Handbook of Constraint Programming 3
Edited by F. Rossi, P. van Beek and T. Walsh
(© 2006 Elsevier All rights reserved

Chapter 1

| ntroduction

Francesca Rossl, Peter van Beek, Toby Walsh

Constraint programming is a powerful paradigm for solving combinatorial search problems
that draws on a wide range of techniques from artificial intelligence, computer science,
databases, programming languages, and operations research. Constraint programming is
currently applied with success to many domains, such as scheduling, planning, vehicle
routing, configuration, networks, and bioinformatics. The basic idea in constraint pro-
gramming is that the user states the constraints and a general purpose constraint solver is
used to solve them. Constraints are just relations, and a constraint satisfaction problem
(CSP) states which relations should hold among the given decision variables. For exam-
ple, in scheduling activities in a company, the decision variables might be the starting times
and the durations of the activities and the resources needed to perform them, and the con-
straints might be on the availability of the resources and on their use for a limited number
of activities at a time.

Constraint solvers take a real-world problem like this, represented in terms of deci-
sion variables and constraints, and find an assignment to all the variables that satisfies
the constraints. Constraint solvers search the solution space either systematically, as with
backtracking or branch and bound algorithms, or use forms of local search which may
be incomplete. Systematic method often interleave search and inference, where inference
consists of propagating the information contained in one constraint to the neighboring
constraints. Such inference (usually called constraint propagation) is useful since it may
reduce the parts of the search space that need to be visited.

While defining a set of constraints may seem a simple way to model a real-world prob-
lem, finding a good model that works well with a chosen solver is not always easy. A poorly
chosen model may be very hard to solve. Thus much care must be devoted to choosing a
good model and also to devising solvers that can exploit the features of the chosen model.

From this description it may seem that constraint programming is “programming” in
the sense of “mathematical programming”: the user declaratively states the constraints
on the feasible solutions for a set of decision variables, and an underlying solver solves
the constraints. However, constraint programming is also “programming” in the sense of
“computer programming”: the user needs to program a strategy to search for a solution.



4 1. Introduction

Without this, the solving process would be very inefficient. This is very natural to do in
logic-based programming languages, such as constraint logic programming, but it can also
be done in other programming paradigms.

1.1 Purpose of the Handbook

The aim of this handbook is to capture the full breadth and depth of the constraint pro-
gramming field and to be encyclopedic in its scope and coverage. While there are excellent
books on constraint programming (see, for example, [1, 2, 3, 4, 5, 6, 7, 8]), such books
necessarily focus on the main notions and techniques and cannot cover also extensions,
applications, and languages. The handbook gives a reasonably complete coverage of all
these lines of work, based on constraint programming, so that a reader can have a rather
precise idea of the whole field and its potential. Of course each line of work is dealt with
in a survey-like style, where some details may be neglected in favor of broader coverage.
However, the extensive bibliography of each chapter will help the interested readers to find
suitable sources for the missing details. Each chapter of the handbook is intended to be
a self-contained survey of a topic, and is written by one or more authors who are leading
researchers in the area.

The intended audience of the handbook is researchers, graduate students, upper-year
undergraduates, and practitioners who wish to learn about the state-of-the-art in constraint
programming. No prior knowledge about the field is necessary to be able to read the
chapters and gather useful knowledge. Researchers from other fields should find in this
handbook an effective way to learn about constraint programming and to possibly use some
of the constraint programming concepts and techniques in their own work, thus providing
a means for a fruitful cross-fertilization among different research areas.

1.2 Structure and Content

The handbook is organized in two parts. The first part covers the basic foundations of
constraint programming, including the history, the notion of constraint propagation, basic
search methods, global constraints, tractability and computational complexity, and impor-
tant issues in modeling a problem as a constraint problem. The second part covers con-
straint languages and solver, several useful extensions to the basic framework (such as
interval constraints, structured domains, and distributed CSPs), and successful application
areas for constraint programming.

Part |: Foundations

In Chapter 2, Eugene C. Freuder and Alan K. Mackworth survey the emergence of con-
straint satisfaction as a new paradigm within artificial intelligence and computer science.
Covering the two decades from 1965 to 1985, Freuder and Mackworth trace the devel-
opment of two streams of work, which they call the language stream and the algorithm
stream. The focus of the language stream was on declarative program languages and sys-
tems for developing applications of constraints. The language stream gave many special
purpose declarative languages and also general programming languages such as constraint
logic programming. The focus of the algorithm stream was on algorithms and heuristics



F Rossi, P. van Beek, T. Walsh 5

for the constraint satisfaction framework. The algorithm stream gave constraint propa-
gation algorithms such as algorithms for arc consistency and also heuristics and constraint
propagation within backtracking search. Ultimately, the language stream and the algorithm
stream merged to form the core of the new field of constraint programming.

In Chapter 3, Christian Bessiere surveys the extensive literature on constraint propa-
gation. Constraint propagation is a central concept—perhaps the central concept—in the
theory and practice of constraint programming. Constraint propagation is a form of reason-
ing in which, from a subset of the constraints and the domains, more restrictive constraints
or more restrictive domains are inferred. The inferences are justified by local consistency
properties that characterize necessary conditions on values or set of values to belong to
a solution. Arc consistency is currently the most important local consistency property in
practice and has received the most attention in the literature. The importance of constraint
propagation is that it can greatly simplify a constraint problem and so improve the effi-
ciency of a search for a solution.

The main algorithmic techniques for solving constraint satisfaction problems (CSPs)
are backtracking search and local search. In Chapter 4, Peter van Beek surveys backtrack-
ing search algorithms. A backtracking search algorithm performs a depth-first traversal
of a search tree, where the branches out of a node represent alternative choices that may
have to be examined in order to find a solution, and the constraints are used to prune sub-
trees containing no solutions. Backtracking search algorithms come with a guarantee that
a solution will be found if one exists, and can be used to show that a CSP does not have
a solution or to find a provably optimal solution. Many techniques for improving the ef-
ficiency of a backtracking search algorithm have been suggested and evaluated including
constraint propagation, nogood recording, backjumping, heuristics for variable and value
ordering, and randomization and restart strategies.

In Chapter 5, Holger H. Hoos and Edward Tsang survey local search algorithms for
solving constraint satisfaction problems. A local search algorithm performs a walk in a
directed graph, where the nodes represent alternative assignments to the variables that may
have to be examined and the number of violated constraints is used to guide the search for
a solution. Local search algorithms cannot be used to show that a CSP does not have a so-
lution or to find a provably optimal solution. However, such algorithms are often effective
at finding a solution if one exists and can be used to find an approximation to an optimal
solution. Many techniques and strategies for improving local search algorithms have been
proposed and evaluated including randomized iterative improvement, tabu search, penalty-
based approaches, and alternative neighborhood and move strategies.

In Chapter 6, Willem-Jan van Hoeve and Irit Katriel survey global constraints. A global
constraint is a constraint that can be over arbitrary subsets of the variables. The canonical
example of a global constraint is the al | - di ff er ent constraint which states that the
variables in the constraint must be pairwise different. The power of global constraints is
two-fold. First, global constraints ease the task of modeling an application using constraint
programming. The al | - di f f er ent constraint, for example, is a pattern that reoccurs
in many applications, including rostering, timetabling, sequencing, and scheduling appli-
cations. Second, special purpose constraint propagation algorithms can be designed which
take advantage of the semantics of the constraint and are therefore much more efficient.
Van Hoeve and Katriel show that designing constraint propagation algorithms for global
constraints draws on a wide variety of disciplines including graph theory, flow theory,
matching theory, linear programming, and finite automaton.



6 1. Introduction

A fundamental challenge in constraint programming is to understand the computational
complexity of problems involving constraints. In their most general form, constraint satis-
faction problems (CSPs) are NP-Hard. To counter this pessimistic result, much work has
been done on identifying restrictions on constraint satisfaction problems such that solving
an instance can be done efficiently; that is, in polynomial time in the worst-case. Finding
tractable classes of constraint problems is of theoretical interest of course, but also of prac-
tical interest in the design of constraint programming languages and effective constraint
solvers. The restrictions on CSPs that lead to tractability fall into two classes: restrict-
ing the topology of the underlying graph of the CSP and restricting the type of the allowed
constraints. In Chapter 7, Rina Dechter surveys how the complexity of solving CSPs varies
with the topology of the underlying constraint graph. The results depend on properties of
the constraint graph, such as the well-known graph parameter tree-width. In Chapter 8,
David Cohen and Peter Jeavons survey how the complexity of solving CSPs varies with
the type of allowed constraints. Here, the results depend on algebraic properties of the
constraint relations.

The first part ends with three chapters concerned with modeling real world problems
as CSPs. In many real world problems, not all constraints are hard. Some constraint may
be “soft” and express preferences that we would like to satisfy but do not insist upon.
Other real world problems may be over-constrained. In both cases, an extension of the
basic framework of constraint satisfaction to soft constraints is useful. In Chapter 9, Pedro
Meseguer, Francesca Rossi, and Thomas Schiex survey the different formalisms of soft
constraints proposed in the literature. They describe the relationship between these differ-
ent formalisms. In addition, they discuss how solving methods have been generalized to
deal with soft constraints.

Symmetry occurs in many real world problems: machines in a factory might be iden-
tical, nurses might have the same skills, delivery trucks might have the same capacity, etc.
Symmetry can also be introduced when we model a problem as a CSP. For example, if
we introduce a decision variable for each machine, then we can permute those variables
representing identical machines. Such symmetry enlarges the search space and must be
dealt with if we are to solve problems of the size met in practice. In Chapter 10, lan P.
Gent, Karen E. Petrie, and Jean-Francois Puget survey the different forms of symmetry
in constraint programming. They describe the three basic techniques used to deal with
symmetry: reformulating the problem, adding symmetry breaking constraints, and mod-
ifying the search strategy to ignore symmetric states. Symmetry is one example of the
sort of issues that need to be considered when modeling a problem as a CSP. In Chapter
11, Barbara M. Smith surveys a range of other issues in modeling a problem as a CSP.
This includes deciding on an appropriate viewpoint (e.g. if we are scheduling exams, do
the variables represent exams and their values the times, or do the variables represent the
times and their values the exams?), adding implied constraints to help prune the search
space, and introducing auxiliary variables to make it easier to state the constraints or to
improve propagation.

Part 11: Extensions, Languages, and Applications

To increase the uptake, ease of use, extensibility, and flexibility of constraint technology,
constraints and search have been integrated into several programming languages and pro-
gramming paradigms. In Chapter 12, Kim Marriott, Peter J. Stuckey, and Mark Wallace



F. Rossi, P. van Beek, T. Walsh 7

survey constraint logic programming (CLP), the integration of constraint solving into logic
programming languages. Constraint solving and logic programming are both declarative
paradigms, so their integration is quite natural. Further, the fact that constraints can be seen
as relations or predicates, that a set of constraints can be viewed as the conjunction of the
individual constraints, and that backtracking search is a basic methodology for solving a set
of constraints, makes constraint solving very compatible with logic programming, which
is based on predicates, logical conjunctions, and backtracking search. Marriott, Stuckey,
and Wallace cover the elegant semantics of CLP, show the power of CLP in modeling con-
straint satisfaction problems, and describe how to define specific search routines in CLP
for solving the modeled problem.

In Chapter 13, Thom Frithwirth, Laurent Michel, and Christian Schulte survey the inte-
gration of constraints into procedural and object-oriented languages, concurrent languages,
and rule-based languages. Integrating constraint solving into these more traditional pro-
gramming paradigms faces new challenges as these paradigms generally lack support for
declarative programming. These challenges include (i) allowing the specification of new
search routines, while maintaining declarativeness, (ii) the design of declarative model-
ing languages that are user-friendly and based on well-known programming metaphors,
and (iii) the integration of constraint solving into multi-paradigm languages. Frihwirth,
Michel, and Schulte include a discussion of the technical aspects of integrating constraints
into each programming paradigm, as well as the advantages and disadvantages of each
paradigm.

In Chapter 14, Christian Schulte and Mats Carlsson survey finite domain constraint
programming systems. One of the key properties of constraint programming systems is
the provision of widely reusable services—such as constraint propagation and backtrack-
ing search—for constructing constraint-based applications. Schulte and Carlsson discuss
which services are provided by constraint programming systems and also the key principles
and techniques in implementing and coordinating these services. For many applications,
the constraint propagation, backtracking search, and other services provided by the con-
straint programming system are sufficient. However, some applications require more, and
most constraint programming systems are extensible, allowing the user to define, for exam-
ple, new constraint propagators or new search strategies. Schulte and Carlsson also provide
an overview of several well-known finite domain constraint programming systems.

Operations research (OR) and constraint programming (CP) are complementary frame-
works with similar goals. In Chapter 15, John N. Hooker surveys some of the schemes for
incorporating OR methods into CP. In constraint programming, constraints are used to
reduce the domains of the variables. One method for incorporating an OR method is to
apply it to a constraint to reduce the domains. For example, if a subset of the constraints
are linear inequalities, the domain of a variable in the subset can possibly be reduced by
minimizing and maximizing the variable using linear programming on the subset of linear
constraints. This example is an instance of a popular scheme for incorporating OR into CP:
create a relaxation of the CP problem in the form of an OR model, such as a linear pro-
gramming model. Other schemes for creating hybrid OR/CP combinations decompose a
problem so that CP and OR are each used on the parts of the problem to which they are best
suited. Hooker shows that OR/CP combinations using both relaxation and decomposition
can bring substantial computational benefits.

Real-world problems often take us beyond finite domain variables. For example, to
reason about power consumption, we might want a variable to range over the reals and



8 1. Introduction

to reason about communication networks we might want a variable to range over paths
in a graph. Constraint programming has therefore been extended to deal with more than
just finite (or enumerated) domains of values. In Chapter 16, Frédéric Benhamou and Lau-
rent Granvilliers survey constraints over continuous and interval domains. The extension of
backtracking search over finite domains to interval constraints is called branch-and-reduce:
branching splits an interval and reduce narrows the intervals using a generalization of local
consistency and interval arithmetic. Hybrid techniques combining symbolic reasoning and
constraint propagation have also been designed. Benhamou and Granvilliers also discuss
some of the applications of interval constraints and the available interval constraint soft-
ware packages. In Chapter 17, Carmen Gervet surveys constraints over structured domains.
Many combinatorial search problems—such as bin packing, set covering, and network
design—can be naturally represented in the language of sets, multi-sets, strings, graphs
and other structured objects. Constraint propagation has therefore been extended to deal
with constraints over variables which range over such datatypes.

Early work in empirical comparisons of algorithms for solving constraint satisfaction
problems was hampered by a lack of realistic or hard test problems. The situation im-
proved with the discovery of hard random problems that arise at a phase transition and
the investigation of alternative random models of constraint satisfaction, satisfiability, and
optimization problems. Experiments could now be performed which compared the algo-
rithms on the hardest problems and systematically explored the entire space of random
problems to see where one algorithm bettered another. In Chapter 18, Carla Gomes and
Toby Walsh survey these alternative random models. In addition to their interest as an
experimental testbed, insight gained from the study of hard problems has also led to the
design of better algorithms. As one example, Gomes and Walsh discuss the technique of
randomization and restarts for improving the efficiency of backtracking search algorithms.

In Chapter 19, Manolis Koubarakis surveys temporal constraint satisfaction problems
for representing and reasoning with temporal information. Temporal reasoning is impor-
tant in many application areas—including natural language understanding, database sys-
tems, medical information systems, planning, and scheduling—and constraint satisfaction
techniques play a large role in temporal reasoning. Constraint-based temporal reasoning
formalisms for representing qualitative, metric, and combined qualitative-metric temporal
information have been proposed in the literature and many efficient constraint satisfaction
algorithms are known for these formalisms. Koubarakis also demonstrates the application-
driven need for more expressive queries over temporal constraint satisfaction (especially
queries combining temporal and non-temporal information) and surveys various proposals
that address this need including the scheme of indefinite constraint databases.

In Chapter 20, Boi Faltings surveys distributed constraint satisfaction. In distributed
constraint satisfaction, constraint solving happens under the control of different indepen-
dent agents, where each agent controls a single variable. The canonical example of the
usefulness of this formalism is meeting scheduling, where each person has their own con-
straints and there are privacy concerns that restrict the flow of information, but many ap-
plications have been identified. Backtracking search and its improvements have been ex-
tended to the distributed case. In synchronous backtracking, messages are passed from
agent to agent with only one agent being active at any one time. A message consists of ei-
ther a partial instantiation or a message that signals the need to backtrack. In asynchronous
backtracking, all agents are active at once, and messages are sent to coordinate their the as-
signments that are made to their individual variables. Asynchronous backtracking has been



F Rossi, P. van Beek, T. Walsh 9

the focus of most of the work in distributed constraint satisfaction. Faltings also surveys
the literature on open constraint satisfaction, a form of distributed CSP where the domains
of the variables and the constraints may be incomplete or not fully known.

The basic framework of constraint programming makes two assumptions that do not
hold in many real world problems: that the problem being modeled is static and that the
constraints are known with certainty. For example, factory scheduling is inherently dy-
namic and uncertain since the full set of jobs may not be known in advance, machines may
break down, employees may be late or ill, and so on. In Chapter 21, Kenneth N. Brown and
lan Miguel survey the uses and extensions of constraint programming for handling prob-
lems subject to change and uncertainty. For dynamically changing problems, two of the
alternatives are to record information about the problem structure during the solving pro-
cess, such as explanation or nogood recording, so that re-solving can be done efficiently;
and to search for robust or solutions that anticipate expected changes. For uncertain prob-
lems, different types of uncertainty can be identified including: the problem itself is intrin-
sically imprecise; there is a set of possible realizations of the problem, one of which will
be the final version, and there are probability distributions over the full realizations. As
well, many CSP formalisms have been proposed for handling uncertainty including fuzzy,
mixed, uncertain, probabilistic, stochastic, and recurrent CSPs.

Constraint programming has proven useful—indeed, it is often the method of choice—
in important applications from industry, business, manufacturing, and science. In the last
five chapters of the handbook, some of these applications of constraint programming are
highlighted. Each of the chapters emphasizes why constraint programming has been suc-
cessful in the given application domain. As well, in the best traditions of application-
driven research, the chapters describe how focusing on real-world applications has led to
basic discoveries and improvements to existing constraint programming techniques. In a
fruitful cycle, these discoveries and improvements then led to new and more successful
applications.

In Chapter 22, Philippe Baptiste, Philippe Laborie, Claude Le Pape, and Wim Nuijten
survey constraint programming approaches to scheduling and planning. Scheduling is the
task of assigning resources to a set of activities to minimize a cost function. Scheduling
arises in diverse settings including in the allocation of gates to incoming planes at an air-
port, crews to an assembly line, and processes to a CPU. Planning is a generalization of
scheduling where the set of activities to be scheduled is not known in advance. Constraint
programming approaches to scheduling and planning have aimed at generality, with the
ability to seamlessly handle real-world side constraints. As well, much effort has gone
into improved implied constraints such as global constraints, edge-finding constraints and
timetabling constraints, which lead to powerful constraint propagation. Baptiste et al. show
that one of the reasons for the success of a constraint programming approach is its ability
to integrate efficient special purpose algorithms within a flexible and expressive paradigm.
Additional advantages of a constraint propagation approach include the ability to form
hybrids of backtracking search and local search and the ease with which domain specific
scheduling and planning heuristics can be incorporated within the search routines.

In Chapter 23, Philip Kilby and Paul Shaw survey constraint programming approaches
to vehicle routing. Vehicle Routing is the task of constructing routes for vehicles to visit
customers at minimum cost. A vehicle has a maximum capacity which cannot be exceeded
and the customers may specify time windows in which deliveries are permitted. Much
work on constraint programming approaches to vehicle routing has focused on alternative



10 1. Introduction

constraint models and additional implied constraints to increase the amount of pruning
performed by constraint propagation. Kilby and Shaw show that constraint programming
is well-suited for vehicle routing because of its ability to handle real-world (or side) con-
straints. Vehicle routing problems that arise in practice often have unique constraints that
are particular to a business entity. In non-constraint programming approaches, such side
constraints often have to be handled in an ad hoc manner. In constraint programming a
wide variety of side constraints can be handled simply by adding them to the core model.

In Chapter 24, Ulrich Junker surveys constraint programming approaches to configu-
ration. Configuration is the task of assembling or configuring a customized system from a
catalog of components. Configuration arises in diverse settings including in the assembly
of home entertainment systems, cars and trucks, and travel packages. Junker shows that
constraint programming is well-suited to configuration because of (i) its flexibility in mod-
eling and the declarativeness of the constraint model, (ii) the ability to explain a failure
to find a customized system when the configuration task is over-constrained and to sub-
sequently relax the user’s constraints, (iii) the ability to perform interactive configuration
where the user makes a sequence of choices and after each choice constraint propagation is
used to restrict future possible choices, and (iv) the ability to incorporate reasoning about
the user’s preferences.

In Chapter 25, Helmut Simonis surveys constraint programming approaches to applica-
tions that arise in electrical, water, oil, and data (such as the Internet) distribution networks.
The applications include design, risk analysis, and operational control of the networks.
Simonis discusses the best alternative formulations or constraint models for these prob-
lems. The constraint programming work on networks vividly illustrates the advantages
of application-driven research. The limited success in this domain of classical constraint
programming approaches, such as backtracking search, led to improvements in hybrid ap-
proaches which combine both backtracking and local search or combine both constraint
programming and operations research methods. A research hurdle that must still be over-
come, however, is the complexity and implementation effort that is required to construct a
successful hybrid system for an application.

In Chapter 26, Rolf Backofen and David Gilbert survey constraint programming ap-
proaches to problems that arise in bioinformatics. Bioinformatics is the study of infor-
matics and computational problems that arise in molecular biology, evolution, and genet-
ics. Perhaps the first and most well-known example problem in bioinformatics is DNA
sequence alignment. More recently, constraint programming approaches have made sig-
nificant progress on the important problem of protein structure prediction. The ultimate
goals and implications of bioinformatics are profound: better drug design, identification of
genetic risk factors, gene therapy, and genetic modification of food crops and animals.

1.3 Future Research

The field of constraint programming is rapidly progressing. Many new research results
are being published and new research areas are being opened in the field of constraint
reasoning. We conclude this introduction with some speculation on lines of research that
appear interesting and promising to us, and that in the future could be mature enough to
constitute entire chapters in future revisions of this handbook.



F. Rossi, P. van Beek, T. Walsh 11

Quantified constraint problems are a very interesting extension of classical CSPs where
some variables may be universally quantified. This can help modeling scenarios where
uncertainty does not allow us to decide the values for some variables. Many theoretical
results on the complexity of such problems have already been developed. We envision a
fast growth of this area and its applications.

When using a constraint solver, often it is not easy to understand what went wrong, or
why a certain solution is returned rather than another one. Explanation tools could greatly
help in making constraint technology easy to use in an interactive system. In general, user
interaction in constraint systems deserves much attention and effort. Improvements in this
respect could greatly widen the usability of constraint-based tools.

It is rare that all constraints are collected at the same time from the user of a constraint
system. Usually such constraints, or preferences, are collected some at a time, but the
system must be able to perform some amount of reasoning also with partial knowledge.
Moreover, based on the partial knowledge it has, it should be able to ask the user only for
those constraints or preferences that are useful to make the next inference. The issue of
preference elicitation is crucial in such situations, and allows users to intelligently interact
with a constraint system without being forced to state all their constraints, or preferences,
at the beginning of the interaction. This can also be useful in scenarios where the users
want to avoid revealing all their preferences, for example for privacy reasons.

Even when the user is willing to state all the information at the beginning of the inter-
action, sometimes it may be difficult for him to actually state it in terms of constraints. For
example, it could be easier to state examples of desirable or unacceptable solutions. In this
cases, machine learning techniques can be helpful to learn the constraints from the partial
and possibly imprecise user statements. As for explanation and preference elicitation, this
can greatly help in easing the interaction between users and constraint solvers.

Satisfiability is a mature research area with much interaction with constraint reasoning,
since a satisfiability problem is just a constraint problem with Boolean variables. Thus,
many theoretical results can be adapted from one field to the other one. We hope to see
many such results in the future.

This handbook contains chapters on just some of the main application areas for con-
straint programming. Other application fields, which look very promising, are design, con-
straint databases, web services, global computing, and security. We hope to see constraint
programming to be the base of many useful tools for such applications.

Acknowledgements

A project like this, which lasted almost two years and involved about sixty people, would
not be possible without the support and encouragement of a great many people within
the constraint programming community. First, we wish to thank the many authors of the
chapters within this handbook. Many of them also helped us by reviewing other chapters.
Additionally, we would like to thank Claire Bagley, Roman Bartak, Andrei Bulatov, Martin
Henz, Andrea Lodi, Michela Milano, Luis Quesada, Francesco Scarcello, Peter Van Roy,
and Roland Yap, who reviewed other chapters. Thanks also to Ugo Montanari, a pioneer
of constraint programming, who wrote the foreword for the book.

We also wish to thank Zeger Karssen, originally at Elsevier and now at Atlantic Press,
and Bernhard Nebel, one of the editors of the series where this book will appear. They



12 1. Introduction

have been very enthusiastic about this project since the very first time we described it to
them in the Summer of 2004. Zeger and his assistants have helped us greatly to put the
project together and to smoothly reach a satisfactory agreement on the format and style of
the book.

Finally, we also would like to thank Helmut Simonis, who, besides being an author of
the handbook, provided the very nice cover picture for this handbook. We think his beauti-
ful rose can represent very well the spirit of this handbook: the petals are the many authors,
who worked together in cooperation to produce what we hope is a book as beautiful as this
rose.

Bibliography

[1] K.R. Apt. Principles of Constraint Programming. Cambridge University Press, 2003.

[2] R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.

[3] F. Fages. Programmation logique par contraintes. Ellipses Marketing, 1998.

[4] T. Frihwirth and S. Abdennadher. Essentials of Constraint Programming. Springer,
2003.

[5] J. Hooker. Logic-Based Methods for Optimization: Combining Optimization and Con-
straint Satisfaction. Wiley-Interscience, 2000.

[6] K. Marriott and P. J. Stuckey. Programming with Constraints. The MIT Press, 1998.

[7] E. P. K. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.

[8] P. Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press, 1989.



