply that negation is classical and that, even for intuitionisticnegation, condition (2) implies condition (3).A formal system with negation gives negation its \usual" meaning. A key propertyis that if a system with negation is inconsistent then it is absolutely inconsistent.Lemma 1 : If a system with negation is inconsistent then it is absolutely inconsis-tent.Proof: If � is inconsistent then there exists a w� � such that � 2 TH(�) (`� �)and :� 2 TH(�) (`� :�). This means, by monotonicity, that for all w�s �,:� `� � and :� `� :�. Then for all �, :� 2 NTH(�). Then, from condition 2of de�nition 5 we have that for all w�s �, � 2 TH(�).2De�nition 6 (Negation preserving abstractions) : Let �1 and �2 be two sys-tems such that � is a w� i� :� is. An abstraction f : �1) �2 is negation preservingi�, for any �, f(:�) = :f(�).The concept of a negation preserving abstractions between systems with negationallows us to bridge the gap between TI and NTI abstractions.Theorem 1 : If �1, �2 are two formal systems with negation, then any negationpreserving abstraction f : �1) �2 is a TI abstraction i� it is an NTI abstraction.Proof: We just consider the forward direction, the other direction is analogous.Since �1 is a system with negation, if � 2 NTH(�1) then :� 2 TH(�1). But f isTI. Thus f(:�) 2 TH(�2). As f is negation preserving, :f(�) 2 TH(�2). Fromwhich it follows that f(�) 2 NTH(�2) and that f is NTI. 2The Abstrips abstraction given above is a negation preserving abstraction betweensystems with negation. (Negation preserving) TI* abstractions are a very wide classof abstractions. The only requirement they have is one of completeness: if a w� isprovable (causes inconsistency) in the ground space then so must its abstraction;this is a very weak requirement. There are many other desirable requirements wemay place on an abstraction. For example, there may be constraints on the map-ping functions or on the structure of the proofs [GW92]. Earlier on we said that theinconsistent abstract spaces are generated because some relevant details are forgot-ten. Using this theory of abstraction, we will show that what matters is only the9

impact an abstraction has on provability (or, for refutation systems, inconsistency).Under very weak assumptions, veri�ed by all the abstractions we are aware of, theproblem of inconsistent abstract spaces cannot be avoided as long as we work withTI* abstractions. First, however, we consider how to cope with the fact that theaxioms are often not �xed in advance.3.4 Independence of the AxiomsBy de�ning an abstraction as a pair of formal systems with some mapping functionsbetween them, we �x the ground and abstract spaces. However, in many applicationsthe set of inference rules of the ground space are �xed but the axioms and languagemay vary, depending on the problem. In these cases it is possible to identify thefollowing two steps:� In the �rst (o�-line) step, hf�; f
; f�i are de�ned su�ciently general so thatthey will work for any expected choice of the language and axioms. This canbe achieved by insisting that f� and f
 are de�ned for the most general formalsystem, such that any formal systems we want can be obtained by suitablyrestricting the axioms and language.� In the second (runtime) step, the user applies the abstraction to the particularproblem to be solved by generating the abstract space. This can be achievedby building a new abstraction f 0 obtained from f by restricting f� and f
 tothe particular formal system at hand. f� is usually left unmodi�ed; however,some of the inference rules may no longer be applicable in the (restricted)ground space.To capture the idea of an \abstraction de�ned for the most general formal system"we introduce the notion of \�-abstraction":De�nition 7 (�-abstraction) : Any abstraction f : �1) �2 where �1 is of theform �1 = h�;�;�i is a �-abstraction.Note that the axioms of the ground space of a �-abstraction are the language itselfand therefore that the ground space is absolutely inconsistent. To formalise theconstruction of f 0 out of f , we introduce the notion of
-restriction. (If f : �1 ! �2is a function, then if � � �1, by \f " �" we mean f restricted to apply to �.)De�nition 8 (
-restriction) Let �1 = h�1;
1;�1i, �2 = h�2;
2;�2i be formalsystems and f : �1) �2 be the abstraction hf�; f
; f�i. Let �01 = h�1;
01;�1i,�02 = h�2;
02;�2i where
01 �
1 and
02 �
2. Then f 0 : �01) �02, an
-restriction of f , is the abstraction hf�; f 0
; f�i, where f 0
 = f
 "
01 and
02 is thecodomain of f 0
. 10

In other words, the
-restriction of an abstraction f = hf�; f
; f�i has the samemappings on the language and deductive machinery. Its mapping function on ax-ioms, f 0
, however, is built so that its domain and codomain are a subset of thedomain and codomain of f
 and that f 0
 and f
 agree on all the values where f 0
is de�ned. As a trivial example consider the case where �1 and �2 are both Peanoarithmetics and f�, f
 and f� are the identity function. Then we can construct an
-restriction f 0 simply by taking �01 and �02 to be Peano arithmetics without theaxiom of induction and by taking f 0
 to be de�ned on the new set of axioms.Notice that f 0 is itself an abstraction. Notice also that f is an
-restriction of itself.We write f 0 � f to mean that f 0 is an
-restriction of f .The concept of an
-restriction captures the way abstractions are commonly used:by limiting the set of ground axioms and by then building the abstract space fromthem. In �01 (�02), the language and inference rules could be tailored to �t theaxioms; such an operation is unnecessary both theoretically and implementationallysince the useless parts need never be used.4 The Inevitability of Inconsistency4.1 Some preliminariesAs the abstract space is constructed by applying an abstraction to the ground space,abstraction can be used in two di�erent ways:1. given a particular ground space (or set of spaces), we choose the most suitableabstraction;2. given a particular abstraction (or set of abstractions), we apply it (them) towhatever ground spaces happen to occur.In the �rst case, the application is �xed in advance. This occurs, for instance, inmany areas of mathematical reasoning, where the formal system can be set theory(eg. group theory, geometry, number theory and so on), see for instance [Plu87,GW89b]. In such circumstances, a possible solution to the problem of inconsistentabstract spaces is, given a particular ground space (or class of ground spaces), to �ndabstractions which are proved in advance to construct consistent abstract spaces.This solution is only of theoretical interest as there are few theories whose intrinsicinterest justi�es such a time consuming operation. Moreover it is not obvious thatsuch abstractions are really that \suitable"; the choice of the abstraction dependsoften on the goal to prove and cannot be made in advance.11

The second case is far more interesting since in most applications the user is left freeto choose his own set of axioms. The system is equipped with abstraction(s) whichwork on any possible set of axioms; at runtime, an abstraction is applied to the givenaxioms to generate the abstract space. In the rest of this section, we will concentrateon this second case and prove that with TI*-abstractions it is impossible to avoidinconsistent abstract spaces. In fact, no matter which abstraction you chose, therewill always be a set of axioms (formally, an
-restriction) such that the abstractspace is inconsistent.Before proving the main result we need to prove a lemma which guarantees us thatthe class of abstractions we consider is not empty.Lemma 2 : Let �1 = h�1;�1;�1i be a formal system. Then there exists an ab-straction f : �1) �2 such that:1. all its
-restrictions are TI;2. (at least) one
-restriction is not TC.Proof: The proof is given by constructing an Abstrips abstraction f : �1) �2along the lines of that described in subsection 3.2. We take �1 and �2 to be thelanguage needed to write formula (1) in subsection 3.2. �1 and �2 are taken to benatural deduction. f� (and therefore f
) is de�ned as in subsection 3.2. Moreover,f� is such that the operator described by formula (1) gets translated into the formula(2) and this is the only case where preconditions are dropped. This completelyde�nes f�.Part 1: It is su�cient to show that the fact that an
-restriction of f is TI doesnot depend on the choice of the axioms.Consider the
-restriction fi obtained by considering a given
1i �
1. We provethat fi is TI by showing that, given a deduction tree �1 of �, we can build adeduction tree �2 of f(�) discharging the abstraction of the same assumptions.f(�) is therefore provable in �2 any time � is provable in �1.The proof proceeds by induction on the depth of the ground deduction tree. In thebase case, f applied to the single w� in the tree generates a valid deduction in theabstract space. This single w� can be an assumption or an axiom belonging to
1i.Let us now consider the step case. We use f(�) to mean the tree in �2 constructedfrom a tree, � in �1. Any rule application that is not modus ponens involving anoperator translates unmodi�ed. For an operator application, the following transfor-mation is performed: 12

�V1�i�n pi V1�i�n pi ! qq =) f � �V1�i�n pi�Vi2crit(�) pi Vi2crit(�) pi ! fq)f(q)By the induction hypothesis, and the fact that Vi2crit(�) pi follows from V1�i�n pi bya possibly empty sequence of applications of and elimination, this is a valid abstractdeduction tree which discharges the (abstraction of the) same assumptions as thededuction tree in �1.As it does not depend on the particular
1i we have chosen, this proof can berepeated for all the
-restrictions of f . All the
-restrictions of f are therefore TI.Part 2: Consider the
-restriction obtained by taking
1 to consist only of formula(1) in subsection 3.2 plus the axiom at(z; x; s). Then, formula (2) and at(z; x; s) areaxioms of
2. Therefore, at(z; x; gothrough(door; z; s)) is a theorem of �2 but notof �1.2Lemma 2 demonstrates that the class of the abstractions considered in our maintheorem (see next section) is not empty. What is actually important is that lemma 2is satis�ed by almost all abstractions and, in particular, by all the most importantde�ned in the past. That this is the case can be easily seen by looking at theexamples described in [GW92] (where proofs very similar to that of lemma 2 arecarried through for almost all the examples).The �rst condition of lemma 2 is very important as it allows us to build abstractionswhich can be applied to any set of axioms without losing completeness. This is whatallows us to pre-compile sets of abstractions inside a system.The second condition is also important as it guarantees that the abstraction makesproblem solving easier. Increasing the number of theorems is intrinsic to the wayabstractions throw away details. An
-restriction is TC in only a few isolatedcases. For instance, when the abstraction performs an identity map (eg. in Abstripsabstractions, deleting non-existing preconditions) or when the ground space is in-consistent (eg. �-abstractions which are TI are also TC). For a TC abstraction, thetheorems of the abstract space are exactly the abstractions of the theorems of theground space. Any abstract proof will map back in a proof of the ground theorem.TC abstractions are thus in general too strong; they do not give \simpler" proofsexcept in very special and limited cases. For instance, if f : �1) �2 is a TCabstraction and �1 is undecidable then �2 cannot be decidable. Of course this doesnot mean that TC abstractions are useless; they are often useful, for instance, inchanging the representation of a problem.13

4.2 The main resultWe now give our main result. This shows that inconsistent abstract spaces areinevitable whenever we use TI*-abstractions.Theorem 2 : Let �1 = h�1;�1;�1i and �2 = h�2;
2;�2i be two formal systemswith negation. Let f : �1) �2 be a negation preserving �-abstraction such that allits negation preserving
-restrictions between systems with negation are TI and oneamong them is not TC. Then there exists an
-restriction f 0 : �01) �02 of f suchthat �01 = h�1;
01;�1i is consistent but �02 = h�2;
02;�2i is absolutely inconsistent.Proof: The main steps of the proof are as follows:1. We consider a (consistent) system (�001) such that an appropriate
-restrictionf 00 : �001) �002 is TI but not TC and show that it is a system with negation2. We prove that �002, is a system with negation;3. We prove that f 00 is negation preserving;4. If �002 is absolutely inconsistent we are done, otherwise we build �01 out of �001by adding an axiom, :' such that ' 62 TH(�001) but f(') 2 TH(�002);5. We then construct f 0 : �01) �02, an
-restriction of f , and show that �02 isabsolutely inconsistent.STEP 1: Let's consider a formal system �001 = h�1;
001;�1i, �001 � �1 such that theappropriate
-restriction f 00 is TI but not TC. f 00 and �001 exist because of lemma2. �001 is consistent. If �001 were not then f 00 would be TC. �001 is also a system withnegation. In fact, the following general result holds: if � is a system with negationthen any �� = h�;
�;�i, �� � � is also a system with negation. The proof goes asfollows. The meaning of negation is given by the fact that you can always expressboth a formula and its negation and by the fact that you can use all the relevantinference rules. As we preserve both � and �, we are guaranteed to have a systemwith negation.STEP 2: Let us now consider the
-restriction of f , f 00 : �001) �002, f 00 =hf�; f 00
; f�i, f 00
 = f
 "
001. Remember that all the components of f 00 are surjective,and �002 is thus completely de�ned by �001 and f 00.�002 is also a system with negation. In fact, the following general result holds: if�1 = h�1;
1;�1i and �2 = h�2;
2;�2i are any two systems with negation, f :�1) �2 is an abstraction, f� : ��1) ��2, and f� � f , then ��2 is a system withnegation. The proof goes as follows. As in step 1, ��1 � �1 is a system with14

negation. Since f� � f , then for any component c of �1 (a w�, an axiom or aninference rule) which is also in ��1 we have that f�(c) = f(c). This means thateverything which concerns negation gets translated correctly in ��2. Since f� and fare surjective and total, ��2 contains everything that gives meaning to negation in�2 and nothing more. Anything which is in ��1 and does not concern negation can'tbe translated incorrectly, namely in a way to make ��2 not a system with negation(for instance by adding a w� to TH(��2) and not adding its negation to NTH(��2))since the components of ��2 are taken to be exactly the codomain of the mappingfunctions; we are thus prevented for adding any extra e�ects. If this did not happen,since f� � f , and �2 is a system of negation, there should be components outsidef� which �x everything wrong concerning negation. But this would contradict theassumption that all the parts of f concerning negation are also in f�.STEP 3: f 00 is negation preserving. In fact, if f : �1) �2 is a negation preservingabstraction then any abstraction f� : ��1) ��2, such that f� � f , is a negationpreserving abstraction. The proof goes as follows; for ��1 and ��2, � is a w� i� itsnegation is; this is a corollary of the arguments given in steps 1 and 2. f�'s mappingon the language is just f�. As abstraction functions are total and the language of��1 is precisely �1, we have f�(:�) = :f�(�) for any � 2 ��1.STEP 4: �002 may be either consistent or inconsistent. If �002 is inconsistent we justlet �01 = �001, �02 = �002 and f 0 = f 00 and we are �nished. �001 and �002 are systemswith negation. As �002 is inconsistent it is also absolutely inconsistent (lemma 1).�001 is consistent by construction. f 00 is a negation preserving
-restriction of f byconstruction. f 00 is TI and not TC by step 1.Let's suppose that �002 is consistent.f 00 is TI and not TC. Therefore there exists a w� ' 2 �1 such that f�(') 2 TH(�002)but ' 62 TH(�001). Thus f:f�(')g [
002 is inconsistent but f:'g [
001 is consistent.We now de�ne �01 = h�1;
01;�1i and �02 = h�2;
02;�2i, with
01 = f:'g [
001, and
02 = ff
(:')g [
002.STEP 5: We de�ne f 0 : �01) �02, f 0 = hf�; f 0
; f�i such that:� for any ! 2
001, f 0
(!) = f 00
(!) = f
(!),� f 0
(:') = f
(:')f 0 is exactly what we need. In fact, �01 and �02 are systems with negation (all thearguments given for �001 and �002 apply here as well). �01 is consistent by construction.From its de�nition, f 0 is a negation preserving
-restriction of f . �02 is inconsistentby construction. In fact, since f 0 is an
-restriction of f and TI, from :' 2 TH(�01)it follows that f�(:') 2 TH(�02). Since f 0 is a negation preserving
-restrictionof f we have that :f�(') 2 TH(�02). But f�(') 2 TH(�02), since �02 is a mono-tonic extension of �002. �02 is thus inconsistent (both a formula and its negation are15

derivable) and absolutely inconsistent (being a system with negation, lemma 1).2It is interesting to notice that the proof of theorem 2 is very similar to the way
-restrictions are used within a real system; that is, we build the abstract space byapplying the abstraction function to the ground space.4.3 Further ResultsTheorem 2 demonstrates the inevitability of inconsistent abstract spaces for TIabstractions. We can give identical results for NTI abstractions since any negationpreserving TI abstraction between systems with negation is also a NTI abstraction(theorem 1). In fact, theorem 2 can be generalised to NTI abstractions betweenformal systems which are not systems with negation since, in refutation systems,negation is dealt with inside the system by preserving inconsistency. The proof ofthe inevitability of inconsistent abstract spaces for NTI abstractions is thereforesimpler than the proof for TI abstractions as we need not show that negation ispreserved by the mapping.Theorem 3 : Let �1 = h�1;�1;�1i and �2 = h�2;
2;�2i be two formal systemsand f : �1) �2 a �-abstraction such that all its
-restrictions are NTI and oneamong them is not NTC. Then there exists an
-restriction f 0 : �01) �02 of f suchthat �01 = h�1;
01;�1i is consistent but �02 = h�2;
02;�2i is absolutely inconsistent.Proof[Outline]: We can repeat all the steps of the proof of theorem 2 but withoutworrying about preserving negation, ie. without checking that the systems involvedare with negation and that the functions involved are negation preserving. 2Theorems 2, and 3 tell us that it is impossible to build TI*-abstractions which areguaranteed a priori to give consistent abstract spaces. In order to avoid inconsistentabstract spaces, we might decide to drop the restriction on using TI*-abstractions.Tenenberg advocates such a change in [Ten87]. He proposes a class of abstractionswhich are not TI* and are guaranteed to generate consistent abstract spaces. Theproblem with these abstractions (and all abstractions which are not TI) is thatcompleteness is lost, ie. there are theorems of the ground space which are nottheorems of the abstract space. When the abstract space is used to �nd a proofin the ground space, we consider completeness one property that you do not wantto loose. Of course abstractions can be used in other ways; for instance they canbe used to implement derived inference rules [GG88, GW92], but in these cases, to16

retain completeness, the overall strategy of the theorem prover should be di�erentand not inside the usual \abstraction" tradition.Even accepting the restriction to TI*-abstractions, the request that all the
-restrictions which have a consistent ground space be TI* may seem to be too restric-tive (even if lemma 2 and the following discussion should have convinced the readerthat it is not). This restriction can actually be replaced by a weaker restriction. Tothis end, we will introduce a new notion which shows how the w�s and axioms ofthe ground and abstract spaces are abstracted.De�nition 9 (�/
-invariant abstraction) : Let �1 = h�1;
1;�1i be a formalsystem and f : hf�; f
; f�i, f : �1) �2 be an abstraction, f is said to be �/
-invariant i� f
 is such that f
(!i) = f�(!i), for any !i 2
1, �/
-variant other-wise.An abstraction is �/
-invariant i� the axioms are mapped in the same way asthe w�s. All the abstractions we know of (except the one given in [Ten87]) are�/
-invariant. The Abstrips abstraction de�ned in subsection 3.2 is �/
-invariant.�/
-invariant abstractions are used whenever we do not distinguish between w�sand axioms. This is often the case when the abstraction is not tuned to a particulartheory or when no special constraints are imposed on the abstract space. With�/
-invariant abstractions we can now drop the requirement of theorems 2, and 3that all the
-restrictions are TI abstractions. Instead we require that at least one
-restriction is TI but not TC.Corollary 1 Let �1 = h�1;�1;�1i and �2 = h�2;
2;�2i be two formal systemswith negation. Let f : �1) �2 be a negation preserving �/
-invariant abstractionsuch that there exists a negation preserving
-restriction between systems with nega-tion which is TI but not TC. Then there exists a negation preserving
-restrictionf 0 : �01) �02 of f such that �01 = h�1;
01;�1i is consistent but �02 = h�2;
02;�2i isabsolutely inconsistent.Corollary 2 : Let �1 = h�1;�1;�1i and �2 = h�2;
2;�2i be two formal sys-tems and f : �1) �2 be a �/
-invariant abstraction such that there existsan
-restriction which is NTI but not NTC. Then there exists an
-restrictionf 0 : �01) �02 of f such that �01 = h�1;
01;�1i is consistent but �02 = h�2;
02;�2i isabsolutely inconsistent.Proof[corollary 1. Outline]: The proof is almost identical to that of theorem 2. No-tice that all the
-restrictions of a �/
-invariant abstraction are also �/
-invariant.The main di�erence is that, once we have found the ' that is consistent with theaxioms of �1 but whose abstraction is inconsistent with the axioms of �2 inconsis-tent, we simply add f�(') = f
(') to
001. The resulting f 0 is a TI (but not TC)17

-restriction of f with a consistent ground space and an inconsistent abstract space.2By having f� behave the same way as f
, the e�ects of an abstraction are mademore local, and properties such as being TI* depend on localised factors. It is nottherefore necessary to ask for global properties like that all
-restrictions be TI*.We end by noting that the stronger the abstraction, the greater the chance of gener-ating an inconsistent abstract space. A stronger abstraction will add more theoremsto the abstract space, and will therefore increase the likelihood that one of thesetheorems will introduce inconsistency (that is, there are more formulae with ''sproperty in the proof of theorem 2). This is something that might have been ex-pected and con�rms the intuition that the more details we throw away, the greaterthe risk of generating inconsistent abstract spaces.4.4 Preserving NegationWe have shown in theorem 3 that inconsistent abstract spaces are inevitable forNTI abstractions. To obtain a similar result with TI abstractions (theorem 2) wehad to guarantee that the meaning of negation was preserved. But what if we donot preserve the meaning of negation? Of course, there are in�nitely many ways ofnot preserving negation. However, as we argue in detail in [GW92], to modify thelogic is a very bad idea. Usually it is the theory and not the logic that should beabstracted. Additionally, negation is very critical as it directly links provability toinconsistency. In the rest of this section, we will look at abstractions which do notpreserve negation, and which therefore might not give inconsistent abstract spaces.1. Let's suppose that both the ground and the abstract space have the classicalnatural deduction inference rules. Negation is kept in the language of theabstract space but the relevant inference rules are forgotten; in other words,the reasoning by absurdity inference rule is dropped. The resulting logic is theMinimal logic [Pra71] and, if f� and f
 are the identity functions, then theresulting abstraction is such that any w� mapping into an abstract theorem is atheorem of the ground space (but not vice versa). This is not a TI abstraction.2. Assume the same logic as above but negation is not kept in the abstractlanguage (all the instances of negation are deleted). In particular f(�) =f(:�) = �. ? is kept in the abstract language and, for any inference rule� 2 �1: f�(�) = f�(�1; :::; �n�n+1) = f�(�1); :::; f�(�n)f�(�n+1)18

This last property is called �=�-invariance. Such an abstraction gives anabsolutely inconsistent abstract space. In fact, the inference rule[�]?:�becomes [�]?�and everything can be proved.3. Another interesting example is an abstraction used in GPS [NSS63, NS72] forlogic problems. In this �/�-invariant abstraction, all the logical connectivesare forgotten and a w� is mapped into a tree of atomic w�s; for example,p^(q_r) abstracts to (p; (q; r)). The abstract space is absolutely inconsistent.In fact, by a sequence of (abstractions of) _I and ^E, any w� can be derived.4. Abstraction has been used to plan the unfolding of de�nitions. The UT prover[BT75] is a powerful ND theorem prover developed at the University of Texaswhich uses a local heuristic called peeking to control the expansion of de�ni-tions. De�nitions are only unfolded if they introduce predicate names thatare mentioned in the conclusion of the theorem to be proved. This was gen-eralised to gazing, a global strategy for controlling the unfolding of de�ni-tions [Plu87]. At the heart of gazing is the common currency model; namelythe idea of �nding a common language of concepts between hypotheses andconclusion. After the unfolding the proof can then be completed by logicalinference alone. Gazing constructed the plan of de�nitions to unfold in a hier-archy of abstraction spaces: the predicate space (which we shall consider here)and the function/polarity space (which for lack of space we shall not consider).We can formalise gazing as an abstraction between a �rst order calculus anda propositional calculus. For any w� which is not a de�nition, we forget thearguments of the predicates and throw away negation (Gazing actually workedon sets of propositions which were implicitly disjoined in the conclusion andconjoined in the hypotheses). For a de�nition, we just forget the argumentsof the predicates. This is neither a TI nor a NTI abstraction (Note that anabstraction which deletes all arguments from predicate symbols making theminto propositional constants is both TI and NTI). It does not give a completenor a sound strategy for deciding when to unfold de�nitions; not only doesit sometimes fail to suggest the appropriate de�nitions to unfold, it also cansuggest the wrong de�nitions. See [GW89b] for a longer discussion.19

5 ConclusionsThe generation of inconsistent abstract spaces is quite a well known problem. Theresults presented here are, however, more general: we have shown that inconsistentabstract spaces are generated because the set of abstract theorems is a strict su-perset of the abstraction of the ground theorems. Our results hold for a class ofTI*-abstractions that captures practically all the abstractions used in the past. Ab-stractions throw away details; what is important is the impact this has on provability.The examples of inconsistent abstract spaces identi�ed in the past were restrictedto particular abstractions and particular types of formal systems (eg. Abstrips,Plaisted's abstractions); it was not clear what was the relationship between the dif-ferent examples, even if it was clear that there must be some relation. We haveshown the problem occurs independently of any particular abstraction or formalsystem.The problem of inconsistent abstract spaces cannot be avoided a priori if an arbitraryset of axioms is allowed in the ground space. The best that can be done is to tacklethe problem at runtime by minimizing the ine�ciencies that inconsistent abstractspaces may cause. Thus, when an inconsistent abstract space is generated and we�nd this out, we should exploit this information. One way is to backtrack and build\more interesting" abstract spaces [Ric83]. Another is to try to discover what ledto the inconsistency [Doy86].References[BT75] W.W. Bledsoe and M. Tyson. The UT interactive prover. Technicalreport, Mathematics Department, University of Texas, 1975. ATP-17.[Doy86] R.J. Doyle. Constructing and re�ning causal explanations from an incon-sistent domain theory. In Proc. Fifth National Conference on Arti�cialIntelligence, Philadelphia, PA, 1986. AAAI.[GG88] F. Giunchiglia and E. Giunchiglia. Building complex derived inferencerules: a decider for the class of prenex universal-existential formulas. InProc. 7th European Conference on Arti�cial Intelligence, 1988. Extendedversion available as DAI Research Paper 359, Dept. of Arti�cial Intelli-gence, Edinburgh.[Gre69] C. Green. Application of theorem proving to problem solving. In Proc.1st IJCAI conference, pages 219{239. International Joint Conference onArti�cial Intelligence, 1969. 20

[GW89a] F. Giunchiglia and T. Walsh. Abstract Theorem Proving. In Proc. IJCAI89, 1989. IRST Technical Report 8902-03. Also available as DAI ResearchPaper No 430, University of Edinburgh.[GW89b] F. Giunchiglia and T. Walsh. Theorem Proving with De�nitions. In Proc.of the 7th Conference of the Society for the Study of Arti�cial Intelligenceand Simulation of Behaviour, 1989. Also available as IRST TechnicalReport 8901-03 and DAI Research Paper No 429, Dept. of Arti�cial In-telligence, Edinburgh.[GW92] F. Giunchiglia and T. Walsh. A Theory of Abstraction. To appear in:Arti�cial Intelligence Journal, 1992. Also IRST-Technical Report 9001-14,IRST, Trento, Italy.[Hob85] J.R. Hobbs. Granularity. In Proc. 9th IJCAI conference, pages 432{435.International Joint Conference on Arti�cial Intelligence, 1985.[Men64] E. Mendelson. Introduction to Mathematical Logic. Van Nostrand Rein-hold, 1964.[MH69] J. McCarthy and P. Hayes. Some Philosophical Problems from the Stand-point of Arti�cial Intelligence. In B. Meltzer and D. Michie, editors, Ma-chine Intelligence 4, pages 463{502. Edimburgh University Press, 1969.[Nil80] N.J. Nilsson. Principles of Arti�cial Intelligence. Tioga Publishing Co.,1980.[NS72] A. Newell and H.A. Simon. Human Problem Solving. Prentice-Hall, 1972.[NSS63] A. Newell, J.C. Shaw, and H.A. Simon. Empirical explorations of thelogic theory machine. In Fiegenbaum and Feldman, editors, Computers& Thought, pages 134{152. McGraw-Hill, 1963.[Pla80] D.A. Plaisted. Abstraction mappings in mechanical theorem proving. In5th Conference on Automated Deduction, pages 264{280. Proc. of the 5thConference on Automated Deduction, 1980.[Pla81] D.A. Plaisted. Theorem proving with abstraction. Arti�cial Intelligence,16:47{108, 1981.[Pla86] D.A. Plaisted. Abstraction using generalization functions. In 8th Confer-ence on Automated Deduction, pages 365{376. Proc. of the 8th Conferenceon Automated Deduction, 1986.[Plu87] D. Plummer. Gazing: Controlling the Use of Rewrite Rules. PhD thesis,Dept. of Arti�cial Intelligence, University of Edinburgh, 1987.21

[Pra65] D. Prawitz. Natural Deduction - A proof theoretical study. Almquist andWiksell, Stockholm, 1965.[Pra71] D. Prawitz. Ideas and results in proof theory. In J.E. Fenstad, editor,Proc. 2nd scandinavian logic symposium. North Holland, 1971.[Ric83] E. Rich. Arti�cial Intelligence. McGrew-Hill, New York, 1983.[Sac74] E.D. Sacerdoti. Planning in a hierarchy of abstraction spaces. Arti�cialIntelligence, 5:115{135, 1974.[Ten87] J.D. Tenenberg. Preserving Consistency across Abstraction Mappings. InProc. 10th IJCAI conference, pages 1011{1014. International Joint Con-ference on Arti�cial Intelligence, 1987.[Ten88] J.D. Tenenberg. Abstraction in Planning. PhD thesis, Computer ScienceDepartment, University of Rochster, 1988. Also TR 250.[UR89] A. Unruh and P. Rosenbloom. Abstraction in problem solving and learn-ing. In Proc. 11th IJCAI conference. International Joint Conference onArti�cial Intelligence, 1989.

22

