Abstract Theorem Proving *

Fausto Giunchiglia
Mechanised Reasoning Group
IRST
Povo, I 38100 Trento
Italy
fausto@irst.uucp

Abstract

Informally, abstraction can be described as
the process of mapping a representation of a
problem into a new representation. The aim
of the paper is to propose a theory of ab-
straction. The generality of the framework is
tested by formalizing and analyzing some work
done in the past [Sacerdoti, 1974, Hobbs, 1985,
Plaisted, 1981]; its efficacy by giving a pro-
cedure which solves the “false proof’ problem
[Plaisted, 1981] by avoiding the use of inconsis-
tent abstract spaces.

1 Introduction

Abstraction has been suggested as a very powerful
technique for constraining search in automated reason-
ing. Informally, abstraction can be described as the
process of mapping a representation of a problem (also
called the “ground’ representation) into a new represen-
tation (also called the “abstract” representation) which
preserves certain desirable properties and is simpler to
handle. The “desirable properties” amount to requiring
that the abstract solution be of help in solving the prob-
lem in the original search space. The notion of “simplic-
ity” depends on the application, it may mean decidabil-
ity or lower complexity. As far as we know, no compre-
hensive theory of abstraction has been given. The only
work in this direction [Plaisted, 1981] is concerned with
one form of abstraction and is limited to the area of res-
olution theorem proving. This has caused the lack of a
satisfactory characterization and general understanding
of abstraction.

This work was begun when the first author was working
at the Department of Artificial Intelligence at Edinburgh Uni-
versity supported by SERC grant GR/E/4459.8. The second
author is supported by a SERC studentship. The research
described in this paper owes a lot to the openess and sharing
of ideas which exists in the Mathematical Reasoning group.
The authors thank Alan Bundy, Enrico Giunchiglia, Alex
Simpson and Richard Weyhrauch for the many discussions
on the topic. Alan Bundy is also thanked for reading early
versions of the paper.

Toby Walsh
Department of Artificial Intelligence
University of Edinburgh
80 South Bridge, Edinburgh
Scotland
Toby_Walsh@uk.ac.edinburgh

The aim of the work (partially) described in this pa-
per is to provide a theory of abstraction and use it to:
(1) classify the various forms of abstraction; (2) inves-
tigate their formal properties and the operations which
can be defined on them; (3) analyze and classify past
work; (4) define ways of building “useful abstractions”
and (5) study how the proof in the abstract space can
be used to aid the proof in the ground space. In this
paper, for lack of space, only some issues are discussed
and proofs are only outlined or not given (for a more
complete treatment see [Giunchiglia and Walsh, 1990]).

In our formal framework (section 2), an abstraction is
just a mapping between formal systems. As this is a
very general concept, we concentrate on the classes of ab-
straction which preserve provability. This captures most
of the relevant previous work in abstract theorem proving
and planning (section 3). In section 4, we investigate the
“false proof’ problem [Plaisted, 1981]; when abstracting
a problem, we may throw too much information away
and leave an inconsistent abstract space. We prove that
this problem cannot be avoided as it is always true for
the class of abstractions we have come across in abstract
theorem proving and planning. However, we are able to
propose a (decidable) solution to this problem.

2 The formal framework

Definition 1 (Formal system) : A formal system
Y is a triple (A, A,Q), where A is the Language, Q is
the set of axioms and A is the Deductive Machinery
of X.

The language A is composed of an alphabet, the set of
(well formed) terms and the set of well formed formu-
lae (wifs from now on).) is a subset of the wifs of A.
The deductive machinery is a set of rules of inference for
deriving theorems from axioms.

Definition 2 (Abstraction) : If
¥ =(Ay,, 0, Ay,) and Xo = (Ay,, Qx,, Ay,) are two
formal systems, an abstraction mapping f, written also
f X1 = X, is a triple of total functions (fa, fa, fa)
such that:

fA : Agl — A22
fQ : 921 — ng

JA - Ay, = Ay,

If not explicitly stated to the contrary we assume that
fa and fq agree on the axioms; that is, for any wif w, if
w € Q, then fy(w) = fo(w)!. When no confusion arises
we drop the subfixes. Given a deduction tree IIs, of
Fs, ¢x, in X1, we indicate by f(Ils,) a deduction trees
s, of '_22 f((pzl)'
Definition 3 (T*-abstractions) : An abstraction f :
Y = Yy is said to be a

TC-Abstraction iff, for any wff ¢s,, Fs, s, iff
|_E2 f(@zl);

TD-Abstraction iff, for any wff vx,, if Fx, fles,)
then s, oy, ;

TI-Abstraction iff, for any wff px,, if b=, px, then
'_22 f((pzl)'

We write “T*-abstraction” to mean any of the above
abstractions, TH(X) to mean the set of wifs provable in
¥ and NTH(X) to mean the set of wifs which, if added
to the axioms of ¥, make it inconsistent. For example, a
TI-abstraction can be represeted by the following figure:

AZl AE2
o
Q NTH(X,)

TH(S)

Figure 1: TI-abstraction

TC-abstractions map all the elements of TH(X;) into el-
ements of TH(X,) and these are all and only the elements
of TH(X3). Herbrand’s theorem can be formalized as a
TC-abstraction. TC-abstractions are used, for instance,
in decision theory, under the name of reduction methods,
to prove the decidability of and build deciders for the
validity problem for certain subclasses of the first order
calculus. The trick is to find a class whose decidability
is known and prove that there is a proof of a wif iff there
is a proof of the “translated” wff in the new class.

In TD-abstractions a subset of the elements of TH(X)
is mapped into TH(X,) and these are all the elements
of TH(X,). TD-abstractions are used, for instance, to
implement derived inference rules and, as alternatives

'To be precise, since we distinguish between wifs occur-
ring as axioms and as anything else, we should consider oc-
currences of wifs and not wifs. Since, in this paper, for any
wif w, if w € Q, then fa(w) = fo(w), to make things simpler,
we consider fa and fa to range over wifs.

2«1 stands for theorem, “C” for constant, “D” for de-
creasing and “I” for increasing.

O 11-abstractions, to overcome some OI tneir proplemns
[Tenenberg, 1987].

In TI-abstractions all the elements of TH(X;) are
mapped into a subset of TH(X,). TI-abstractions have
been mostly used in “abstract theorem proving” 3. The
main idea underlying the use of these abstractions is to
prove the abstracted theorem in ¥y (which, supposedly,
should be simpler than in ¥;) and then to use the struc-
ture of the proof in ¥ to shape the proof in ¥;. The
fact that there is a proof in ¥s does not guarantee that
there is a proof in ¥;.

T*-abstractions are classified on how provability is pre-
served between the ground space and the abstract space;
they are thus useful when the deductive machinery is
defined to generate theorems. On the other hand there
are formal systems (ie. resolution) whose deductive ma-
chinery determines inconsistency. In these cases, ab-
stractions must be classified on how inconsistent for-
mal systems are mapped. This requires the definition of
new classes of abstractions, called NT*-abstractions.
Thus, for instance, N'TI-abstractions are defined as
follows *:

Definition 4 : An abstraction f : X1 — 3o is an NTI-
Abstraction iff, for any wff vx,, if adding px, to the
axioms of X1 yields an inconsistent formal system, then
adding f(px,) to the azioms of Yo yields an inconsistent
formal system.

Various properties, equivalences, and relationships
among T*- and NT*-abstractions can be proved
[Giunchiglia and Walsh, 1990]. We can draw a similar
figure for NTI-abstractions as for TI-abstractions:

A, Ay,

TH(S:)

O (O
)

NTH(Y,) NTH(Y,)

o - s —] 2

Figure 2: NTI-abstractions (Falseful abstractions)

If a formal system ¥ has the “classical” negation, then,
for any wif a, « € TH(Y) iff ~« € NTH(Y). Thus
trivially:

Corollary 1 : If ¥y and X2 are two formal systems
with (classical) negation and if f : X1 — Yo is a TI-

3Note that we give the word “abstraction” a wider mean-
ing then before (see definition 2).

YNTC-abstractions and NTD-abstractions are defined
analogously to TC-abstractions and TD-abstractions respec-
tively, but preserving inconsistency instead of theoremhood
(see definitions 3, 4).

aostraction tnen, f07" any «, lf o c 1 ﬂ(bl) nen a ¢
NTH(,) and —f(a) € NTH(X,).

In many cases, a refutation system, taking as input a goal
formula « (usually automatically) negates it, adds the
result to the axioms and tries to prove that the resulting
theory is inconsistent. A TI-abstraction will therefore be
useful if instead of adding f(—«) to the abstract space,
we add —f(a). Additionally there are TI-abstractions
which can be used in resolution-based systems indepen-
dently of whether the goal or its negation is abstracted.

Definition 5 (Negation preserving) : An abstrac-
tion f : ¥y — Yo is negation preserving iff f(-a) =

~f(a).

Theorem 1 : If ¥ = (A,0,4Ay) and L, =
(Ao, Q2, As) are two formal systems with (classical)
negation, then a mnegation preserving abstraction f
Y1 = Xy is a Tl-abstraction iff f': ¥ — X} is a NTI-
abstraction, where £} = (A1, 1, A]), B = (As, Qa, AL)
and A} and Al are such that TH(X)) = TH(X1) and
TH(X,) =TH(X,).

Examples are f = f' with ¥y, ¥, ¥ and X} being
natural deduction, and f # f’ with ¥;, ¥ being natu-
ral deduction and ¥, ¥} being resolution. As far as we
know, all the abstractions proposed to work in resolution
systems are negation preserving. However, there are use-
ful abstractions which are not negation preserving (for
instance when negation is not part of the language of 3
or ¥y [Newell et al., 1963, or only partially preserved by
the mapping).

3 Some examples of abstraction

The purpose of these examples, together with provid-
ing a rational reconstruction of the work described, is to
convince the reader that the framework is very power-
ful and allows us to present an unified view of the work
done in different areas and with different goals. For lack
of space, only three examples are reported, more “histor-
ical” examples are reported in [Giunchiglia and Walsh,
1990].

Example 1 [Planning]: Abstrips [Sacerdoti, 1974] was
one of the first noticeable applications of abstraction. In
Abstrips the preconditions to operators were abstracted
according to their criticality. To formalize Strips-like
planning we shall adopt a situation calculus in a natural
deduction formal system. Let us consider the abstrac-
tion fap where ¥; and X, are situation calculi with
a first order language, () consists of frame, operator
and theoretic axioms and A consists of natural deduc-
tion rules of inference. Operators are wifs of the form
“Vs.(A1<icnpi(s) — a(f(s))) 7 where p; is a precon-
dition, s is a state of the world, f is some action, and ¢
describes the new state of the world. Goals are wifs of

the 1orm 3Is rs) .
as follows:

JAB 15 applied 1O WIIS and ax1oIs

fap(a) = aif a is an atomic formula.

fap(—a) = =fap(a);

fap(aop) = fap(a)o fap(B), where “o” is “A” or “V”;
faB(tr o) = 4z fap(a), where “4” is “3” or “V”;

fapla = B) = fap(a) = fap(B), provided “a — (7 is
not an operator;

faB(Ai<i<nPi(s) = 1) = Nicerirn) Pi(s) = fan(r),
provided that “A, -, pi(s) — 77 is an operator, where
i € crit(k) if the criticality of p; is greater than k.

Theorem 2 : fap is TI, namely, if Fx, ¢x,, then x5,
faB(pz,)-

Proof[Outline]: By proving that given a deduction tree
IIs, of Fx, ¢x,, we can build a deduction tree Ily, =
fip(ls,) of Fs, fagp(es,). The proof proceeds by in-
duction on the weight N 3 of Iy, . For proofs of length
1, fap is applied to the single wif; this generates a valid
proof in IIy,. Assume that we have a deduction tree up
to size N. Any rule application that is not modus po-
nens involving an operator translates unmodified, in the
sense that, for instance, an “VI” on ¢ in IIy, becomes
an “VI” on fag(p) in IIy,. For an operator application,
the following transformation is performed:

II;
Ai<icn Pi Ai<icnPi = 4 ==
q
11y
Jap </\1s15n p”)
/\iEcrit(n)pi /\iEcrit(n)pi - fAB(q)
fas(q)

The abstract proof is valid since fap(...) is a valid deduc-
tion tree from the induction hypothesis, and the hypoth-
esis of the (abstract) operator axiom is obtained from
“Ay <i<nDi” by @ (possibly empty) sequence of applica-
tions of “and-elimination”. O

Note that the abstract proof is longer than the one in
the ground space. The purpose of abstracting is not to
find these longer proofs; we hope that there are also go-
ing to be shorter proofs. These shorter proofs are those
that don’t try to satisfy p; for j ¢ crit(x). There is
no guarantee that there will be a shorter proof than the
one exhibited; we will always be able to devise an obtuse
theory in which to prove the p; for i € crit(k) we have
to prove all the other p; for j & crit(k). #

>The weight of a deduction tree is the number of its for-
mula occurrences.

ExXample 4 [hesolution theorem proving, I0gIlC pro-
gramming]: The work by Plaisted is closest in spirit to
ours. Plaisted proposes two classes of abstraction, ordi-
nary abstractions and weak abstractions [Plaisted, 1981],
which map a set of clauses onto a set of clauses and pre-
serve inconsistency. His work is less general than ours as:
he restricts his attention to resolution systems and his
classes of abstraction fail to capture all NTI-abstraction
mappings that preserve inconsistency between resolution
systems. In other words, Plaisted’s abstractions are NT1I,
but not all NTI-abstractions are weak or ordinary ©.
Moreover we claim that our definitions of abstraction
are “more natural” in the sense that better reflect and
capture the functionalities they are given for.

Ordinary abstractions are described as taking both ¥
and ¥, to be first order calculi with Ay, allowing clausal
form, Ay being resolution and 25 being arbitrary. Any
ordinary abstraction mapping f maps a clause in Ay,
onto a set of clauses in Ay, subject to the following con-
ditions:

a) f(L) ={Ll}

b) if ag is aresolvent of oy and a in ¥y, and 83 € f(a3)
then there exist 2 € f(a) and f1 € f(aq) such
that a resolvent of $; and 5 subsumes (33 in Xo;

c) if a; subsumes as in X, then for every 8y € f(as)
there exists 81 € f(a1) such that §; subsumes (32 in
Y.

Weak abstractions are identically defined to ordinary ab-
stractions except condition b) is weakened to the prop-
erty that if a3 is a resolvent of a; and ay in X, and
B3 € f(as) then there exist 82 € f(az) and 51 € f(a1)
such that either 8 subsumes (3, or B2 subsumes 3, or
a resolvent of 3; and B> subsumes 83 in Xs.

Theorem 3 : Weak and ordinary abstractions are NTL

Proof: The proof is a corollary to Theorem 2.5 on page
55 of [Plaisted, 1981]. O

Theorem 4 : There exist NTI-abstractions between
resolution systems that are not weak or ordinary abstrac-
tions.

Proof{Outline]: We can find NTI-abstractions that fail
every one of the three conditions in the definition of weak
and ordinary abstractions. Condition a) is failed by
the NTI-abstraction f such that, for any wif ¢ in ¥,
f(p) ={¢V L}. The problem with condition b) is that
we may also need to resolve with an axiom of the the-
ory. Consider, for instance, the abstraction defined by

6All Plaisted’s examples of abstraction are negation pre-
serving and thus also TI.

JWPV{g) = pVryand Jjl@) = Yy otherwise. 1I 2.
contains the axioms, —¢, and —r then f is NTI. In par-

ticular, p V q resolves with —p in ¥; to give q. However,
no clause in the abstraction of p V ¢, or —p (or their re-
solvent) subsumes the clause ¢ found in the abstraction
of q. For condition c), consider the abstraction defined
by f(pVq) ={r,pVq} and f(p) = ¢ otherwise. Now f
is NTIL. However, f fails condition ¢) of the definition of
weak and ordinary abstractions as p subsumes pV ¢ but
no clause in the abstraction of p subsumes r which is in

flpvyg). O

The definition of weak and ordinary abstractions could
be extended to overcome the first counter-example by re-
placing condition a) with the more general requirement
that dp € f(L). Fx, —p. However, this still leaves use-
ful NTI-abstractions that fail conditions b) and c). For
example, if pg <> p; for many ¢ we might abstract many
clauses of the form p; Vg onto the one clause {pVgq}. One
could argue that ordinary and weak abstractions have
the advantage, over NTI-abstractions, that they always
map into simpler theories, in the sense that there is al-
ways an abstract proof that is no longer than the short-
est proof of the unabstracted theorem [Plaisted, 1981].
This does not seem a good point since, first of all, we
intuitively expect NTI-abstractions (that are not NTC)
to have this or similar properties and, second and more
importantly, there are NTI-abstractions, which are not
weak or ordinary, which build simpler theories (the last
example is one possible case). #

Example 3 [Common sense reasoning]: In [Hobbs,
1985], Hobbs presents a theory of granularity in which
a complex theory is abstracted onto a simpler, more
“coarse-grained” theory with a smaller domain; for ex-
ample, we could map the real world of continuous time
and positions onto a (micro)world of discrete time and
positions. Hobbs’ granularity theory can be formalized
as a mapping (let us call it “fgrqn”) that can be proved
to be TI. Let us suppose that both ¥; and X, are cal-
culi with a first order language, an arbitrary set of ax-
ioms and any complete deductive machinery for first or-
der logic. fyran maps different objects in ¥; into (not
necessarily different) objects in ¥; according to an in-
distinguishability relation, defined by the (second-order)
axiom:

Vr,yx ~y < Vpe Rp(x) < py)

where R is the subset of the predicates of the theory
determined to be relevant to the situation at hand”.
Thus fgren keeps the same logical structure of wifs and
translates any constant into its equivalence class, namely
foran(p(a)) = p(k(a)) where a is any constant symbol

TAs in [Hobbs, 1985], we define indistinguishability for
unary predicates; it can, however, be easily generalized to
n-ary predicates.

anda rla) 1s the equlvalence Class oI tne constant a wrt tne
indistinguishability relation; that is k(z) = {y : ¢ ~ y}.

Theorem 5 : fy.qn is TI/NTL

Proof By mapping a proof tree IIy,, in ¥; of ¢y, (pos-
sibly of 1) onto a proof tree Iy, in ¥5 of f(py,). The
proof proceeds by induction on the weight of IIy,,. We
merely apply fa to every wif in Ily,. O

(Like any TT abstraction, see next section) fyrqn can map
a consistent theory into an inconsistent theory. For ex-
ample, if the constants a and b are “indistinguishable”,
then a consistent theory with equality and the axiom
=(a = b) maps into an inconsistent theory with the ax-
iom —({a,b} = {a,b}). However, the following result
holds:

Theorem 6 : fg.., preserves consistency if indistin-
guishability is defined over all predicates.

Proof[Outline]: By contradiction. Assume that a con-
sistent theory, 3; maps onto an inconsistent theory, X,.
That is, we can find a proof tree, Iy, of L. We show how
you can construct a proof tree, IIs;, of L, contradicting
the assumption that ¥; is consistent. For every equiva-
lence class, x(a) we pick one member of that class, b; to
every wif, ¢ in IIy, we apply the substitution {x(a)/b}.
This will generate a proof tree, IIy,, whose assumptions
will either be axioms of ¥; or will be derivable from them
using the indistinguishability relation and substitution of
equivalences. If indistinguishability is not defined over
all predicates, this last fact will not necessarily be true.
O

Note that fyren is a special case of the example of weak/
ordinary abstractions (given in [Plaisted, 1981]) where
function symbols are renamed in a systematic (but not
necessarily 1-to-1) way. #

4 The false proof problem

A major problem with the use of TI-abstractions ® is

that, even if X, is consistent, ¥, may be inconsistent.
An example has already been given for fyrqn. With fap
it is sufficient to consider abstracting the operators “a; A
as = a3” and “aq A ag = —a3” onto “ap — a3” and
“a1 — —a3” when o is a theorem but as and a4 are not
both theorems. This problem was noticed by Plaisted
who called it the “false proof problem”. It can be seen
as a sympton of the following theorem:

Lemma 1 : If f: X, — Xy is an abstraction and Xo is
inconsistent then f is a TI-abstraction.

8Everything stated in this section holds dually for NTI-
abstractions.

Lemma 1 nolds 1maependaently or tne consistency or 2ij.
Once f has been proved to be TI it may happen that
Yo is inconsistent. This is a major blow to the use of
TT-abstractions to guide the proof in the ground space.
When X, is inconsistent the structure of the proof in X5
could still be used to shape the proof in X;. However,
any wif in ¥, is a theorem and thus ¥, does not filter
out any of the wifs which are not theorems in ¥;. In
a way Yo gives too little information. To make matters
worse, in general it is not possible to decide in a finite
amount of time whether a formal system is consistent.

When working with a fixed formal system (ie. set the-
ory + first order logic) a solution is to build abstractions
which are proved a priori to have consistent X5. In many
cases, however, (ie. planning, logic programming, knowl-
edge based systems), while the set of inference rules of 3;
is fixed, its axioms may vary and depend on the applica-
tion. Tenenberg [Tenenberg, 1987] proposed a solution
to the problem in the case of a form of predicate ab-
stractions ? in a resolution-based system. However, the
abstractions he proposes have many drawbacks: the first
abstraction is TI but the construction of {1y, is not de-
cidable (even if recursively enumerable) and it may take
an infinite amount of time to generate it; the other two
types of abstraction are TD or similar to TD [Giunchiglia
and Walsh, 1990] '°. This means that completeness is
lost since there is at least one theorem in ¥; whose ab-
straction is not a theorem in 5. We consider this the
one property you do not want to lose.

The ideal solution would be to generalize the concept
of abstraction mapping to be parameterized on the ax-
ioms of ¥; and then to find sufficient conditions which
guarantee that a TI-abstraction maps X; into a consis-
tent X5, independently of the axioms of ¥; (as long as
¥, is consistent). This seems a reasonable request since
there are abstractions which, fix As,, Ax,, Ax,, Ay,
fa, fo and fa are TI for any choice of the theoretic ax-
ioms (this is, for instance, true for the abstractions of
the three examples) 1.

Let Ax, and Ay, be two languages, Ay, and Ay, two
deductive machineries. Then, if fo : As, = As,,
g : As, = As, and fa : Ay, — Ay, are three to-
tal functions, F' = (fa, g, fa) is an abstraction from
¥ = <A21,A21,A21> to Yo = <A22,A22,A22>. Then
for any Qy, C Ay, if by “g T Qx,” we indicate g re-
stricted to apply to Qx,, F1 = (fo,g T Qx,, fa) is
an abstraction from 2?21 = (Ay,, 0y, Ay,) to 2321 =
<A22,QZZ,A22>, with QZZ = 9(921)-

9Predicate abstractions are abstractions where distinct
predicate symbols in ¥; are mapped onto (possibly not dis-
tinct) predicate symbols in X5 [Giunchiglia and Walsh, 1990].

'0Note that it can be proved that, more generally, for any
TD-abstraction, if X; is consistent, so is Y.

' 0Of course theory independent TI-abstractions are in gen-
eral less efficient than the ones geared towards one single the-
ory as they do not exploit the structure of theoretic axioms.

Theorem 7 : Let Ay, and Ay, be two languages, Ax,
and Ay, two deductive machineries, fao : As, = As,, g
As, = Ax, and fa : As, — Ayx, three total functions.
Then there exists Qx, C As, such that, if the abstraction
F=1 = (fa, g 1 Qs,, fa) is TI and NTI but not NTC,

1

then X, is consistent and Xo, ' is inconsistent.

Proof[Outline]: By constructing)y, . Because F>1 is
NTI- but not NTC-, there exists a wif ¢ such that adding
F¥=1 () as an axiom to ¥ makes an inconsistent formal
system, but that adding ¢ as an axiom to ¥; doesn’t. O

Theorem 7 can actually be proved in more power-
ful forms; however the hypotheses hold for most TI-
abstractions. For instance negation preserving abstrac-
tions that are TI are also NTI and vice versa (theo-
rem 1). Theorem 7 proves that we cannot find a TI-
abstractions which maps a consistent ¥; into a consistent
Y5 independently of the axioms of ¥;. However, we can
find (syntatic characterisations of) subsets of theories
for which consistency is guaranteed. A different solution
to the false proof problem is to vary the TI-abstraction
until we can (decidably) show that ¥ is consistent. TI-
abstractions applied to the same X; can be classified into
a weak partial order, indicated by “C”.

Definition 6 (C) - If f; : 1 — Yioand f; T
¥J are two TI-abstractions then f; T f; iff for all wffs
(2P lf |_E’2 fi(@zl) then |_2]2 fj(<p21)' We say that fi is
weaker than f; or, dually, that f; is stronger than f;.

If f; C f;, then f; is stronger than f; in the sense that
there are fewer wifs which are theorems in ¥4 and not
in ¥y than wifs which are theorems in ¥} and not in
¥,. “C” is in general a weak partial order (respecting
transitivity, antisymmetry and reflexivity) but not a to-
tal order. If, however, we have a set of totally ordered
abstractions then the following result holds:

Theorem 8 : If f; : ¥, — XL ..., fn: 31 — X7 are
TI-abstractions and fi C ... C fn (f1,..., fn are totally
ordered), then if X% is consistent so is ¥4 for any 1 <
1 <n.

Theorem 8 suggests the following process:

e build sets of abstractions, F; = {f}, ,f}h} where
fi T ...C fi and f} (%) is decidable (eg. it is
propositional).

e find a set, Fj in which the codomain of the strongest
abstraction fﬂ;]_(El) is consistent. Note that, since
f{;j (X1) is decidable, its consistency or inconsistency
can be proved in a finite amount of time.

® Starting witil the strongest abstraction (tiat 1S with
I =mn;), until [> 1 use the proof that the abstracted
wif is a theorem in flj (X1) to help construct a proof
in fljfl(El). If, in any of the flj(El), the abstracted
wif is not a theorem, then the wif cannot be a the-
orem in ¥ (since fi is a TI-abstraction).

Of course there is no guarantee that all the steps in un-
abstracting back to X7 will go through or terminate. The
overall performance depends on how the various abstrac-
tions in the total order are built and on how the process
of unabstracting is performed. For instance, computing
the consistency of fﬂ;]_(El) can be optimized by build-
ing a very simple, “minimal” f{;j (X1). Further time can
also be saved, when fﬂ;]_(El) is proved inconsistent by
introducing (in an automated way) small variations in
fﬂ;]_ that are tuned to the source of the inconsistency.

5 Conclusions

In this paper we have proposed a theory of abstraction
which extends the notions of abstraction previously used.
We have focused on abstract theorem proving and have
suggested that a certain class of provability preserving
abstractions, TI- and NTI-abstractions (which are not
TC and NTC) are the correct abstractions to use. TC-
and NTC- abstractions are in general too strong, and
the goal of having “simpler” abstract proofs does not
seem achievable except in very special and limited forms
(for instance, if f : ¥y — X, is a TC-/ NTC- abstrac-
tion then if ¥; is undecidable then X5 cannot be decid-
able). The dual class of provability preserving abstrac-
tions, TD- (and NTD-) abstractions (which are not TC-
and NTC-) are of less use as they lose completeness; that
is, there is at least one theorem whose abstraction is not
a theorem. Unfortunately, TI- (and NTI-) abstractions
are subject to the false proof problem; they can map a
consistent theory into an inconsistent abstract theory.
The last section has proposed a new (and decidable) so-
lution to this problem.

References

[Giunchiglia and Walsh, 1990] F. Giunchiglia
and T. Walsh. A Theory of Abstraction. Research
paper 516, Dept. of Artificial Intelligence, University
of Edinburgh, 1990. Accepted to Journal of Artificial
Intelligence.

[Hobbs, 1985] J.R. Hobbs. Granularity. In Proceedings
of the 9th IJCAI, pages 432-435. International Joint
Conference on Artificial Intelligence, 1985.

[Newell et al., 1963] A. Newell, J.C. Shaw, and H.A. Si-
mon. Empirical explorations of the logic theory ma-
chine. In Fiegenbaum and Feldman, editors, Comput-
ers & Thought, pages 134-152. McGraw-Hill, 1963.

[Ilaisted, 19oi] D.A. Plalsted. 1neorem proving witi
abstraction. Artificial Intelligence, 16:47-108, 1981.

[Sacerdoti, 1974] E.D. Sacerdoti. Planning in a hier-
archy of abstraction spaces. Artificial Intelligence,
5:115-135, 1974.

[Tenenberg, 1987] J.D. Tenenberg. Preserving Consis-
tency across Abstraction Mappings. In Proceedings of
the 10th IJCAI pages 1011-1014. International Joint
Conference on Artificial Intelligence, 1987.

