[IesT

ISTITUTO PER LA RICERCA SCIENTIFICA E TECNOLOGICA

I 38100 TRENTO — Loc. PANTE DI POvOo — TEL. 0461—314444
TELEX 400874 ITCRST — TELEFAX 0461—302040

THE INEVITABILITY OF INCONSISTENT ABSTRACT
SPACES

F. Giunchiglia, T. Walsh

June 1990
Technical Report # 9006-16

Published in Journal of Automated Reasoning, Vol. 11, pp. 23-41, 1993.

T,
1 C

IsTiITUTO TRENTINO DI CULTURA

The Inevitability of Inconsistent Abstract
Spaces *

Fausto Giunchiglia
Mechanized Reasoning Group
IRST, Povo, 38100 Trento, Italy
DIST, University of Genoa, Genoa, Italy
fausto@irst.it

Toby Walsh
Department of Artificial Intelligence
University of Edinburgh
80 South Bridge, EH1 1HN Edinburgh, Scotland
T.Walsh@uk.ac.edinburgh

September 8, 1992

Abstract

Abstraction has been widely used in automated deduction; a major prob-
lem with its use is that the abstract space can be inconsistent even though the
ground space is consistent. We show that, under certain very weak conditions
true of practically all the abstractions used in the past (but true also of a
much wider class of abstractions), this problem cannot be avoided.

*This work was begun when the first author was at the AI Department of Edinburgh Uni-
versity. In Edinburgh, financial support to the first author was by SERC grant GR/E/4459.8.
Financial support to the second author is provided by a SERC PostDoctoral Fellowship. The
research described in this paper owes a lot to the openess and sharing of ideas which exists in
the Mathematical Reasoning group in Edinburgh and Mechanized Reasoning group in Trento. In
particular the authors thank Alan Bundy, Alessandro Cimatti, Craig Knoblock, Luciano Serafini,
Alex Simpson, for their comments and for their careful reading of many earlier versions of this
paper.

1 Introduction

Abstraction has been frequently used in Artificial Intelligence and Automated De-
duction (eg. problem solving [NSS63], planning [Sac74], theorem proving and logic
programming [Plu87, Pla81], cognitive modelling/ learning [UR89]), within many
different formal systems (eg. production systems, planning systems, natural de-
duction systems, refutation systems). In [GW89a, GW92] we provide a formal
framework where all these different applications are interpreted uniformly.

The central idea underlying the use of abstraction is that of mapping a representation
of a problem, the “ground” representation, onto a new representation, the “abstract”
representation; this mapping helps solve the problem in the original search space
by preserving certain desirable properties and by being simpler to handle. In most
cases the goal is to prove the abstracted theorem and then to use the structure
of this proot to help construct a proof of the original theorem. This relies upon
the assumption that the structure of the two proofs is “similar”. The class of
abstractions we concentrate on in this paper corresponds exactly to those used in
this way. In [GW92] this and other uses of abstraction are studied in detail.

Various researchers have noticed that the abstraction of a consistent set of ground
axioms can be inconsistent [Nil80, Pla80, Ten87]. We call this the “problem of
inconsistent abstract spaces”. The aim of this paper is:

o to understand what causes the generation of inconsistent abstract spaces. We
show that inconsistent abstract spaces are generated because the set of theo-
rems of the abstract space is a strict superset of the abstraction of the set of
theorems of the ground space.

o to study to what extent the problem can be avoided. We show that it is im-
possible to guarantee in advance the consistency of the abstract space. There
will always exist a consistent set of axioms whose abstraction is inconsistent.
As a consequence the problem of inconsistent abstract spaces must be dealt
with at runtime.

Section 2 informally describes the problem. Section 3 introduces the theory, whilst
section 4 gives the main results. We end in section 5 with some concluding remarks.

2 The Problem

Intuitively, the problem of generating an inconsistent abstract space can be described
as follows. Let us suppose we have a set of axioms which constitute the ground
theory. For instance, let us suppose that we have a very simple theory which has

only one axiom, namely the formula P(a) A =P(b). This theory is consistent; that
is, it has a model. Now let us suppose that our abstraction deletes all the arguments
from the predicate symbols transforming them into propositional constants. In this
example the result is the formula P A =P which is clearly inconsistent (provided that
negation and conjunction have their “usual meaning”). The informal explanation of
why this happens is as follows. In order to build the abstract space “simpler” than
the ground space, we needed to “forget” some “irrelevant” details, keeping around
those details that were judged important. The problem is that the irrelevant looking
details may be exactly those that are preserving the theory from being inconsistent,
making them rather relevant.

This problem occurs with the abstraction used in Abstrips which deletes precon-
ditions to Strips operators [Sac74, GW92]. Nilsson, for example, in figure 8.13 on
page 353 of [Nil80], gives an example where the contradictory facts ON(A, ') and
ON(C, A) both hold in the abstract space. The problem of inconsistent abstract
spaces was also noticed by Plaisted [Pla80, Pla81] and Tenenberg [Ten87, Ten88].
In one example, Tenenberg shows how collapsing two predicate names together can
give an inconsistent abstract space. For example, the axiom P(a) A =Q(a) maps
onto R(a) A ~R(a) if the predicate names, P and @) are both abstracted onto R.
Both Tenenberg and Plaisted worked in a refutation system; thus the problem is
not an inconsistent abstract space (which a refutation system seeks when trying to
prove an abstracted goal) but rather that the abstraction of the axioms without the
negated goal is inconsistent. In such a situation, any abstracted goal can be proven.
Worse still, the structure of the abstract proof will often have nothing informative
to say.

But is this really so bad? The answer is not immediately obvious. For instance

Nilsson, in page 352 of [Nil80], argues that “... A contradictory state description
may result, but this causes no problems. ...”. Tenenberg in page 39 of [Ten88] argues
the contrary, “... once such a situation is reached, there are no constraints on the

future choice of actions. ...”.

There is a point behind Nilsson’s statement as it is not always worthwhile worry-
ing about the consistency of the abstract space. In general, testing consistency is
neither decidable nor tractable. Even if the abstract space is inconsistent, the struc-
ture of the abstract proof could still be used to guide the search for a proof in the
ground space. After all, we are always working with finite resources and many of
the branches of the proof tree do not use the fact that the theory is inconsistent (eg.
they do not use the fact that L is a theorem and that anything can be derived from
L1). If the procedure for mapping abstract proofs back onto ground proofs does not
use much information from the abstract space the chances of using inconsistent in-
formation are slight. This is what happens in Nilsson’s example: no further abstract
spaces are generated from the inconsistent abstract space and extensive reasoning
is not performed in the abstract space.

Besides the theoretical issue, which we think is of substantial importance, we would
argue that this problem is very important for any implementation that uses ab-
straction. The inconsistency of the abstract space is always a bad thing as it means
that something has gone wrong. The decision to worry about this problem, or to
ignore it, should be made at runtime, on a case by case basis. It should not be an
assumption made in designing the system. Of course, there is in general no guar-
antee that abstract proofs will map back onto ground proofs. However, abstract
proofs which exploit the inconsistency of the abstract space will never map back.
It theorem proving in the abstract space is not suitably restrained, inefficiency will
be introduced by such false attempts (what Plaisted called “false proofs” [Pla81]);
this could make reasoning with abstraction less efficient than reasoning without ab-
straction. If arbitrary theorem proving is allowed in the inconsistent abstract space,
any abstract formula is a theorem; none of the formulae which are not theorems in
the ground space are therefore filtered out. For this reason, theorem proving in an
inconsistent abstract space in general provides too little information.

3 A Theory of Abstraction

The aim of this section is to provide a formal description of abstraction. The defini-
tions introduced here characterise all previous abstractions of which we are aware,
and give general properties which should be satisfied by any “useful” abstraction. In
[GW89a], we show how Abstrips [SacT4], Plaisted’s ordinary and weak abstractions
[P1a80], Hobb’s granularity [Hob85] and many other types of abstraction fit into this
framework. Many more examples are described in [GW92].

3.1 The basic concepts

An abstraction is defined as a mapping between the representations of two problems.
We formalise the notion of “representation of a problem” as an axiomatic formal
system. In other words, we take it to be a set of known facts, € (the axioms) written
in a certain language, A (which contains all the well formed formulas) plus a set
of inference rules, A (the deductive machinery) which allows us to derive new facts
from old.

Definition 1 (Formal system) : A formal system ¥ is a triple (A, A, Q), where
A is the language,) is the set of axioms and A is the set of inference rules, called
the deductive machinery, of 2.

For the sake of simplicity we restrict ourselves to logical first order systems, where
the logical axioms and logical inference rules are those of any formal system complete
for classical first order logic, eg. natural deduction, resolution. Even if the results

presented in the following can be generalised to some significant subsets of first
order logic, eg. propositional calculus, intuitionistic logic, we will not deal with this
issue in this paper. As a further simplification we consider those formal systems
with no logical axioms and no theoretic inference rules; the only possible axioms are
the theoretic ones while the only possible inference rules are the logical ones. This
means, for instance, that we do not consider Hilbert systems (like those described
in [Men64]) nor systems where the theory is given in terms of inference rules (eg.
Peano arithmetics, as given in [Pra7l1]). These last restrictions are not constraining
as we still capture all the work in abstraction. In addition, they could be lifted by
making proofs technically more complicated.

We can now define an abstraction as a mapping between formal systems.

Definition 2 (Abstraction) : [f¥; = (A, Q1, Ay) and ¥y = (A2, Q2, Ay) are two
formal systems, an abstraction f is a pair (¥1,%53) and a triple of effective, total
and surjective functions (fa, fa, fa) such that:

fa AL — A
fa:Q — QO
fa Ay — Ay

Following historical convention [Sac74], we call ¥; the ground space and X the
abstract space. The idea behind the definition of abstraction is that, in abstracting
a representation of a problem, we chose how to abstract the language, the axioms and
the inference rules. Effectiveness of the mapping functions is required to guarantee
that the abstract space is generated in a finite amount of time. Totality allows us
to translate any well formed formula (wff, from now on), axiom or inference rule of
the ground space into the abstract space. Surjectivity guarantees that the abstract
space is completely defined by the ground space and the abstraction mapping. This
hypothesis is always satisfied by the abstractions described in the introduction;
moreover it is necessary to make proofs go through. For the sake of brevity, and
wherever there is no ambiguity, we will write f(«) instead of fa(«).

The use of abstraction considered here is to build an abstract proof and then to map
this proof back onto a proof in the ground space. Such abstractions should preserve
completeness: if a wif is a theorem of the ground space, then its abstraction is a
theorem of the abstract space. We write TH(X) to mean the set of theorems of ¥,
ie. the minimal set of wifs containing the axioms and closed under the inference
rules.

Definition 3 (TI abstractions) : An Abstraction [: 3y = Xy is said to be a TI
Abstraction iff, for any wff o, if « € TH(Xq) then fa(a) € TH(X,). TI Abstractions

are also called truthful abstractions.

“TT” means “Theorem Increasing”. Provability is a minimal property which an
abstraction should preserve; there is no reason to make your abstract theorem prover
incomplete and certainly not in an uncontrolled fashion. Note that T'H(X;) contains
at least the abstraction of all the theorems of ¥;. When T H(X;) contains just the
abstraction of the theorems of ¥; we say that the abstraction is “T'C” (meaning
“Theorem Constant”). Nearly all the abstractions defined in the past are TI and
not TC.

Figure 1 describes graphically the behaviour of TT abstractions. In this and the fol-
lowing figure the two boxes represent the sets of wifs belonging to the two languages.
The dashed lines show the behaviour of the abstraction mapping. If no dashed lines
are shown, then there is no restriction on how a subset of the ground language
is mapped into the respective subset of the abstract language. The dimensions of
boxes and circles are irrelevant.

3.2 An Example

As an example, we give below a rational reconstruction of the Abstrips abstraction,
originally proposed in [Sac74] and proved to be TI in [GW92]. This abstraction
has been chosen for many reasons. First, it is of historical interest, being one of
the first abstractions ever proposed. Second, it is one the most widely used in
problem solving. Finally, if applied in refutation systems (see next section), it is
one of the few interesting abstractions which does not fall into any of the classes of
abstractions proposed by Plaisted [P1a80, Pla86, Pla81]. The description given here
follows closely that originally presented in [GW89a] and then extended in [GW92].

Abstrips built plans in which operators applied to states of the world and generated
new states. Operators had preconditions, consisting of atomic formulae which had
to be satisfied for them to be applied. Preconditions were abstracted according to
a natural number associated to them, called criticality. The idea was to build a
hierarchy of abstract spaces, each level in the hierarchy containing all and only the
preconditions above a given criticality. We write that ¢ € crit(x) to mean that the
criticality of the precondition p; is greater than x.

To put Abstrips into a theorem proving context we use the situation calculus nota-
tion [MH69] and follow Green’s “logical reconstruction” of Strips planning [Gre69].
The ground space is therefore a situation calculus with a first order language, frame,
operator and theoretic axioms. Operators are wifs of the form “ Vs. (Aj<ic, pi(8)
— ¢(f(s))) 7 where p; is a precondition, s is a situation, f is some action, and ¢

describes the new situation. Goals are wifs of the form “Js r(s)”.

We can now formalize Abstrips as an abstraction, fip : X1 = X, where both ¥,
and Y, are first order calculi using some set of inference rules complete for first
order clasical logic, eg. natural deduction. The mapping on the inference rules, fa

A1 A2

_ —] - - — — e - - — = —

TH(X,) Q TH(:)

= | — — — — > - — — — -

NTH(34) Q Q NTH(E,)

Figure 1: T1I abstractions (Truthful abstractions)

becomes the identity mapping. fa is defined as follows:

fap(a) = a, if a is atomic;

—a) = = fap(e);

ao)= fap(a)o fap(B), where “0” is “A” or “V”;

fr.a) = fa. fap(a), where “4” is “3” or “V”;

fapla — 3) = fap(a) — fap(p),if “a — 7 is not an operator;
faB(Mi<i<n Pi(s) — 1) = Niecrity Pi(5) — fap(r), for any operator.
fa is defined to work the same as fy on the axioms.

For example, the operator for going through a door
at(z,xz,s) A open(door, z,5) — at(z,x, gothrough(door, z, s)) (1)

might abstract to one in which we do not bother to check that the door is open,
that is
at(z,x,s) — at(z,x, gothrough(door, z, s)) (2)

3.3 Preserving Inconsistency

If we are also to capture the use of abstraction in refutation systems, we need to
introduce a new and apparently different class of abstractions; this class of abstrac-
tions maps inconsistent systems onto inconsistent systems preserving completeness.
An important distinction is between absolute inconsistency (a theory is absolutely
inconsistent iff any wff is provable) and inconsistency (a theory is inconsistent iff
there exist a wif @ such that both « and -« are provable). The problem of in-
consistent abstract spaces therefore arises when the abstract space is absolutely
inconsistent. In classical logic (and in all the cases considered here, see lemma 1
below) the two concepts coincide.

A1 A2

TH(®,) Q Q TH(X,)
ey ()| (O

Figure 2: NTI abstractions (Falseful abstractions)

We write NTH(Y) to mean the minimal set of all the wifs, such that, if added as
an assumption, make ¥ inconsistent. The elements of NT H(X) are called nonthe-
orems. (Notice that assumptions are not axioms, the difference affecting the proof
theory only in the case of open formulas. For instance, assumptions, differently from
axioms, in natural deduction may prevent the application of forall introduction and
exists elimination [Pra65]. In Hilbert calculi they may cause the non applicability
of the deduction theorem [Men64]. In resolution the distinction between axioms
and assumptions is irrelevant. As the mapping of the set NTH(Y) is important
only in the case of refutation systems, we will use the word “axiom” and the word
“assumption” synonymously.) TH(X) and NT H(X) are obviously related. For in-
stance in classical first order logics, « € NTH(Y) iff ~a € TH(Y); ¥ is inconsistent
ifft TH(Y) = NTH(Y) = Ag. Entirely dual to the class of TI abstractions is thus
the class of NTI abstractions.

Definition 4 (NTT abstractions) : An Abstraction [: 3 = X, is said to be an
NTI Abstraction iff, for any wff o, if « € NTH(X1) then fa(a) € NTH(Xy). NTI

abstractions are also called falseful abstractions.

“NTI” means “NonTheorem Increasing”. Figure 2 describes graphically the be-
haviour of NTT abstractions. We use the notion of NTC abstraction analogously to
that of TC abstractions.

TI and NTI abstractions (from now on we write TT* abstractions to mean either
class) coincide under some very weak assumptions captured by the following two
definitions.

Definition 5 (System with negation) : ¥ is a formal system with negation iff
its language contains negation (written “=7) and is such that, for any expression «,

1. a is a wff iff ~a s wff;
2. a e THY) iff ~a € NTH(Y);
3. na € THXY) iffa e NTH(Y).

All the most common first order systems (eg. Hilbert systems, all the ND calculi,
resolution) are systems with negation. Note that for any “reasonable” system, con-
ditions (1) and (2) imply that negation is classical and that, even for intuitionistic
negation, condition (2) implies condition (3).

A formal system with negation gives negation its “usual” meaning. A key property
is that if a system with negation is inconsistent then it is absolutely inconsistent.

Lemma 1 : If a system with negation is inconsistent then it is absolutely inconsis-
tent.

Proof: If ¥ is inconsistent then there exists a wif a such that o € TH(Y) (Fy «)
and ~a € TH(Y) (Fy —«). This means, by monotonicity, that for all wifs j,
-4 bty aand =3 kg —a. Then for all 8, =5 € NTH(X). Then, from condition 2
of definition 5 we have that for all wifs 5, 3 € TH(X).

a

Definition 6 (Negation preserving abstractions) : Let ¥y and ¥y be two sys-
tems such that « is a wff iff —a is. An abstraction [: X1 = Yg is negation preserving

if, for any a, f(=a) = ~f(a).

The concept of a negation preserving abstractions between systems with negation
allows us to bridge the gap between TI and NTI abstractions.

Theorem 1 : If Y, Xy are two formal systems with negation, then any negation
preserving abstraction f : X = Yo is a TI abstraction iff it is an NTI abstraction.

Proof: We just consider the forward direction, the other direction is analogous.
Since ¥4 is a system with negation, if « € NTH(X,) then ~a € TH(X;). But [is
TI. Thus f(—a) € TH(X2). As f is negation preserving, —f(«) € TH(X;). From
which it follows that f(a) € NTH(X;) and that f is NTL. O

The Abstrips abstraction given above is a negation preserving abstraction between
systems with negation. (Negation preserving) TI* abstractions are a very wide class
of abstractions. The only requirement they have is one of completeness: if a wif is
provable (causes inconsistency) in the ground space then so must its abstraction;
this is a very weak requirement. There are many other desirable requirements we
may place on an abstraction. For example, there may be constraints on the map-
ping functions or on the structure of the proofs [GW92]. Earlier on we said that the
inconsistent abstract spaces are generated because some relevant details are forgot-
ten. Using this theory of abstraction, we will show that what matters is only the

impact an abstraction has on provability (or, for refutation systems, inconsistency).
Under very weak assumptions, verified by all the abstractions we are aware of, the
problem of inconsistent abstract spaces cannot be avoided as long as we work with
TT* abstractions. First, however, we consider how to cope with the fact that the
axioms are often not fixed in advance.

3.4 Independence of the Axioms

By defining an abstraction as a pair of formal systems with some mapping functions
between them, we fix the ground and abstract spaces. However, in many applications
the set of inference rules of the ground space are fixed but the axioms and language
may vary, depending on the problem. In these cases it is possible to identify the
following two steps:

e In the first (off-line) step, (fa, fa, fa) are defined sufficiently general so that
they will work for any expected choice of the language and axioms. This can
be achieved by insisting that f) and fq are defined for the most general formal
system, such that any formal systems we want can be obtained by suitably
restricting the axioms and language.

e In the second (runtime) step, the user applies the abstraction to the particular
problem to be solved by generating the abstract space. This can be achieved
by building a new abstraction f’ obtained from f by restricting f) and fq to
the particular formal system at hand. fa is usually left unmodified; however,
some of the inference rules may no longer be applicable in the (restricted)
ground space.

To capture the idea of an “abstraction defined for the most general formal system”
we introduce the notion of “A-abstraction”:

Definition 7 (A-abstraction) : Any abstraction f : ¥ = Yy where ¥y is of the
form X1 = (A, A, A) is a A-abstraction.

Note that the axioms of the ground space of a A-abstraction are the language itself
and therefore that the ground space is absolutely inconsistent. To formalise the
construction of f’ out of f, we introduce the notion of Q-restriction. (If f: ©; — O,
is a function, then if @ C 01, by “f T ©” we mean f restricted to apply to 0.)

Definition 8 (Q-restriction) Let ¥ = (A1, Q1, A1), ¥y = (A2, Q2, Ag) be formal
systems and f : X1 = Yy be the abstraction (fa, fa, fa). Let ¥ = (A1, Q], A1),
YL o= (Mg, 94, Ag) where Q) € Qq and Q) C Oy, Then f/ @ X = X, an Q-
restriction of f, is the abstraction (fa, f4, fa), where f§ = fao T Q) and Q) is the
codomain of f,.

10

In other words, the Q-restriction of an abstraction f = (fa, fa, fa) has the same
mappings on the language and deductive machinery. Its mapping function on ax-
ioms, f§, however, is built so that its domain and codomain are a subset of the
domain and codomain of fo and that f, and fq agree on all the values where f
is defined. As a trivial example consider the case where 1 and ¥, are both Peano
arithmetics and fx, fo and fa are the identity function. Then we can construct an
Q-restriction [’ simply by taking ¥} and X/ to be Peano arithmetics without the
axiom of induction and by taking fi, to be defined on the new set of axioms.

Notice that f’1is itself an abstraction. Notice also that [is an Q-restriction of itself.
We write f' C f to mean that f’is an Q-restriction of f.

The concept of an -restriction captures the way abstractions are commonly used:
by limiting the set of ground axioms and by then building the abstract space from
them. In ¥} (X)), the language and inference rules could be tailored to fit the
axioms; such an operation is unnecessary both theoretically and implementationally
since the useless parts need never be used.

4 The Inevitability of Inconsistency

4.1 Some preliminaries

As the abstract space is constructed by applying an abstraction to the ground space,
abstraction can be used in two different ways:

1. given a particular ground space (or set of spaces), we choose the most suitable
abstraction;

2. given a particular abstraction (or set of abstractions), we apply it (them) to
whatever ground spaces happen to occur.

In the first case, the application is fixed in advance. This occurs, for instance, in
many areas of mathematical reasoning, where the formal system can be set theory
(eg. group theory, geometry, number theory and so on), see for instance [Plu87,
GW89b]. In such circumstances, a possible solution to the problem of inconsistent
abstract spaces is, given a particular ground space (or class of ground spaces), to find
abstractions which are proved in advance to construct consistent abstract spaces.
This solution is only of theoretical interest as there are few theories whose intrinsic
interest justifies such a time consuming operation. Moreover it is not obvious that
such abstractions are really that “suitable”; the choice of the abstraction depends
often on the goal to prove and cannot be made in advance.

11

The second case is far more interesting since in most applications the user is left free
to choose his own set of axioms. The system is equipped with abstraction(s) which
work on any possible set of axioms; at runtime, an abstraction is applied to the given
axioms to generate the abstract space. In the rest of this section, we will concentrate
on this second case and prove that with TI*-abstractions it is impossible to avoid
inconsistent abstract spaces. In fact, no matter which abstraction you chose, there
will always be a set of axioms (formally, an Q-restriction) such that the abstract
space is inconsistent.

Before proving the main result we need to prove a lemma which guarantees us that
the class of abstractions we consider is not empty.

Lemma 2 : Let ¥; = (A, A1, Ay) be a formal system. Then there exists an ab-
straction f : X, = Xy such that:

1. all its Q-restrictions are TI;

2. (at least) one Q-restriction is not TC.

Proof: The proof is given by constructing an Abstrips abstraction f : ¥y = ¥,
along the lines of that described in subsection 3.2. We take A; and Ay to be the
language needed to write formula (1) in subsection 3.2. Ay and A, are taken to be
natural deduction. fp (and therefore fq) is defined as in subsection 3.2. Moreover,
fa is such that the operator described by formula (1) gets translated into the formula
(2) and this is the only case where preconditions are dropped. This completely
defines fj.

Part 1: It is sufficient to show that the fact that an Q-restriction of f is TI does
not depend on the choice of the axioms.

Consider the Q-restriction f; obtained by considering a given Qy; C Q. We prove
that f; is TI by showing that, given a deduction tree II; of «, we can build a
deduction tree Il of f(«) discharging the abstraction of the same assumptions.
f(3) is therefore provable in ¥y any time 3 is provable in Y.

The proof proceeds by induction on the depth of the ground deduction tree. In the
base case, f applied to the single wif in the tree generates a valid deduction in the
abstract space. This single wif can be an assumption or an axiom belonging to €)y;.

Let us now consider the step case. We use f(II) to mean the tree in ¥y constructed
from a tree, Il in ;. Any rule application that is not modus ponens involving an
operator translates unmodified. For an operator application, the following transfor-
mation is performed:

12

o
A 5 ' A = — —f (/\193”?1‘)
1<i<n Pi 1<i<n Pi g /\iEcrit(ﬁ)pi /\iEcrit(ﬁ)pi — fQ)

1 f(q)

By the induction hypothesis, and the fact that A;c.,i¢() pi follows from A;<;<, pi by
a possibly empty sequence of applications of and elimination, this is a valid abstract
deduction tree which discharges the (abstraction of the) same assumptions as the
deduction tree in .

As it does not depend on the particular €y; we have chosen, this proof can be
repeated for all the Q-restrictions of f. All the Q-restrictions of f are therefore TI.

Part 2: Consider the Q)-restriction obtained by taking £} to consist only of formula
(1) in subsection 3.2 plus the axiom at(z, x, s). Then, formula (2) and at(z, x, s) are
axioms of 2y. Therefore, at(z, x, gothrough(door, z,s)) is a theorem of ¥5 but not

of 21.

O

Lemma 2 demonstrates that the class of the abstractions considered in our main
theorem (see next section) is not empty. What is actually important is that lemma 2
is satisfied by almost all abstractions and, in particular, by all the most important
defined in the past. That this is the case can be easily seen by looking at the
examples described in [GW92] (where proofs very similar to that of lemma 2 are
carried through for almost all the examples).

The first condition of lemma 2 is very important as it allows us to build abstractions
which can be applied to any set of axioms without losing completeness. This is what
allows us to pre-compile sets of abstractions inside a system.

The second condition is also important as it guarantees that the abstraction makes
problem solving easier. Increasing the number of theorems is intrinsic to the way
abstractions throw away details. An Q-restriction is TC in only a few isolated
cases. For instance, when the abstraction performs an identity map (eg. in Abstrips
abstractions, deleting non-existing preconditions) or when the ground space is in-
consistent (eg. A-abstractions which are TT are also TC). For a TC abstraction, the
theorems of the abstract space are exactly the abstractions of the theorems of the
ground space. Any abstract proof will map back in a proot of the ground theorem.
TC abstractions are thus in general too strong; they do not give “simpler” proofs
except in very special and limited cases. For instance, if f : ¥ = Y, is a TC
abstraction and ¥; is undecidable then ¥, cannot be decidable. Of course this does
not mean that TC abstractions are useless; they are often useful, for instance, in
changing the representation of a problem.

13

4.2 The main result

We now give our main result. This shows that inconsistent abstract spaces are
inevitable whenever we use TT*-abstractions.

Theorem 2 : Let ¥ = (A1, A1, Ay) and Xy = (Ag, Qa, Ag) be two formal systems
with negation. Let f: Yy = Yo be a negation preserving A-abstraction such that all
its negation preserving)-restrictions between systems with negation are T1T and one
among them is not TC. Then there exists an Q-restriction f': X = X, of f such
that ¥ = (A1, Q), A1) is consistent but ¥ = (Aq,), Ag) is absolutely inconsistent.

Proof: The main steps of the proof are as follows:

1. We consider a (consistent) system (X7) such that an appropriate Q-restriction
f 3 = 30 is TI but not TC and show that it is a system with negation

2. We prove that X7, is a system with negation;
3. We prove that f” is negation preserving;

4. If X7 is absolutely inconsistent we are done, otherwise we build ¥} out of XY

by adding an axiom, —¢ such that ¢ ¢ TH(X!) but f(p) € TH(XY);

5. We then construct f/: ¥] = ¥, an Q-restriction of f, and show that ¥} is
absolutely inconsistent.

STEP 1: Let’s consider a formal system ¥f = (A1, Q], Ay), ¥ C ¥y such that the
appropriate (-restriction f” is TI but not TC. f” and XY exist because of lemma
2. XY is consistent. If ¥} were not then f” would be TC. XY is also a system with
negation. In fact, the following general result holds: if ¥ is a system with negation
then any ¥* = (A, Q*, A), ¥* C ¥ is also a system with negation. The proof goes as
follows. The meaning of negation is given by the fact that you can always express
both a formula and its negation and by the fact that you can use all the relevant
inference rules. As we preserve both A and A, we are guaranteed to have a system
with negation.

STEP 2: Let us now consider the Q-restriction of f, f” : ¥ = X " =
(fa, fGos fa), £ = fa T Q. Remember that all the components of f” are surjective,
and X7 is thus completely defined by X7 and f”.

Y7 is also a system with negation. In fact, the following general result holds: if
Y1 = (A, Q1,41) and Xy = (A2, Q2, Ay) are any two systems with negation, f :
¥y = Y3 is an abstraction, f* : X7 = X3, and f* C f, then Y3 is a system with
negation. The proof goes as follows. As in step 1, ¥ C Yy is a system with

14

negation. Since f* C f, then for any component ¢ of ¥; (a wff, an axiom or an
inference rule) which is also in X% we have that f*(¢) = f(¢). This means that
everything which concerns negation gets translated correctly in ¥3. Since f* and f
are surjective and total, 33 contains everything that gives meaning to negation in
Y5 and nothing more. Anything which is in ¥} and does not concern negation can’t
be translated incorrectly, namely in a way to make X3 not a system with negation
(for instance by adding a wff to TH(X3) and not adding its negation to NT H(X3))
since the components of 3 are taken to be exactly the codomain of the mapping
functions; we are thus prevented for adding any extra effects. If this did not happen,
since f* C f, and ¥, is a system of negation, there should be components outside
f* which fix everything wrong concerning negation. But this would contradict the
assumption that all the parts of f concerning negation are also in f*.

STEP 3: f” is negation preserving. In fact, if f : ¥; = Y5 is a negation preserving
abstraction then any abstraction f* : X7 = 33, such that f* C f, is a negation
preserving abstraction. The proof goes as follows; for 37 and X3, « is a wif iff its
negation is; this is a corollary of the arguments given in steps 1 and 2. f*’s mapping
on the language is just fy. As abstraction functions are total and the language of
Y3 is precisely Ay, we have fy(—a) = = fy(a) for any a € A7.

STEP 4: Y may be either consistent or inconsistent. If X7 is inconsistent we just
let ¥ = XY, ¥, =37 and f’ = f” and we are finished. X{ and X7 are systems
with negation. As Y is inconsistent it is also absolutely inconsistent (lemma 1).
Y is consistent by construction. f” is a negation preserving)-restriction of f by
construction. f” is TT and not TC by step 1.

Let’s suppose that ¥f is consistent.

f"is TT and not TC. Therefore there exists a wif ¢ € A; such that fa(e) € TH(XY)
but ¢ ¢ TH(XY). Thus {=fa(¢)} U QY is inconsistent but {—p} U Q] is consistent.
We now define ¥f = (A1, Q], Ay) and ¥} = (Ag, @), Ag), with Q] = {—¢} UQY, and
) = {fal-p)r L Q.

STEP 5: We define f': Y] = X, f" = (fa, f§, fa) such that:

e for any w € Qf, fi(w) = fi(w) = fa(w),
o fol—v) = fa(=¥)

I’ is exactly what we need. In fact, ¥] and ¥} are systems with negation (all the
arguments given for XY and X4 apply here as well). X is consistent by construction.
From its definition, f’ is a negation preserving {)-restriction of f. X is inconsistent
by construction. In fact, since f"is an Q-restriction of f and TI, from —p € TH(X))
it follows that fa(—¢) € TH(XY,). Since f’ is a negation preserving -restriction
of f we have that —fr(p) € TH(X,). But fa(p) € TH(YY), since ¥ is a mono-

tonic extension of ¥j. ¥/ is thus inconsistent (both a formula and its negation are

15

derivable) and absolutely inconsistent (being a system with negation, lemma 1).

a

It is interesting to notice that the proof of theorem 2 is very similar to the way
()-restrictions are used within a real system; that is, we build the abstract space by
applying the abstraction function to the ground space.

4.3 Further Results

Theorem 2 demonstrates the inevitability of inconsistent abstract spaces for TI
abstractions. We can give identical results for NTT abstractions since any negation
preserving TT abstraction between systems with negation is also a NTT abstraction
(theorem 1). In fact, theorem 2 can be generalised to NTI abstractions between
formal systems which are not systems with negation since, in refutation systems,
negation is dealt with inside the system by preserving inconsistency. The proof of
the inevitability of inconsistent abstract spaces for NTI abstractions is therefore
simpler than the proof for TI abstractions as we need not show that negation is
preserved by the mapping.

Theorem 3 : Let ¥ = (A1, A1, Ay) and Xy = (Mg, Qa, Ag) be two formal systems
and Y1 = Yy a A-abstraction such that all its Q-restrictions are NTI and one
among them is not NTC. Then there exists an Q-restriction f': ¥ = X, of f such
that ¥ = (A1, Q), A1) is consistent but ¥ = (Aq,), Ag) is absolutely inconsistent.

Proof[Outline]: We can repeat all the steps of the proof of theorem 2 but without
worrying about preserving negation, ie. without checking that the systems involved
are with negation and that the functions involved are negation preserving. O

Theorems 2, and 3 tell us that it is impossible to build TT*-abstractions which are
guaranteed a priori to give consistent abstract spaces. In order to avoid inconsistent
abstract spaces, we might decide to drop the restriction on using TI*-abstractions.
Tenenberg advocates such a change in [Ten87]. He proposes a class of abstractions
which are not TI1* and are guaranteed to generate consistent abstract spaces. The
problem with these abstractions (and all abstractions which are not TI) is that
completeness is lost, te. there are theorems of the ground space which are not
theorems of the abstract space. When the abstract space is used to find a proof
in the ground space, we consider completeness one property that you do not want
to loose. Of course abstractions can be used in other ways; for instance they can
be used to implement derived inference rules [GG88, GW92], but in these cases, to

16

retain completeness, the overall strategy of the theorem prover should be different
and not inside the usual “abstraction” tradition.

Even accepting the restriction to TI*-abstractions, the request that all the Q-
restrictions which have a consistent ground space be TT* may seem to be too restric-
tive (even if lemma 2 and the following discussion should have convinced the reader
that it is not). This restriction can actually be replaced by a weaker restriction. To
this end, we will introduce a new notion which shows how the wifs and axioms of
the ground and abstract spaces are abstracted.

Definition 9 (A/Q-invariant abstraction) : Let X1 = (A1, 1, A1) be a formal
system and [: (fa, fa, fa), [X1 = Xy be an abstraction, [is said to be A/Q-
invariant iff fo is such that fo(w;) = fa(wi), for any w; € Qq1, A/Q-variant other-
wise.

An abstraction is A/Q-invariant iff the axioms are mapped in the same way as
the wifs. All the abstractions we know of (except the one given in [Ten87]) are
A/Q-invariant. The Abstrips abstraction defined in subsection 3.2 is A/Q-invariant.
A/Q-invariant abstractions are used whenever we do not distinguish between wifs
and axioms. This is often the case when the abstraction is not tuned to a particular
theory or when no special constraints are imposed on the abstract space. With
A/Q-invariant abstractions we can now drop the requirement of theorems 2, and 3
that all the Q-restrictions are TI abstractions. Instead we require that at least one
Q-restriction is TT but not TC.

Corollary 1 Let ¥y = (A1, A1, Ay) and Ey = (A2, Qs, Ag) be two formal systems
with negation. Let f: X1 = Xy be a negation preserving A /Q-invariant abstraction
such that there exists a negation preserving S)-restriction between systems with nega-
tion which is TI but not TC. Then there exists a negation preserving Q-restriction
fr X = 3 of fosuch that ¥ = (Aq,Q4, A1) is consistent but ¥ = (Ay, Q5 Ay) is

absolutely inconsistent.

Corollary 2 : Let ¥ = (A1, A1, A1) and Xy = (Ag,Qa, Ag) be two formal sys-
tems and f : X1 = Xy be a A/Q-invariant abstraction such that there exists
an Q-restriction which s NT1 but not NTC. Then there exists an -restriction
fr X = 3 of fosuch that ¥ = (Aq,Q4, A1) is consistent but ¥ = (Ay, Q5 Ay) is

absolutely inconsistent.

Prooffcorollary 1. Outline]: The proof is almost identical to that of theorem 2. No-
tice that all the Q-restrictions of a A/Q-invariant abstraction are also A/Q-invariant.
The main difference is that, once we have found the ¢ that is consistent with the
axioms of »; but whose abstraction is inconsistent with the axioms of ¥, inconsis-
tent, we simply add fa(p) = fa(e) to Q7. The resulting f’ is a TT (but not TC)

17

Q-restriction of f with a consistent ground space and an inconsistent abstract space.
O

By having fp behave the same way as fq, the effects of an abstraction are made
more local, and properties such as being TT* depend on localised factors. It is not
therefore necessary to ask for global properties like that all Q-restrictions be TT*.

We end by noting that the stronger the abstraction, the greater the chance of gener-
ating an inconsistent abstract space. A stronger abstraction will add more theorems
to the abstract space, and will therefore increase the likelihood that one of these
theorems will introduce inconsistency (that is, there are more formulae with ¢’s
property in the proof of theorem 2). This is something that might have been ex-
pected and confirms the intuition that the more details we throw away, the greater
the risk of generating inconsistent abstract spaces.

4.4 Preserving Negation

We have shown in theorem 3 that inconsistent abstract spaces are inevitable for
NTT abstractions. To obtain a similar result with TI abstractions (theorem 2) we
had to guarantee that the meaning of negation was preserved. But what if we do
not preserve the meaning of negation? Of course, there are infinitely many ways of
not preserving negation. However, as we argue in detail in [GW92], to modify the
logic is a very bad idea. Usually it is the theory and not the logic that should be
abstracted. Additionally, negation is very critical as it directly links provability to
inconsistency. In the rest of this section, we will look at abstractions which do not
preserve negation, and which therefore might not give inconsistent abstract spaces.

1. Let’s suppose that both the ground and the abstract space have the classical
natural deduction inference rules. Negation is kept in the language of the
abstract space but the relevant inference rules are forgotten; in other words,
the reasoning by absurdity inference rule is dropped. The resulting logic is the
Minimal logic [Pra7l] and, if fy and fq are the identity functions, then the
resulting abstraction is such that any wif mapping into an abstract theorem is a
theorem of the ground space (but not vice versa). This is not a TT abstraction.

2. Assume the same logic as above but negation is not kept in the abstract
language (all the instances of negation are deleted). In particular f(a) =
f(ma) = a. L is kept in the abstract language and, for any inference rule

5€A1§

Ay .eny Qpy

) _ fA(a1)7 ---,fA(Ozn)

Qpg1 Falcngr)

18

This last property is called A/A-invariance. Such an abstraction gives an
absolutely inconsistent abstract space. In fact, the inference rule

becomes

and everything can be proved.

. Another interesting example is an abstraction used in GPS [NSS63, NS72] for
logic problems. In this A/A-invariant abstraction, all the logical connectives
are forgotten and a wif is mapped into a tree of atomic wifs; for example,
pA(gVr) abstracts to (p, (¢, r)). The abstract space is absolutely inconsistent.
In fact, by a sequence of (abstractions of) VI and AF, any wif can be derived.

. Abstraction has been used to plan the unfolding of definitions. The UT prover
[BT75] is a powerful ND theorem prover developed at the University of Texas
which uses a local heuristic called peeking to control the expansion of defini-
tions. Definitions are only unfolded if they introduce predicate names that
are mentioned in the conclusion of the theorem to be proved. This was gen-
eralised to gazing, a global strategy for controlling the unfolding of defini-
tions [Plu87]. At the heart of gazing is the common currency model; namely
the idea of finding a common language of concepts between hypotheses and
conclusion. After the unfolding the proof can then be completed by logical
inference alone. Gazing constructed the plan of definitions to unfold in a hier-
archy of abstraction spaces: the predicate space (which we shall consider here)
and the function/polarity space (which for lack of space we shall not consider).
We can formalise gazing as an abstraction between a first order calculus and
a propositional calculus. For any wif which is not a definition, we forget the
arguments of the predicates and throw away negation (Gazing actually worked
on sets of propositions which were implicitly disjoined in the conclusion and
conjoined in the hypotheses). For a definition, we just forget the arguments
of the predicates. This is neither a TI nor a NTTI abstraction (Note that an
abstraction which deletes all arguments from predicate symbols making them
into propositional constants is both TT and NTT). It does not give a complete
nor a sound strategy for deciding when to unfold definitions; not only does
it sometimes fail to suggest the appropriate definitions to unfold, it also can
suggest the wrong definitions. See [GW89b] for a longer discussion.

19

5 Conclusions

The generation of inconsistent abstract spaces is quite a well known problem. The
results presented here are, however, more general: we have shown that inconsistent
abstract spaces are generated because the set of abstract theorems is a strict su-
perset of the abstraction of the ground theorems. Our results hold for a class of
TT*-abstractions that captures practically all the abstractions used in the past. Ab-
stractions throw away details; what is important is the impact this has on provability.
The examples of inconsistent abstract spaces identified in the past were restricted
to particular abstractions and particular types of formal systems (eg. Abstrips,
Plaisted’s abstractions); it was not clear what was the relationship between the dif-
ferent examples, even if it was clear that there must be some relation. We have
shown the problem occurs independently of any particular abstraction or formal
system.

The problem of inconsistent abstract spaces cannot be avoided a priori if an arbitrary
set of axioms is allowed in the ground space. The best that can be done is to tackle
the problem at runtime by minimizing the inefficiencies that inconsistent abstract
spaces may cause. Thus, when an inconsistent abstract space is generated and we
find this out, we should exploit this information. One way is to backtrack and build
“more interesting” abstract spaces [Ric83]. Another is to try to discover what led
to the inconsistency [Doy86].

References

[BT75] W.W. Bledsoe and M. Tyson. The UT interactive prover. Technical
report, Mathematics Department, University of Texas, 1975. ATP-17.

[Doy86] R.J. Doyle. Constructing and refining causal explanations from an incon-
sistent domain theory. In Proc. Fifth National Conference on Artificial
Intelligence, Philadelphia, PA, 1986. AAAL

[GG88] F. Giunchiglia and E. Giunchiglia. Building complex derived inference
rules: a decider for the class of prenex universal-existential formulas. In
Proc. 7th Furopean Conference on Artificial Intelligence, 1988. Extended
version available as DAT Research Paper 359, Dept. of Artificial Intelli-
gence, Edinburgh.

[Gre69] C. Green. Application of theorem proving to problem solving. In Proc.
1st IJCAI conference, pages 219-239. International Joint Conference on
Artificial Intelligence, 1969.

20

[GW89a]

[GWS9b]

[GW92]

[Hob85]

[Men64]

[MH69]

[Nil80]

[NS72]
[NSS63]

[P1a80]

[Pla81]

[P1a36]

[Plu87]

F. Giunchiglia and T. Walsh. Abstract Theorem Proving. In Proc. IJCAT
89, 1989. IRST Technical Report 8902-03. Also available as DAT Research
Paper No 430, University of Edinburgh.

F. Giunchiglia and T. Walsh. Theorem Proving with Definitions. In Proc.
of the 7th Conference of the Society for the Study of Artificial Intelligence
and Stmulation of Behaviour, 1989. Also available as TRST Technical
Report 8901-03 and DAI Research Paper No 429, Dept. of Artificial In-
telligence, Edinburgh.

F. Giunchiglia and T. Walsh. A Theory of Abstraction. To appear in:
Artificial Intelligence Journal, 1992. Also IRST-Technical Report 9001-14,
IRST, Trento, Italy.

J.R. Hobbs. Granularity. In Proc. 9th IJCAI conference, pages 432-435.

International Joint Conference on Artificial Intelligence, 1985.

E. Mendelson. Introduction to Mathematical Logic. Van Nostrand Rein-
hold, 1964.

J. McCarthy and P. Hayes. Some Philosophical Problems from the Stand-
point of Artificial Intelligence. In B. Meltzer and D. Michie, editors, Ma-
chine Intelligence 4, pages 463-502. Edimburgh University Press, 1969.

N.J. Nilsson. Principles of Artificial Intelligence. Tioga Publishing Co.,
1980.

A. Newell and H.A. Simon. Human Problem Solving. Prentice-Hall, 1972.

A. Newell, J.C. Shaw, and H.A. Simon. Empirical explorations of the
logic theory machine. In Fiegenbaum and Feldman, editors, Computers

& Thought, pages 134-152. McGraw-Hill, 1963.

D.A. Plaisted. Abstraction mappings in mechanical theorem proving. In
5th Conference on Automated Deduction, pages 264-280. Proc. of the 5th
Conference on Automated Deduction, 1980.

D.A. Plaisted. Theorem proving with abstraction. Artificial Intelligence,
16:47-108, 1981.

D.A. Plaisted. Abstraction using generalization functions. In §th Confer-
ence on Automated Deduction, pages 365-376. Proc. of the 8th Conference
on Automated Deduction, 1986.

D. Plummer. Gazing: Controlling the Use of Rewrite Rules. PhD thesis,
Dept. of Artificial Intelligence, University of Edinburgh, 1987.

21

[Pra65]

[Pra7l]

[Rics3]
[SacT4]

[Ten87]

[Ten88]

[URSY]

D. Prawitz. Natural Deduction - A proof theoretical study. Almquist and
Wiksell, Stockholm, 1965.

D. Prawitz. Ideas and results in proof theory. In J.E. Fenstad, editor,
Proc. 2nd scandinavian logic symposium. North Holland, 1971.

E. Rich. Artificial Intelligence. McGrew-Hill, New York, 1983.

E.D. Sacerdoti. Planning in a hierarchy of abstraction spaces. Artificial

Intelligence, 5:115-135, 1974.

J.D. Tenenberg. Preserving Consistency across Abstraction Mappings. In
Proc. 10th 1JCAI conference, pages 1011-1014. International Joint Con-
ference on Artificial Intelligence, 1987.

J.D. Tenenberg. Abstraction in Planning. PhD thesis, Computer Science
Department, University of Rochster, 1988. Also TR 250.

A. Unruh and P. Rosenbloom. Abstraction in problem solving and learn-
ing. In Proc. 11th IJCAI conference. International Joint Conference on

Artificial Intelligence, 1989.

22

