
Improved algorithm for finding (a,b)-super solutions

Emmanuel Hebrard
National ICT Australia and

University of New South Wales
Sydney, Australia.

ehebrard@cse.unsw.edu.au

Brahim Hnich
Cork Constraint Computation Centre

University College Cork, Ireland.
brahim@4c.ucc.ie

Toby Walsh
National ICT Australia and

University of New South Wales
Sydney, Australia.

tw@cse.unsw.edu.au

Abstract

In (EHW04b), the authors introduced to constraint pro-
gramming the notion of (a, b)-super solutions. They are
solutions in which, if a small number of variables lose
their values, we are guaranteed to be able to repair the
solution with only a few changes. This concept is use-
ful for scheduling in dynamic and uncertain environ-
ments when the robustness of the schedule is a valu-
able property. We introduce a new algorithm for finding
super solutions that improves upon the method intro-
duced in (EHW04a) in several dimensions. This algo-
rithm is more space efficient as it only requires to double
the size of the original constraint satisfaction problem.
The new algorithm also permits us to use any constraint
toolkit to solve the master problem as well as the sub-
problems generated during search. We also take advan-
tage of multi-directionality and of inference based on
the neighborhood notion to make the search for a solu-
tion faster. Moreover, this algorithm allows the user to
easily specify extra constraints on the repairs.

Introduction
In (EHW04b), the authors introduced to constraint program-
ming the notion of (a, b)-super solutions. Super solutions
are a generalization of both fault tolerant solutions (WB98)
and super models (MGR98). These are solutions such that
a small (bounded) perturbation on the input will have pro-
portionally small repercussions on the outcome. For in-
stance when solving a scheduling problem, we may want
that, in the event of a machine breaking, or of a task exe-
cuting longer than expected, the rest of the schedule should
change as little as possible if at all. As a concrete example,
consider the following job-shop scheduling problem, where
we need to schedule four jobs consisting of four activities,
each requiring a different machine. The usage of a machine
is exclusive, and the sequence of a job is to be respected.

Job 1:

Job 2:

Job 3:

Job 4:

The second figure shows an optimal solution.

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Job 1:

Job 2:

Job 3:

Job 4:

One may argue that this solution is not robust. Indeed
activities are tightly grouped and a “break” on a machine,
and the subsequent delay, may trigger further delays in the
schedule. On the other hand the next figure shows a solution
where, for a small makespan increase, a large proportion of
activities can be delayed of two units of time, without affect-
ing at all the rest of the schedule.

Job 1:

Job 2:

Job 3:

Job 4:

Such solutions are thus stable in the sense that when in-
validated, a close alternative solution can be applied. How-
ever, there are a number of other ways to capture robustness.
for instance in (HF93), the approach to robustness is prob-
abilistic and a robust solution is simply one that is likely
to remain valid after a contingent change. The problem of
scheduling under uncertainty has been widely studied in the
past (See (AD01) and (NPO04) for instance). We wish to
investigate how super solutions compare to these special-
ized methods. For instance, if we consider the slack-based
framework (AD01), the intuitive idea is that a local pertur-
bation will be “absorbed” if enough slack is available, end
therefore solutions involving slack are preferred. Now, one
can think of a scenario where the best reaction to a delay or
a break would not be to delay the corresponding (plus per-
haps few other) activity, but to postpone it and advance the
starting time of another activity instead. This situation is not
captured by slack based method. Although, it is important to
notice that if the latter approach aims at minimizing the im-
pact of a delay on the makespan, it is only a secondary con-
sequence for super solutions. Indeed, the main concern is
to limit the number of activities to reschedule. Therefore, a
direct comparison is difficult. The concept of flexible sched-
ule is more closely related to our view of robustness as this
method promotes stability against localized perturbations.

On the other hand, super solutions have a priori several
drawbacks compared to such specialized approaches.

Firstly, finding super solutions is a difficult problem and
as a result the methods proposed so far are often restricted
to toy problems like the one used in the previous example.

Algorithms with better performance have been proposed for
very restricted classes of super solution. However, if we do
not restrict ourselves to these classes, solving a problem of
reasonable size is often out of reach with the current ap-
proaches.

Another difficulty is that, being a general framework, it
is not always immediately applicable to a specific problem.
In (EHW04a) we showed how super solutions have to be
adapted to cope with specifics of job shop scheduling prob-
lems in particular. For instance, if variables are activities and
values are time points, then we cannot schedule to an earlier
time point as a response to a break. Moreover, moving the
same activity to the next consecutive time point may not be
a valid alternative.

In this paper we introduce a new algorithm that can help
to address the above drawbacks. The central feature of the
new algorithm is that it is closer to a “regular” solver, we
solve both the original problem as well as sub-problems gen-
erated during search using any standard constraint solver.
Therefore, methods that have been proven to be effective in
a particular area (like shaving (CP94), specialized variable
orderings (SF96) or specialized constraint propagators) can
be used both for the main problem and the sub-problems.
We also propose a more effcient and more effective algorithm
than what has been proposed in (EHW04a). The new algo-
rithm is more efficient as we avoid solving all sub-problems
and it is more effective by using the information gathered
when solving these sub-problems to get more pruning on
future variables. Moreover, this architecture also helps to
adapt the criteria of robustness to the problem. Indeed, to
model a particular requirement we can just add it as a con-
straint to the sub-problems.

Formal background and notations
A constraint satisfaction problem (CSP) P consists of a set
of variables X , a set of domains D such that D(Xi) is the
finite set of values that can be taken by the variable Xi, and
a set of constraints C that specify allowed combinations of
values for subsets of variables. We use upper case for vari-
ables (Xi) and lower case for values (v). A full or partial
instantiation S = {〈X1 : v1〉, . . . 〈Xn : vn〉} is a set of as-
signments 〈Xi : vj〉 such that vj ∈ Xi. We will use S[i] to
denote the value assigned to Xi in S. A (partial) solution is
an instantiation satisfying the constraints. Given a constraint
CV on a set of variables V , a support for Xi = vj on C is
a partial solution involving the variables in V and contain-
ing Xi = vj . A variable Xi is generalized arc consistent
(GAC) on C iff every value in D(Xi) has support on C. A
constraint C is GAC iff each constrained variable is GAC on
C, and a problem is GAC iff all constraints in C are GAC.
Given a CSP P and a subset A = {Xi1 , . . . Xik

} of X , a
solution S of the restriction of P to A (denoted P |A) is a
partial solution on A such that if we restrictD(Xi) to {S[i]}
for i ∈ [i1..ik], then P can be made GAC without domain
wipe-out.

We introduce some notations used later in the paper. the
function H(S, R) is defined to be the Hamming distance
between two solutions R and S, i.e., the number of vari-
ables assigned to different values in S and R. We also de-

fine HA(S, R) to be the Hamming distance restricted to the
variables in A.

HA(S, R) =
∑

Xi∈A

(S[i] 6= R[i])

An a-break on a (partial) solution S is a combination of
a variables among the variables in S. A b-repair of S
is a (partial) solution R such that HA(S, R) = |A| and
H(S, R) ≤ (a + b). In other words, R is an alternative
solution for S such that if the assignments of the variables
in A are forbidden, the remaining “perturbation” is restricted
to b variables.

Definition 1 A solution S is an (a, b)-super solution iff for
every a′ ≤ a, and for every a′-break of S, there exists a
b-repair of S.

The basic algorithm
We first describe a very simple and basic version of the algo-
rithm without any unnecessary features. Then we progres-
sively introduce modifications to make the algorithm more
efficient and more effective.

The basic idea is to ensure that the current partial solution
is also a partial super solution. In order to do so, as many
sub-problems as possible breaks for this partial solution have
to be solved. The solutions to these sub-problems are partial
repair solutions. We therefore work on a copy of the original
problem that we change and solve for each test of reparabil-
ity. Note that the sub-problem is much easier to solve than
the main problem, for several reasons. The first reason is that
each of the sub-problems is polynomial. Indeed, since a re-
pair solution must have less than a + b discrepancies with
the main solution, the number of possibilities is bounded
by na+bda+b. Typically, the cost of solving one such sub-
problem will be far below this bound since constraint prop-
agation is used. Another reason is that we can reuse the
variable ordering dynamically computed whilst solving the
main problem. Furthermore, we will demonstrate later that
not all breaks have to be checked, and that we can infer in-
consistent values from the process of looking for a repair.
Pruning the main problem is critical, as it not only reduces
the search tree, but also reduces the number of sub-problems
to be solved.

The algorithm for finding super solutions is, in many re-
spects, comparable to a global constraint. However, it is im-
portant to notice that we cannot define a global constraint
ensuring that the solution returned is a super solution as
this condition depends on the variables domains, whilst con-
straints should only depend on the values assigned to vari-
ables and not their domains. For example, consider two vari-
ables X1, X2 taking values in {1, 2, 3} such that X1 < X2.
The assignment 〈X1 = 1, X2 = 3〉 is a (1, 0)-super solu-
tion, however, if the original domain of X1 is {1, 3}, then
〈X1 = 1, X2 = 3〉, is not a (1, 0)-super solution. Neverthe-
less, the algorithm we introduce could be seen as a global
constraint implementation as it is essentially an oracle tight-
ening the original problem It is however important to ensure
that this oracle is not called for every change in a domain as
it can be costly.

Initialization: In Algorithm 1, we propose an pseudo code
for finding super solutions. The input is a CSP, i.e., a triplet
P = (X ,D, C) and the output a (a, b)-super solution S. We
first create a copy P ′ of P , where X ′i ∈ X

′ iff Xi ∈ X
and C ′ ∈ C′ iff C ∈ C. This copy will be used to find b-
repairs. At any point in the algorithm,D(Xi) (resp. D′(X ′i))
is the current domain of Xi (resp. X ′i). The set Past ⊆ X
contains all variables that are already bound to a value and
we denote Past′ the set containing the same variables, but
“primed”, Past′ = {X ′i|Xi ∈ Past}.

Algorithm 1: super-MAC(P, a, b)
Data : P, a, b

Result : S: an (a, b)-super solution
S ← ∅; Past← ∅; P ′ ← P ;
if ¬backtrack(P, P ′, S, Past, a, b) then

print “NO SUPER-SOLUTION”;

print “A SUPER-SOLUTION FOUND: S”;

Main Backtracker Procedure (Algorithm 2) searches and
backtracks on the main problem P . It is in very similar to
a classical backtracker that maintain GAC at each node of
the search tree, except that we also add a call to the proce-
dure reparability at each node. Note that any solver
or local/global consistency property can be used instead as
long as the procedure reparability is called. A possi-
ble way of implementing reparability –in a standard
constraint toolkit– can be as a global constraint containing
internally the extra data structure P ′ and an associated spe-
cialised solver. As such global constraint can be costly, it
should not be called more than once per node.

Algorithm 2: backtrack(P, P ′, S, Past, a, b) : Bool
if Past = X then return True;
choose Xi ∈ X \ Past;
Past ← Past ∪ {Xi};
foreach v ∈ D(Xi) do

saveD;
D(Xi)← {v};
S ← S ∪ {〈Xi : v〉};
if AC-propagate(P) & reparability(P, P ′, S, Past, a, b)
then

if backtrack(P, S, Past, a, b) then return True;

restoreD;
S ← S − {〈Xi : v〉};

Past = Past − {Xi};
return False;

Enforcing reparability: Procedure reparability
(Algorithm 3) makes sure that each a-break of the solution
S has a b-repair. If |S| = k then we check all combinations
of less than a variables in S, that is

∑
j≤a(k

j) breaks.
This number has no closed form, though it is bounded
above by ka. For each a-break, we model the problem
of the existence of a b-repair using P ′. Given the main
solution S and a break A, we need to find a b-repair, that

is, a solution R of P ′|Past′ such that HA(S, R) = |A|
and H(S, R) ≤ |A| + b. The domains of all variables
are set to their original state. Then for any X ′i ∈ A, we
remove the value S[i] from D′(X ′i), thus making sure
that HA(S, R) = |A|. We also add an ATMOSTkDIFF
constraint that ensures H(S, R) ≤ k, where k = |A| + b.
Finally, we solve P ′|Past′ , it is easy to see that any solution
is a b-repair.

Algorithm 3: repairability(P, S, Past, a, b):Bool
foreach A ⊆ Past′ such that |A| ≤ a do

foreach Xi ∈ A do
D′(X′

i
)← D(Xi)− {S[i]};

k ← (|A|+ b);
S′ ← solve(P ′|

P ast′
+ATMOSTkDIFF(X ′ , S));

if S′ = nil then return False;
return True;

Propagating the ATMOSTkDIFF constraint: The
ATMOSTkDIFF constraint is defined as follows:

Definition 2 ATMOSTkDIFF(X ′1, . . . X
′
n, S) holds iff k ≥∑

i∈[1..n](X
′
i 6= S[i])

This constraint ensures that the solution we find is a valid
partial b-repair by constraining the number of discrepancies
to the main solution to be lower than a+ b. To enforce GAC
on such a constraint, we first compute the smallest expected
number of discrepancies to S. Since S is a partial solution
we consider the possible extensions of S. Therefore, when
applied to the auxiliary CSP P ′ this number is simply

d = |{i|D′(X ′i) ∩ D(Xi) = ∅}|

We have three cases:

1. If d < k then the constraint is GAC as every variable can
be assigned any value providing that all other variables
X ′i take a value included in D(Xi), and we will still have
d ≤ k.

2. If d > k then the constraint cannot be satisfied.
3. If d = k then we can set the domain of any variable X ′i

such that D(X ′i) ∩ D(Xi) 6= ∅ to S[i].

Comparison with previous algorithm This new algo-
rithm is simpler than the one given in (EHW04a) as no extra
data structure is required for keeping the current state of a re-
pair. Moreover, the space required is at most twice the space
required for solving the original problem, whilst the previ-
ous algorithm stored the state of each search for a b-repair.
We want to avoid such data structures as they are exponen-
tial in a. Even though a is typically a small constant, this
can be prohibitive. Another advantage in doing so is that the
search for a repair can easily be done, whereas in the pre-
vious algorithm, doing so would have been difficult without
keeping as many solver states as breaks, since the search was
starting from the point it ended in the previous call.

The search tree explored by this algorithm is strictly
smaller than that explored by the previous algorithm. The

methods are very comparable as they both solve sub-
problems to find a b-repair for each break. However, since
the sub-problems solved by this previous algorithm were im-
plemented as a simple backtrack procedure (without con-
straint propagation), it was not possible to check if a b-repair
would induce an arc inconsistency in an unassigned variable.

Improvements
Now we explore several ways of improving the basic algo-
rithm.

Repair multi-directionality
The multi-directionality is a concept used for instance
for implementing general purpose algorithms for enforcing
GAC. The idea is that a tuple is a support for every value it
involves. The same metaphor applies when seeking repairs
instead of supports. In our case, suppose that we look for a
(2, 2)-super solution and suppose that R is a repair solution
for a break on the variables {X, Y } that require reassign-
ing the variables {V, W}. This constitutes also a repair for
{X, V }, {X, W}, {Y, V }, {Y, W} and {V, W}. We there-
fore need not to look for repair for these breaks.

We used a simple algorithm from Knuth (Knu) to generate
all ≤ a-breaks. This algorithm generates the combinations
in a deterministic manner, and therefore constitutes an or-
dering on these combinations. Moreover, this ordering has
the nice property that given one combination in input, one
can compute the rank of this combination in the ordering in
linear time on the size of the tuple. The size of the tuple is in
our case a small constant, we thus have an efficient way of
knowing if the break that we currently consider is covered
by an earlier repair. Each time a new repair is computed, all
breaks it covers are added to a set, then when we generate a
combination, we simply check that its index is not in this set
otherwise we do not need to find a repair for it.

Neighborhood-based inference:
The second observation that we make to improve the effi-
ciency is less obvious but has broader consequences. First,
let us introduce some necessary notation:

A path linking two variables X and Y is a sequence of
constraints CV1

, . . . CVk
such that i = j + 1 ⇒ Vi ∩ Vj 6=

∅ and X ∈ V1 and Y ∈ Vk, k is the length of the path.
The distance between two variables δ(X, Y) is the length
of the shortest path between these variables (δ(X, X) = 0).
∆d(X) denotes the neighborhood at a distance exactly d of
X , i.e., ∆d(X) = {Y | δ(X, Y) = d}. Γd(X) denotes
the neighborhood up to a distance d of X i.e., Γd(X) =
{Y | δ(X, Y) ≤ d}. Similarly, we define the neighborhood
Γd(A) (resp. ∆d(A)) of a subset of variable A as simply⋃

X∈A Γd(X) (resp. ∆d(A)).
Now we can state the following lemma which will be cen-

tral to all the subsequents improvements. It shows that if
there exists a b-repair for a particular a-break A, then all
reassignments are within the neighborhood of A up to a dis-
tance b.

Lemma 1 Given a solution S and a set A of a variables,
the following equivalence holds:

∃R s.t. (H(S|A, R|A) = a and H(S, R) < d)
⇔

∃R′ s.t. (H(S|A, R′|A) = a and
H(S|Γd−a(A), R

′|Γd−a(A)) = H(S, R′) < d)

Proof: We prove this lemma constructively. We start from
two solutions S and R that satisfy the premise of this im-
plication and construct R′ such that S, R′ satisfy the con-
clusion. We have H(S, R) = k1 < k, therefore exactly
k1 variables are assigned differently between S and R. We
also know that H(S|A, R|A) = |A| = a therefore only
b = k1 − a are assigned differently outside A. Now we
change R into R′ in the following way. Let d be the small-
est integer such that ∀Xi ∈ ∆d(A), R[i] = S[i]. It is easy
to see that d ≤ b as ∆d1

(A) and ∆d2
(A) are disjoint iff

d1 6= d2. We let all variables in Γd(A) unchanged, and for
all other variables we set R′[i] to S[i]. Now we show that
R′ satisfies all constraints. Without loss of generality, con-
sider any constraint CV on a set of variables V . By defini-
tion, the variables in V belongs to at most two sets ∆d1

(A)
and ∆d2

(A) such that d1 and d2 are consecutive (or possibly
d1 = d2). We have 3 cases:

1. d1 ≤ d and d2 ≤ d: all variables in V are assigned as in
R, therefore CV is satisfied.

2. d1 > d and d2 > d: all variables in V are assigned as in
S, therefore CV is satisfied.

3. d1 = d and d2 = d + 1: the variables in ∆d2
(A) are

assigned as in S, and by definition of R′, the variables in
∆d1=d(A) are assigned as in S, therefore CV is satisfied.

3

Computing this neighborhood is not time expensive, as it
can be done as a preprocessing step. A simple breadth first
search on the constraint graph, i.e., the graph were any two
variables are connected iff they are constrained by the same
constraint. The neighborhood Γd(A) of a break A is recom-
puted each time, however it just requires a simple union op-
eration over the neighborhood of the elements in A.

Updates of the auxiliary CSP: The first use of Lemma 1
is straightforward. We know that, for a given break A, there
exists a b-repair only if there exists one that sharea all as-
signments outside Γb(A). Therefore, we can make P ′ equal
to the current state of P apart from Γb(A). This does not
make the algorithm stronger. However, we can then post
an ATMOSTkDIFF constraint only on Γb(A) instead of X ′,
since we have all the pruning on X ′ \ Γb(A) for “free”.

Avoiding useless repair checks: Now suppose that
Γb+1(A) ⊆ Past′. Then we know that this break has al-
ready been checked at the previous level in the search tree,
and the repair that we found has the property that assign-
ments on ∆b+1(A) are the same as in the current solution.
Thus any extension of the current partial solution, is also
a valid extension of this repair. Therefore we know that

this repair will hold in any subtree, hence we do not need
to check it unless backtracking beyond this point.

Tightening the ATMOSTkDIFF constraint: Considering
the property of Lemma 1, we can tighten the ATMOSTkDIFF
constraint by forbidding some extra tuples. Doing this, we
get a tighter pruning when doing arc consistency, while
keeping at least one solution, if such solution exists. The
first tightening is that all differences outside Γb(A) are for-
bidden. But, we can do even more inference. For in-
stance, suppose that for that we look for a 3-repair for the
break {X ′1} and that ∆1(X

′
1) = {X ′2, X

′
3}, ∆2(X

′
1) =

{X ′4}, ∆3(X
′
1) = {X ′5, }, and the domains are as follows:

X ′1 = {1, 2}, X ′2, X
′
3 = {3, 4}, X ′4, X

′
5 = {1, 2, 3, 4}

Moreover, suppose that for the main backtracker, the do-
mains are as follows:

X1 = 3, X2, X3, X4, X5 = {1, 2}

We can observe that already 2 reassignments are made at
distance 1 from X1. As a consequence, if X ′5 was to be
assigned differently to X5, then X4 would have to be equal
to X4, and therefore there is no discrepancy on any variable
from ∆2(X

′
1), hence there must be a repair such that any

variable outside Γ2(X1) is assigned as in the main solution.
We can thus prune the values 3 and 4 fromD(X ′5) (to make
it equal to X5).

Inference from repair-seeking to the main CSP: We can
infer that some values of the main CSP will never participate
in a super solution while seeking for repairs. This allows us
to prune the future variables, which can greatly speed up the
search process, especially when combined with GAC prop-
agation on “regular” constraints. For instance consider con-
straint problem P , composed of the domain variables:

X1 = {1, 2, 4}, X2 = {1, 2}, X3 = {1, 2}, X4 = {1, 2}

subject to the following constraint network:

X1 X2

sum is even 6=

X4

X3

=

sum ≤ 3

We have P ′ = P , and it is easy to see that P is arc consis-
tent. Now suppose that we look for a (1, 1)-super solution,
and our first decision is to assign the value 1 to X1. The
domains are reduced so that P remains arc consistent:

X1 = {1}, X2 = {1}, X3 = {1, 2}, X4 = {1, 2}

Then we want to make sure that there exist a 1-repair for
the break {X1}. We then consider P ′ where D(X ′1) is set
to D(X ′1) \ {1}. Moreover the constraint ATMOST2DIFF is
posted on Γ1({X1}) = (X1, X2):

X ′1 = {2, 4}, X ′2 = {1, 2}, X ′3 = {1, 2}, X ′4 = {1, 2}

Since P ′|{X′

1
} is satisfiable, (for instance, {〈X ′1 : 2〉} is a

partial solution that does not produce a domain wipe out in

any variable of P ′) we continue searching. However, if be-
fore solving P ′ in order to find a repair we first propagate
arc consistency, then we obtain the following domains:

X ′1 = {2, 4}, X ′2 = {2}, X ′3 = {1}, X ′4 = {2}

Observe that 2 ∈ D(X3) whilst 2 6∈ D(X ′3), this means that
no repair for X1 can assign the value 2 to X3. However,
Lemma 1 works in both direction, since X ′3 6∈ Γ1(X

′
1), we

can conclude that X ′3 and X3 should be equal, and therefore
we can prune the value 2 directly from X3. In this toy ex-
ample, this removal will make P arc inconsistent, and there-
fore we can conclude without searching that X1 cannot be
assigned to 1.

Notice that this extra pruning comes at no extra cost, the
only condition that we impose is to make P ′ arc consis-
tent before searching on it. After this arc consistent pre-
processing for a break A, any value pruned from the domain
of a variable X ′i ∈ X

′ \ Γb(A), can be pruned from Xi as
well.

The main drawback of this method is that as soon as
the problem involves a global constraint (for instance “all
the variables must be different”), then typically we have
Γ1(Xi) = X for any Xi ∈ X . Therefore all previous im-
provements based on neighborhood are useless. However,
one can make such inference, but using a different reason-
ing, even in the presence of large arity constraints. The idea
is the following: Suppose that after enforcing GAC on P ′,
the least number of discrepancies is exactly a + b, that is,
Diff = {i|D(Xi) 6= D′(X ′i)} & |Diff | = a + b. We
can deduce that any variable X ′j such that j 6∈ Diff must
be equal to Xj , for any b-repair. Indeed, it applies to any
repair, since only pre-processing and no search was used.
Therefore, we can prune domains in both P and P ′ as fol-
lows:

∀i 6∈ Diff D(Xi)← D(Xi) ∩D(X ′i) & D(X ′i)← D(Xi)

We can therefore modify reparability by taking into
account the previous observations (Algorithm 4).

Extensions
In (EHW04a), the authors propose to extend or restrict su-
per solutions in several directions to make them more useful
practically. In scheduling problems, we may have restric-
tions on how the machines are likely to break, or how we
may repair them. Furthermore, we have an implicit tempo-
ral constraint that forbid some reassignments. For instance,
when a variable breaks, there are often restrictions on the
alternative value that it can take. When the values represent
time, then an alternative value might have to be larger than
the broken value. Alternatively, or in addition, we may want
the repair to be chosen among larger values, for some or-
dering. It may also be the case that certain values may not
be brittle and so cannot break. Or that if certain values are
chosen, they cannot be changed. This algorithm allows to
express these restrictions (and many more) very easily, as
they can be modelled as extra constraints on P ′.

For instance to model the fact that an alternative value has
to be larger than the broken value, one can post the unary

Algorithm 4: repairability(P, S, Past, a, b):Bool
covered← ∅;
foreach A ⊆ Past′ such that |A| = a and A 6∈ covered and Γb+1 6⊆

Past′ do
foreach Xi ∈ A do
D′(X′

i
)← D′(X′

i
)− {S[i]};

foreach Xi ∈ (X \ Γb(A)) do
D′(X′

i
)← D(Xi);

if ¬AC-propagate(P ′) then return False;
Diff ← {i|D(Xi) 6= D

′(X′

i
)};

if Diff = a + b then
foreach Xi ∈ (X \Diff) do
D(Xi)← D

′(X′

i
)← (D′(X′

i
) ∩ D(Xi));

foreach Xi ∈ (X \ Γb(A)) do
D(Xi)← D

′(X′

i
);

S′ ← solve(P ′|
P ast′

+ATMOST(|A| + b)DIFF(Past′ , S));
if S′ = nil then return False;
Diff ← {i|S′[i] 6= S[i]};
foreach A′ ⊆ Diff such that |A′| = a do

covered← covered ∪ {A};

constraint X > S[X], where X is any variable involved in
the break, and S[X] is the value assigned to this variable
in the main solution. Moreover, one can change the con-
straint ATMOSTkDIFF itself. For instance, suppose that we
are only interested in the robustness of the overall makespan,
and we are solving a sequence of deadline job shop. One can
extend the deadline of P ′ by a given (acceptable) quantity q,
and omit the ATMOSTkDIFF constraint. The resulting so-
lution will be one such that no “break” of size less than or
equal to a can result in a makespan increase of more than q.

Another concern is that the semantic of the super solution
depends on the model chosen for solving a problem. For
instance, an efficient way of solving the job shop schedul-
ing problem is to search over sequences of activities on each
resource, rather than assigning start times to activities. In
this case, two solutions involving different start times may
map to a single sequence. Therefore the semantic of a su-
per solution is changed, a break or a repair implies a modifi-
cation of the order of activities for a resource. It is therefore
interesting to think of ways of solving a problem using a
model whilst ensuring that the solution is a super solution
for another model. If it is possible to channel both represen-
tations, then one can solve one model whilst applying the
reparability procedure to the second model.

Optimization
Finding super solutions is still, and will certainly remain a
difficult problem. One way to avoid this difficulty is to try
to get a solution as close as possible to a super solution. We
can then start from an initial solution found using the best
available method, and then we improve its reparability with
a branch and bound algorithm.

The (a, b)-reparability of a solution is defined as the num-
ber of combinations of less than a variables that are covered
by a b-repair. In (EHW04a), the authors report that turn-
ing the procedure into a branch and bound algorithm that

maximize reparability is the most promising way of using
super solutions in practice as an (a, b)-super solution may
not always exist. Moreover doing so, one can get a “regu-
lar” solution with the fastest available method, and improve
its reparability afterward.

The algorithm introduced here can easily be adapted in
this way. The procedure reparability would return the
number of b-repairs founds, instead of failing when a break
does not accept one. The main backtracker would then back-
track either if the problem is made arc inconsistent or the
value returned by reparability is less than the repara-
bility of the best full solution found so far. We rewrite the
procedure reparability adapted to this purpose in Al-
gorithm 5.

Algorithm 5: reparability(P, S, Past, a, b):Int
covered← ∅;
foreach A ⊆ Past′ such that |A| = a and A 6∈ covered and Γb+1 6⊆

Past′ do
foreach Xi ∈ A do
D′(X′

i
)← D′(X′

i
)− {S[i]};

foreach Xi ∈ (X \ Γb(A)) do
D′(X′

i
)← D(Xi);

S′ ← solve(P ′|
P ast′

+ATMOST(|A| + b)DIFF(Past′ , S));
if S′ 6= nil then

Diff ← {i|S′[i] 6= S[i]};
foreach A′ ⊆ Diff such that |A′| = a do

covered← covered ∪ {A};

return |covered|;

Unfortunately, if all other improvements still hold, we
cannot prune P as a result of a pruning when pre-processing
P ′, since a break without repair is allowed.

Future work
Our next priority is to implement this algorithm for finding
super solutions to the job-shop scheduling problem. We will
use a constraint solver that implements shaving, the ORR
heuristic described in (SF96), as well as constant time prop-
agators for enforcing GAC on precedence and overlapping
constraints. As these two constraints are binary, the neigh-
borhood of a variable is limited. Hence the theoretical re-
sults introduced here should apply. Moreover, we expect this
reasoning to offer a good synergy with a strong global con-
sistency method such as shaving. Indeed more inference can
be done on the repairs (without searching) than with GAC,
and thus more values can be pruned in the main search tree
because of the robustness requirement. We therefore expect
to be able to solve much larger problems than the instances
solved in (EHW04a).

Conclusion
We have introduced a new algorithm for finding super solu-
tions that improves upon the previous method. The new al-
gorithm is more space efficient as it only requires to double
the size of the original constraint satisfaction problem. The
new algorithm also permits us to use any constraint toolkit to

solve the master problem as well as the sub-problems gener-
ated during search. We also take advantage of repair multi-
directionality and of inference based on just a restricted
neighborhood of constraints. Moreover, this algorithm al-
lows the user to easily specify extra constraints on the re-
pairs. For example, we can easily specify that all repairs
should be later in time than the first break.

Acknowledgements
Emmanuel Hebrard and Toby Walsh are supported by Na-
tional ICT Australia. Brahim Hnich is currently sup-
ported by Science Foundation Ireland under Grant No.
00/PI.1/C075. We also thank ILOG for a software grant.

References
J.C. Beck A.J. Davenport, C. Gefflot. Slack-based tech-
niques for robust schedules. In Proceedings ECP’01, 2001.
J. Carlier and E. Pinson. Adjustment of heads and tails for
the job-shop problem. European journal of Operational
Research, 78:146–161, 1994.
B. Hnich E. Hebrard and T. Walsh. Robust solutions for
constraint satisfaction and optimization. In Proceedings
ECAI’04, 2004.
B. Hnich E. Hebrard and T. Walsh. Super solutions in con-
straint programming. In Proceedings CP-AI-OR’04, 2004.
J. Lang H. Fargier. Uncertainty in constraint satisfaction
problems: a probabilistic approach. In Proceedings EC-
SQARU’93, 1993.
D. Knuth. The art of computer programming: Pre-
fascicle 3a: Generating all combinations. http://www-cs-
faculty.stanford.edu/ knuth/fasc3a.ps.gz.
A. Parkes M. Ginsberg and A. Roy. Supermodels and ro-
bustness. In Proceedings AAAI-98, pages 334–339, 1998.
A. Cesta N. Policella, S.F. Smith and A. Oddi. Generating
robust schedules through temporal flexibility. In Proceed-
ings ICAPS’04, 2004.
N. Sadeh and M.S. Fox. Variable and value ordering
heuristics for the job shop scheduling constraint satisfac-
tion problem. Artificial Intelligence, 86(1):1–41, Septem-
ber 1996.
R. Weigel and C. Bliek. On reformulation of constraint sat-
isfaction problems. In Proceedings ECAI-98, pages 254–
258, 1998.

