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tInformally, abstra
tion 
an be des
ribed asthe pro
ess of mapping a representation of aproblem into a new representation. The aimof the paper is to propose a theory of ab-stra
tion. The generality of the framework istested by formalizing and analyzing some workdone in the past [Sa
erdoti, 1974, Hobbs, 1985,Plaisted, 1981℄; its eÆ
a
y by giving a pro-
edure whi
h solves the \false proof" problem[Plaisted, 1981℄ by avoiding the use of in
onsis-tent abstra
t spa
es.1 Introdu
tionAbstra
tion has been suggested as a very powerfulte
hnique for 
onstraining sear
h in automated reason-ing. Informally, abstra
tion 
an be des
ribed as thepro
ess of mapping a representation of a problem (also
alled the \ground" representation) into a new represen-tation (also 
alled the \abstra
t" representation) whi
hpreserves 
ertain desirable properties and is simpler tohandle. The \desirable properties" amount to requiringthat the abstra
t solution be of help in solving the prob-lem in the original sear
h spa
e. The notion of \simpli
-ity" depends on the appli
ation, it may mean de
idabil-ity or lower 
omplexity. As far as we know, no 
ompre-hensive theory of abstra
tion has been given. The onlywork in this dire
tion [Plaisted, 1981℄ is 
on
erned withone form of abstra
tion and is limited to the area of res-olution theorem proving. This has 
aused the la
k of asatisfa
tory 
hara
terization and general understandingof abstra
tion.�This work was begun when the �rst author was workingat the Department of Arti�
ial Intelligen
e at Edinburgh Uni-versity supported by SERC grant GR/E/4459.8. The se
ondauthor is supported by a SERC studentship. The resear
hdes
ribed in this paper owes a lot to the openess and sharingof ideas whi
h exists in the Mathemati
al Reasoning group.The authors thank Alan Bundy, Enri
o Giun
higlia, AlexSimpson and Ri
hard Weyhrau
h for the many dis
ussionson the topi
. Alan Bundy is also thanked for reading earlyversions of the paper.

The aim of the work (partially) des
ribed in this pa-per is to provide a theory of abstra
tion and use it to:(1) 
lassify the various forms of abstra
tion; (2) inves-tigate their formal properties and the operations whi
h
an be de�ned on them; (3) analyze and 
lassify pastwork; (4) de�ne ways of building \useful abstra
tions"and (5) study how the proof in the abstra
t spa
e 
anbe used to aid the proof in the ground spa
e. In thispaper, for la
k of spa
e, only some issues are dis
ussedand proofs are only outlined or not given (for a more
omplete treatment see [Giun
higlia and Walsh, 1990℄).In our formal framework (se
tion 2), an abstra
tion isjust a mapping between formal systems. As this is avery general 
on
ept, we 
on
entrate on the 
lasses of ab-stra
tion whi
h preserve provability. This 
aptures mostof the relevant previous work in abstra
t theorem provingand planning (se
tion 3). In se
tion 4, we investigate the\false proof" problem [Plaisted, 1981℄; when abstra
tinga problem, we may throw too mu
h information awayand leave an in
onsistent abstra
t spa
e. We prove thatthis problem 
annot be avoided as it is always true forthe 
lass of abstra
tions we have 
ome a
ross in abstra
ttheorem proving and planning. However, we are able topropose a (de
idable) solution to this problem.2 The formal frameworkDe�nition 1 (Formal system) : A formal system� is a triple h�;�;
i, where � is the Language, 
 isthe set of axioms and � is the Dedu
tive Ma
hineryof �.The language � is 
omposed of an alphabet, the set of(well formed) terms and the set of well formed formu-lae (w�s from now on). 
 is a subset of the w�s of �.The dedu
tive ma
hinery is a set of rules of inferen
e forderiving theorems from axioms.De�nition 2 (Abstra
tion) : If�1 = h��1 ;
�1 ;��1i and �2 = h��2 ;
�2 ;��2i are twoformal systems, an abstra
tion mapping f , written alsof : �1 7! �2, is a triple of total fun
tions hf�; f
; f�isu
h that: f� : ��1 7! ��2f
 : 
�1 7! 
�2



f� : ��1 7! ��2If not expli
itly stated to the 
ontrary we assume thatf� and f
 agree on the axioms; that is, for any w� !, if! 2 
, then f�(!) = f
(!)1. When no 
onfusion ariseswe drop the sub�xes. Given a dedu
tion tree ��1 of`�1 '�1 in �1, we indi
ate by f(��1) a dedu
tion trees��2 of `�2 f('�1).De�nition 3 (T*-abstra
tions) : An abstra
tion f :�1 7! �2 is said to be a 2TC-Abstra
tion i�, for any w� '�1 , `�1 '�1 i�`�2 f('�1);TD-Abstra
tion i�, for any w� '�1 , if `�2 f('�1)then `�1 '�1 ;TI-Abstra
tion i�, for any w� '�1 , if `�1 '�1 then`�2 f('�1).We write \T*-abstra
tion" to mean any of the aboveabstra
tions, TH(�) to mean the set of w�s provable in� and NTH(�) to mean the set of w�s whi
h, if addedto the axioms of �, make it in
onsistent. For example, aTI-abstra
tion 
an be represeted by the following �gure:��1 ����TH(�1)����NTH(�1)
��2&%'$����TH(�2)����NTH(�2)--

Figure 1: TI-abstra
tionTC-abstra
tions map all the elements of TH(�1) into el-ements of TH(�2) and these are all and only the elementsof TH(�2). Herbrand's theorem 
an be formalized as aTC-abstra
tion. TC-abstra
tions are used, for instan
e,in de
ision theory, under the name of redu
tion methods,to prove the de
idability of and build de
iders for thevalidity problem for 
ertain sub
lasses of the �rst order
al
ulus. The tri
k is to �nd a 
lass whose de
idabilityis known and prove that there is a proof of a w� i� thereis a proof of the \translated" w� in the new 
lass.In TD-abstra
tions a subset of the elements of TH(�1)is mapped into TH(�2) and these are all the elementsof TH(�2). TD-abstra
tions are used, for instan
e, toimplement derived inferen
e rules and, as alternatives1To be pre
ise, sin
e we distinguish between w�s o

ur-ring as axioms and as anything else, we should 
onsider o
-
urren
es of w�s and not w�s. Sin
e, in this paper, for anyw� !, if ! 2 
, then f�(!) = f
(!), to make things simpler,we 
onsider f� and f� to range over w�s.2\T" stands for theorem, \C" for 
onstant, \D" for de-
reasing and \I" for in
reasing.

to TI-abstra
tions, to over
ome some of their problems[Tenenberg, 1987℄.In TI-abstra
tions all the elements of TH(�1) aremapped into a subset of TH(�2). TI-abstra
tions havebeen mostly used in \abstra
t theorem proving" 3. Themain idea underlying the use of these abstra
tions is toprove the abstra
ted theorem in �2 (whi
h, supposedly,should be simpler than in �1) and then to use the stru
-ture of the proof in �2 to shape the proof in �1. Thefa
t that there is a proof in �2 does not guarantee thatthere is a proof in �1.T*-abstra
tions are 
lassi�ed on how provability is pre-served between the ground spa
e and the abstra
t spa
e;they are thus useful when the dedu
tive ma
hinery isde�ned to generate theorems. On the other hand thereare formal systems (ie. resolution) whose dedu
tive ma-
hinery determines in
onsisten
y. In these 
ases, ab-stra
tions must be 
lassi�ed on how in
onsistent for-mal systems are mapped. This requires the de�nition ofnew 
lasses of abstra
tions, 
alled NT*-abstra
tions.Thus, for instan
e, NTI-abstra
tions are de�ned asfollows 4:De�nition 4 : An abstra
tion f : �1 7! �2 is an NTI-Abstra
tion i�, for any w� '�1 , if adding '�1 to theaxioms of �1 yields an in
onsistent formal system, thenadding f('�1) to the axioms of �2 yields an in
onsistentformal system.Various properties, equivalen
es, and relationshipsamong T*- and NT*-abstra
tions 
an be proved[Giun
higlia and Walsh, 1990℄. We 
an draw a similar�gure for NTI-abstra
tions as for TI-abstra
tions:��1 ����TH(�1)����NTH(�1)
��2����TH(�2)����&%'$NTH(�2)--Figure 2: NTI-abstra
tions (Falseful abstra
tions)If a formal system � has the \
lassi
al" negation, then,for any w� �, � 2 TH(�) i� :� 2 NTH(�). Thustrivially:Corollary 1 : If �1 and �2 are two formal systemswith (
lassi
al) negation and if f : �1 7! �2 is a TI-3Note that we give the word \abstra
tion" a wider mean-ing then before (see de�nition 2).4NTC-abstra
tions and NTD-abstra
tions are de�nedanalogously to TC-abstra
tions and TD-abstra
tions respe
-tively, but preserving in
onsisten
y instead of theoremhood(see de�nitions 3, 4).



abstra
tion then, for any �, if � 2 TH(�1) then :� 2NTH(�1) and :f(�) 2 NTH(�2).In many 
ases, a refutation system, taking as input a goalformula � (usually automati
ally) negates it, adds theresult to the axioms and tries to prove that the resultingtheory is in
onsistent. A TI-abstra
tion will therefore beuseful if instead of adding f(:�) to the abstra
t spa
e,we add :f(�). Additionally there are TI-abstra
tionswhi
h 
an be used in resolution-based systems indepen-dently of whether the goal or its negation is abstra
ted.De�nition 5 (Negation preserving) : An abstra
-tion f : �1 7! �2 is negation preserving i� f(:�) =:f(�).Theorem 1 : If �1 = h�1;
1;�1i and �2 =h�2;
2;�2i are two formal systems with (
lassi
al)negation, then a negation preserving abstra
tion f :�1 7! �2 is a TI-abstra
tion i� f 0 : �01 7! �02 is a NTI-abstra
tion, where �01 = h�1;
1;�01i, �02 = h�2;
2;�02iand �01 and �02 are su
h that TH(�01) = TH(�1) andTH(�02) = TH(�2).Examples are f = f 0 with �1, �2, �01 and �02 beingnatural dedu
tion, and f 6= f 0 with �1, �2 being natu-ral dedu
tion and �01, �02 being resolution. As far as weknow, all the abstra
tions proposed to work in resolutionsystems are negation preserving. However, there are use-ful abstra
tions whi
h are not negation preserving (forinstan
e when negation is not part of the language of �1or �2 [Newell et al., 1963℄, or only partially preserved bythe mapping).3 Some examples of abstra
tionThe purpose of these examples, together with provid-ing a rational re
onstru
tion of the work des
ribed, is to
onvin
e the reader that the framework is very power-ful and allows us to present an uni�ed view of the workdone in di�erent areas and with di�erent goals. For la
kof spa
e, only three examples are reported, more \histor-i
al" examples are reported in [Giun
higlia and Walsh,1990℄.Example 1 [Planning℄: Abstrips [Sa
erdoti, 1974℄ wasone of the �rst noti
eable appli
ations of abstra
tion. InAbstrips the pre
onditions to operators were abstra
teda

ording to their 
riti
ality. To formalize Strips-likeplanning we shall adopt a situation 
al
ulus in a naturaldedu
tion formal system. Let us 
onsider the abstra
-tion fAB where �1 and �2 are situation 
al
uli witha �rst order language, 
 
onsists of frame, operatorand theoreti
 axioms and � 
onsists of natural dedu
-tion rules of inferen
e. Operators are w�s of the form\ 8s:(V1�i�n pi(s) ! q(f(s))) " where pi is a pre
on-dition, s is a state of the world, f is some a
tion, and qdes
ribes the new state of the world. Goals are w�s of

the form \9s r(s)". fAB is applied to w�s and axiomsas follows:fAB(�) = � if � is an atomi
 formula.fAB(:�) = :fAB(�);fAB(�Æ�) = fAB(�)ÆfAB(�), where \Æ" is \^" or \_";fAB(℄x �) = ℄x fAB(�), where \℄" is \9" or \8";fAB(�! �) = fAB(�)! fAB(�), provided \�! �" isnot an operator;fAB(V1�i�n pi(s) ! r) = Vi2
rit(�) pi(s) ! fAB(r),provided that \V1�i�n pi(s) ! r" is an operator, wherei 2 
rit(�) if the 
riti
ality of pi is greater than �.Theorem 2 : fAB is TI, namely, if `�1 '�1 , then `�2fAB('�1).Proof[Outline℄: By proving that given a dedu
tion tree��1 of `�1 '�1 , we 
an build a dedu
tion tree ��2 =f iAB(��1) of `�2 fAB('�1). The proof pro
eeds by in-du
tion on the weight N 5 of ��1 . For proofs of length1, fAB is applied to the single w�; this generates a validproof in ��2 . Assume that we have a dedu
tion tree upto size N . Any rule appli
ation that is not modus po-nens involving an operator translates unmodi�ed, in thesense that, for instan
e, an \_I" on ' in ��1 be
omesan \_I" on fAB(') in ��2 . For an operator appli
ation,the following transformation is performed:�1V1�i�n pi V1�i�n pi ! qq =)fAB � �1V1�i�n pi�Vi2
rit(�) pi Vi2
rit(�) pi ! fAB(q)fAB(q)The abstra
t proof is valid sin
e fAB(:::) is a valid dedu
-tion tree from the indu
tion hypothesis, and the hypoth-esis of the (abstra
t) operator axiom is obtained from\V1�i�n pi" by a (possibly empty) sequen
e of appli
a-tions of \and-elimination". 2Note that the abstra
t proof is longer than the one inthe ground spa
e. The purpose of abstra
ting is not to�nd these longer proofs; we hope that there are also go-ing to be shorter proofs. These shorter proofs are thosethat don't try to satisfy pj for j 62 
rit(�). There isno guarantee that there will be a shorter proof than theone exhibited; we will always be able to devise an obtusetheory in whi
h to prove the pi for i 2 
rit(�) we haveto prove all the other pj for j 62 
rit(�). �5The weight of a dedu
tion tree is the number of its for-mula o

urren
es.



Example 2 [Resolution theorem proving, logi
 pro-gramming℄: The work by Plaisted is 
losest in spirit toours. Plaisted proposes two 
lasses of abstra
tion, ordi-nary abstra
tions and weak abstra
tions [Plaisted, 1981℄,whi
h map a set of 
lauses onto a set of 
lauses and pre-serve in
onsisten
y. His work is less general than ours as:he restri
ts his attention to resolution systems and his
lasses of abstra
tion fail to 
apture all NTI-abstra
tionmappings that preserve in
onsisten
y between resolutionsystems. In other words, Plaisted's abstra
tions are NTI,but not all NTI-abstra
tions are weak or ordinary 6.Moreover we 
laim that our de�nitions of abstra
tionare \more natural" in the sense that better re
e
t and
apture the fun
tionalities they are given for.Ordinary abstra
tions are des
ribed as taking both �1and �2 to be �rst order 
al
uli with �� allowing 
lausalform, �� being resolution and 
� being arbitrary. Anyordinary abstra
tion mapping f maps a 
lause in ��1onto a set of 
lauses in ��2 subje
t to the following 
on-ditions:a) f(?) = f?g;b) if �3 is a resolvent of �1 and �2 in �1, and �3 2 f(�3)then there exist �2 2 f(�2) and �1 2 f(�1) su
hthat a resolvent of �1 and �2 subsumes �3 in �2;
) if �1 subsumes �2 in �1, then for every �2 2 f(�2)there exists �1 2 f(�1) su
h that �1 subsumes �2 in�2.Weak abstra
tions are identi
ally de�ned to ordinary ab-stra
tions ex
ept 
ondition b) is weakened to the prop-erty that if �3 is a resolvent of �1 and �2 in �1, and�3 2 f(�3) then there exist �2 2 f(�2) and �1 2 f(�1)su
h that either �1 subsumes �3, or �2 subsumes �3, ora resolvent of �1 and �2 subsumes �3 in �2.Theorem 3 : Weak and ordinary abstra
tions are NTI.Proof: The proof is a 
orollary to Theorem 2.5 on page55 of [Plaisted, 1981℄. 2Theorem 4 : There exist NTI-abstra
tions betweenresolution systems that are not weak or ordinary abstra
-tions.Proof[Outline℄: We 
an �nd NTI-abstra
tions that failevery one of the three 
onditions in the de�nition of weakand ordinary abstra
tions. Condition a) is failed bythe NTI-abstra
tion f su
h that, for any w� ' in �1,f(') = f' _?g. The problem with 
ondition b) is thatwe may also need to resolve with an axiom of the the-ory. Consider, for instan
e, the abstra
tion de�ned by6All Plaisted's examples of abstra
tion are negation pre-serving and thus also TI.

f(p _ q) = fp _ rg and f(') = f'g otherwise. If �1
ontains the axioms, :q, and :r then f is NTI. In par-ti
ular, p _ q resolves with :p in �1 to give q. However,no 
lause in the abstra
tion of p _ q, or :p (or their re-solvent) subsumes the 
lause q found in the abstra
tionof q. For 
ondition 
), 
onsider the abstra
tion de�nedby f(p_ q) = fr; p_ qg and f(') = ' otherwise. Now fis NTI. However, f fails 
ondition 
) of the de�nition ofweak and ordinary abstra
tions as p subsumes p_ q butno 
lause in the abstra
tion of p subsumes r whi
h is inf(p _ q). 2The de�nition of weak and ordinary abstra
tions 
ouldbe extended to over
ome the �rst 
ounter-example by re-pla
ing 
ondition a) with the more general requirementthat 9' 2 f(?): `�1 :'. However, this still leaves use-ful NTI-abstra
tions that fail 
onditions b) and 
). Forexample, if p0 $ pi for many i we might abstra
t many
lauses of the form pi_q onto the one 
lause fp_qg. One
ould argue that ordinary and weak abstra
tions havethe advantage, over NTI-abstra
tions, that they alwaysmap into simpler theories, in the sense that there is al-ways an abstra
t proof that is no longer than the short-est proof of the unabstra
ted theorem [Plaisted, 1981℄.This does not seem a good point sin
e, �rst of all, weintuitively expe
t NTI-abstra
tions (that are not NTC)to have this or similar properties and, se
ond and moreimportantly, there are NTI-abstra
tions, whi
h are notweak or ordinary, whi
h build simpler theories (the lastexample is one possible 
ase). �Example 3 [Common sense reasoning℄: In [Hobbs,1985℄, Hobbs presents a theory of granularity in whi
ha 
omplex theory is abstra
ted onto a simpler, more\
oarse-grained" theory with a smaller domain; for ex-ample, we 
ould map the real world of 
ontinuous timeand positions onto a (mi
ro)world of dis
rete time andpositions. Hobbs' granularity theory 
an be formalizedas a mapping (let us 
all it \fgran") that 
an be provedto be TI. Let us suppose that both �1 and �2 are 
al-
uli with a �rst order language, an arbitrary set of ax-ioms and any 
omplete dedu
tive ma
hinery for �rst or-der logi
. fgran maps di�erent obje
ts in �1 into (notne
essarily di�erent) obje
ts in �1 a

ording to an in-distinguishability relation, de�ned by the (se
ond-order)axiom: 8x; y:x � y $ 8p 2 R:p(x)$ p(y)where R is the subset of the predi
ates of the theorydetermined to be relevant to the situation at hand7.Thus fgran keeps the same logi
al stru
ture of w�s andtranslates any 
onstant into its equivalen
e 
lass, namelyfgran(p(a)) = p(�(a)) where a is any 
onstant symbol7As in [Hobbs, 1985℄, we de�ne indistinguishability forunary predi
ates; it 
an, however, be easily generalized ton-ary predi
ates.



and �(a) is the equivalen
e 
lass of the 
onstant a wrt theindistinguishability relation; that is �(x) = fy : x � yg.Theorem 5 : fgran is TI/NTI.Proof By mapping a proof tree ��1 in �1 of '�1 (pos-sibly of ?) onto a proof tree ��2 in �2 of f('�1). Theproof pro
eeds by indu
tion on the weight of ��1 . Wemerely apply f� to every w� in ��1 . 2(Like any TI abstra
tion, see next se
tion) fgran 
an mapa 
onsistent theory into an in
onsistent theory. For ex-ample, if the 
onstants a and b are \indistinguishable",then a 
onsistent theory with equality and the axiom:(a = b) maps into an in
onsistent theory with the ax-iom :(fa; bg = fa; bg). However, the following resultholds:Theorem 6 : fgran preserves 
onsisten
y if indistin-guishability is de�ned over all predi
ates.Proof[Outline℄: By 
ontradi
tion. Assume that a 
on-sistent theory, �1 maps onto an in
onsistent theory, �2.That is, we 
an �nd a proof tree, ��2 of?. We show howyou 
an 
onstru
t a proof tree, ��1 of ?, 
ontradi
tingthe assumption that �1 is 
onsistent. For every equiva-len
e 
lass, �(a) we pi
k one member of that 
lass, b; toevery w�, ' in ��2 we apply the substitution f�(a)=bg.This will generate a proof tree, ��1 whose assumptionswill either be axioms of �1 or will be derivable from themusing the indistinguishability relation and substitution ofequivalen
es. If indistinguishability is not de�ned overall predi
ates, this last fa
t will not ne
essarily be true.2Note that fgran is a spe
ial 
ase of the example of weak/ordinary abstra
tions (given in [Plaisted, 1981℄) wherefun
tion symbols are renamed in a systemati
 (but notne
essarily 1-to-1) way. �4 The false proof problemA major problem with the use of TI-abstra
tions 8 isthat, even if �1 is 
onsistent, �2 may be in
onsistent.An example has already been given for fgran. With fABit is suÆ
ient to 
onsider abstra
ting the operators \�1^�2 ! �3" and \�1 ^ �4 ! :�3" onto \�1 ! �3" and\�1 ! :�3" when �1 is a theorem but �2 and �4 are notboth theorems. This problem was noti
ed by Plaistedwho 
alled it the \false proof problem". It 
an be seenas a sympton of the following theorem:Lemma 1 : If f : �1 7! �2 is an abstra
tion and �2 isin
onsistent then f is a TI-abstra
tion.8Everything stated in this se
tion holds dually for NTI-abstra
tions.

Lemma 1 holds independently of the 
onsisten
y of �1.On
e f has been proved to be TI it may happen that�2 is in
onsistent. This is a major blow to the use ofTI-abstra
tions to guide the proof in the ground spa
e.When �2 is in
onsistent the stru
ture of the proof in �2
ould still be used to shape the proof in �1. However,any w� in �2 is a theorem and thus �2 does not �lterout any of the w�s whi
h are not theorems in �1. Ina way �2 gives too little information. To make mattersworse, in general it is not possible to de
ide in a �niteamount of time whether a formal system is 
onsistent.When working with a �xed formal system (ie. set the-ory + �rst order logi
) a solution is to build abstra
tionswhi
h are proved a priori to have 
onsistent �2. In many
ases, however, (ie. planning, logi
 programming, knowl-edge based systems), while the set of inferen
e rules of �1is �xed, its axioms may vary and depend on the appli
a-tion. Tenenberg [Tenenberg, 1987℄ proposed a solutionto the problem in the 
ase of a form of predi
ate ab-stra
tions 9 in a resolution-based system. However, theabstra
tions he proposes have many drawba
ks: the �rstabstra
tion is TI but the 
onstru
tion of 
�2 is not de-
idable (even if re
ursively enumerable) and it may takean in�nite amount of time to generate it; the other twotypes of abstra
tion are TD or similar to TD [Giun
higliaand Walsh, 1990℄ 10. This means that 
ompleteness islost sin
e there is at least one theorem in �1 whose ab-stra
tion is not a theorem in �2. We 
onsider this theone property you do not want to lose.The ideal solution would be to generalize the 
on
eptof abstra
tion mapping to be parameterized on the ax-ioms of �1 and then to �nd suÆ
ient 
onditions whi
hguarantee that a TI-abstra
tion maps �1 into a 
onsis-tent �2, independently of the axioms of �1 (as long as�1 is 
onsistent). This seems a reasonable request sin
ethere are abstra
tions whi
h, �x ��1 , ��2 , ��1 , ��2f�, f
 and f� are TI for any 
hoi
e of the theoreti
 ax-ioms (this is, for instan
e, true for the abstra
tions ofthe three examples) 11.Let ��1 and ��2 be two languages, ��1 and ��2 twodedu
tive ma
hineries. Then, if f� : ��1 7! ��2 ,g : ��1 7! ��2 and f� : ��1 7! ��2 are three to-tal fun
tions, F = hf�; g; f�i is an abstra
tion from�1 = h��1 ;��1 ;��1i to �2 = h��2 ;��2 ;��2i. Thenfor any 
�1 � ��1 , if by \g " 
�1" we indi
ate g re-stri
ted to apply to 
�1 , F
�1 = hf�; g " 
�1 ; f�i isan abstra
tion from �
�11 = h��1 ;
�1 ;��1i to �
�12 =h��2 ;
�2 ;��2i, with 
�2 = g(
�1).9Predi
ate abstra
tions are abstra
tions where distin
tpredi
ate symbols in �1 are mapped onto (possibly not dis-tin
t) predi
ate symbols in �2 [Giun
higlia and Walsh, 1990℄.10Note that it 
an be proved that, more generally, for anyTD-abstra
tion, if �1 is 
onsistent, so is �2.11Of 
ourse theory independent TI-abstra
tions are in gen-eral less eÆ
ient than the ones geared towards one single the-ory as they do not exploit the stru
ture of theoreti
 axioms.



Theorem 7 : Let ��1 and ��2 be two languages, ��1and ��2 two dedu
tive ma
hineries, f� : ��1 7! ��2 , g :��1 7! ��2 and f� : ��1 7! ��2 three total fun
tions.Then there exists 
�1 � ��1 su
h that, if the abstra
tionF
�1 = hf�; g " 
�1 ; f�i is TI and NTI but not NTC,then �
�11 is 
onsistent and �
�12 is in
onsistent.Proof[Outline℄: By 
onstru
ting 
�1 . Be
ause F
�1 isNTI- but not NTC-, there exists a w� ' su
h that addingF
�1 (') as an axiom to �2 makes an in
onsistent formalsystem, but that adding ' as an axiom to �1 doesn't. 2Theorem 7 
an a
tually be proved in more power-ful forms; however the hypotheses hold for most TI-abstra
tions. For instan
e negation preserving abstra
-tions that are TI are also NTI and vi
e versa (theo-rem 1). Theorem 7 proves that we 
annot �nd a TI-abstra
tions whi
h maps a 
onsistent �1 into a 
onsistent�2 independently of the axioms of �1. However, we 
an�nd (syntati
 
hara
terisations of) subsets of theoriesfor whi
h 
onsisten
y is guaranteed. A di�erent solutionto the false proof problem is to vary the TI-abstra
tionuntil we 
an (de
idably) show that �2 is 
onsistent. TI-abstra
tions applied to the same �1 
an be 
lassi�ed intoa weak partial order, indi
ated by \v".De�nition 6 (v) : If fi : �1 7! �i2 and fj : �1 7!�j2 are two TI-abstra
tions then fi v fj i� for all w�s'�1 , if `�i2 fi('�1 ) then `�j2 fj('�1). We say that fi isweaker than fj or, dually, that fj is stronger than fi.If fi v fj , then fj is stronger than fi in the sense thatthere are fewer w�s whi
h are theorems in �i2 and notin �1 than w�s whi
h are theorems in �j2 and not in�1. \v" is in general a weak partial order (respe
tingtransitivity, antisymmetry and re
exivity) but not a to-tal order. If, however, we have a set of totally orderedabstra
tions then the following result holds:Theorem 8 : If f1 : �1 7! �12, ..., fn : �1 7! �n2 areTI-abstra
tions and f1 v ::: v fn (f1; :::; fn are totallyordered), then if �n2 is 
onsistent so is �i2 for any 1 �i � n.Theorem 8 suggests the following pro
ess:� build sets of abstra
tions, Fi = ff i1; :::; f inig wheref i1 v ::: v f ini and f ini(�1) is de
idable (eg. it ispropositional).� �nd a set, Fj in whi
h the 
odomain of the strongestabstra
tion f jnj (�1) is 
onsistent. Note that, sin
ef jnj (�1) is de
idable, its 
onsisten
y or in
onsisten
y
an be proved in a �nite amount of time.

� starting with the strongest abstra
tion (that is withl = nj), until l > 1 use the proof that the abstra
tedw� is a theorem in f jl (�1) to help 
onstru
t a proofin f jl�1(�1). If, in any of the f jl (�1), the abstra
tedw� is not a theorem, then the w� 
annot be a the-orem in �1 (sin
e f jl is a TI-abstra
tion).Of 
ourse there is no guarantee that all the steps in un-abstra
ting ba
k to �1 will go through or terminate. Theoverall performan
e depends on how the various abstra
-tions in the total order are built and on how the pro
essof unabstra
ting is performed. For instan
e, 
omputingthe 
onsisten
y of f jnj (�1) 
an be optimized by build-ing a very simple, \minimal" f jnj (�1). Further time 
analso be saved, when f jnj (�1) is proved in
onsistent byintrodu
ing (in an automated way) small variations inf jnj that are tuned to the sour
e of the in
onsisten
y.5 Con
lusionsIn this paper we have proposed a theory of abstra
tionwhi
h extends the notions of abstra
tion previously used.We have fo
used on abstra
t theorem proving and havesuggested that a 
ertain 
lass of provability preservingabstra
tions, TI- and NTI-abstra
tions (whi
h are notTC and NTC) are the 
orre
t abstra
tions to use. TC-and NTC- abstra
tions are in general too strong, andthe goal of having \simpler" abstra
t proofs does notseem a
hievable ex
ept in very spe
ial and limited forms(for instan
e, if f : �1 7! �2 is a TC-/ NTC- abstra
-tion then if �1 is unde
idable then �2 
annot be de
id-able). The dual 
lass of provability preserving abstra
-tions, TD- (and NTD-) abstra
tions (whi
h are not TC-and NTC-) are of less use as they lose 
ompleteness; thatis, there is at least one theorem whose abstra
tion is nota theorem. Unfortunately, TI- (and NTI-) abstra
tionsare subje
t to the false proof problem; they 
an map a
onsistent theory into an in
onsistent abstra
t theory.The last se
tion has proposed a new (and de
idable) so-lution to this problem.Referen
es[Giun
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