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Abstract 

The traveling salesman problem is one of the most famous combinatorial problems. We identify 
a natural parameter for the two-dimensional Euclidean traveling salesman problem. We show 
that for random problems there is a rapid transition between soluble and insoluble instances 
of the decision problem at a critical value of this parameter. Hard instances of the traveling 
salesman problem are associated with this transition. Similar results are seen both with randomly 
generated problems and benchmark problems using geographical data. Surprisingly, finite-size 
scaling methods developed in statistical mechanics describe the behaviour around the critical 
value in random problems. Such phase transition phenomena appear to be ubiquitous. Indeed, we 
have yet to find an NP-complete problem which lacks a similar phase transition. 

Keywords: NP-complete problems; Complexity; Traveling salesman problem; Search phase transitions; 

Finite-size scaling; Eeasy and hard instances 

1. Introduction 

There are many useful connections between statistical mechanics and a wide variety 
of combinatorial problems. For example, an analogy between annealing in solids and 
combinatorial optimization suggested simulated annealing, a very general and powerful 
optimization procedure [ 141. A phase transition occurs in the quality of the solution 

returned by this procedure as the “temperature” control parameter is lowered. This 

phase transition in the algorithm behaviour has been described with the aid of ideas 
from statistical mechanics [ 3,231. More recently, statistical mechanics has been used 
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not to model algorithm performance as in [ 3,231 but the properties of ensembles 
of problems (for example, the probability that a solution exists). In particular, phase 
transition phenomena in Boolean satisfiability problems have been described by finite- 
size scaling methods [ 151. We show here that phase transitions and finite-size scaling 

occur more widely than predicted in [ 151. 
Phase transition phenomena occur in the solubility of many combinatorial problems. If 

such problems are very loosely constrained, there are likely to be many solutions. Almost 

all problems will therefore be soluble. If problems are very tightly constrained, almost 
all problems will be insoluble. With randomly generated problems, there is often a sharp 

transition between the two regions as a “control parameter” is varied. Cheeseman et al. 
[4] showed that computational difficulty is often associated with this phase transition. 
In the loosely constrained region, the very large number of solutions means that it is 
typically easy to find one. In the tightly constrained region, it is usually comparatively 
easy to show that no solution exists. Problems from the phase transition in between are 
typically hard since they cannot easily be proved soluble or insoluble. The correlation 

between a phase transition in solubility and a peak in search cost has been observed in 
Boolean satisfiability [ 4, 15, 181, graph colouring [ 41, constraint satisfaction [ 19,221, 
independent set [ 91, and Hamiltonian circuit problems [ 41. Many algorithms are now 
benchmarked using problems from such phase transitions. 

2. Traveling salesman problem 

The traveling salesman problem is one of the simplest and most famous combinatorial 
problems in computer science. Given a list of II cities, and a matrix giving the distance 
between each pair of cities, the traveling salesman problem is to determine if you can 

visit all II cities and return to the starting city in a distance 1 or less. We focus on the 
decision version of the problem (does a tour of length 1 or less exist?) and not the closely 
related optimization problem (what is the minimal length tour?). The decision problem 
can be used to solve the optimization problem, and vice versa. However, as we argue 

later. the decision problem can be easier than the optimization problem. Indeed, many 
optimization procedures solve a series of increasingly constrained decision problems. 

The result of the decision problem may also be of primary importance. For example, if 
the post office discovers there is no tour of length less than or equal to the daily travel 

allowance, two people will be needed to deliver the mail. 
As we focus on the decision problem, as opposed to the optimization problem, the 

tour length I is a parameter we can fix and is not the result returned. A soluble phase 
will thus correspond to a region where the decision question is always answered “Yes” 
(a tour of this length or less exists). And an insoluble phase will correspond to a region 
where the decision question is always answered “No” (no tour of this length or less 
exists). In this paper, we focus on the symmetric, two-dimensional Euclidean traveling 
salesman problem. However, we have seen similar phase transition behaviour in the 
asymmetric traveling salesman problem [ 81. 

The traveling salesman problem is of considerable theoretical importance as it is 
representative of the large class of NP-complete (non-deterministic polynomial time 
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Mean and standard deviation in the optimal tour length and the parameter lop,/- for 1000 instances of 

n city traveling salesman problems; cities are placed at random on a square of side 1000 

n Mean of lop, Standard deviation in lopt Mean of $ Standard deviation in s 

6 2302 390 0.940 0.159 

12 3102 331 0.895 0.095 

18 3678 307 0.867 0.072 

24 4158 293 0.849 0.060 

30 4590 283 0.838 0.052 

complete) problems. No polynomial time algorithm is known to exist for any NP- 
complete problem, so this class can be considered to mark the start of computational 
intractability. All the combinatorial problems mentioned earlier are examples of NP- 
complete problems. Although any NP-complete problem can be transformed into any 

other NP-complete problem [ 61, this mapping usually does not map the problem space 
uniformly. The existence of a phase transition in, say, Boolean satisfiability does not 
therefore guarantee the existence of a similar phase transition in the traveling salesman 

problem. 
Random instances of the traveling salesman problem can be easily generated by 

placing n cities on a square of area A uniformly at random. For such problems, the 

expected optimal tour length Eopt approaches the limit, 

(1) 

where k is a constant [ 21. The best current estimate for k is 0.7124 ~!~0.0002 [ 131, This 
asymptotic result suggests that a natural control parameter is the dimensionless ratio 
1/a. At large values of this parameter, random problems are likely to be soluble as 
the tour length required is large compared to the number of cities to visit and the average 
inter-city distance. At small values of this parameter, random problems are likely to be 
insoluble as the tour length required is small compared to the number of cities to visit 
and the average inter-city distance. At intermediate values around 0.7, random problems 

can be either soluble or insoluble. 
To solve the traveling salesman problem, we use a branch and bound algorithm 

with the well-known Hungarian heuristic for branching [ 171. Branch and bound is a 
backtracking algorithm which searches through the space of partial tours. Search is 

halted on a given branch when the length of the current partial tour plus a lower bound 
on the length of the rest of the tour exceeds the shortest tour found to that point. 
Branch and bound is one of the best complete algorithms for the traveling salesman 
problem. In Table 1, we give the mean and standard deviation in the optimal tour 

length and the parameter lopt/a for random traveling salesman problems with 
up to 30 cities. As the number of cities increases, the mean and standard deviation 
in the parameter &/a decrease. As is typical in other problems, the optimal 
tour length is significantly displaced from the asymptotic value at small n. Eq. (1) 
therefore provides a poor approximation for the mean optimal tour length for small n. 
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In addition, it provides no indication of how tour lengths are distributed around the 
mean. 

3. Phase transition 

To explore finite problem sizes in more detail, we plot in Fig. 1 (a) the probability of 
a tour of length 1 existing for different II. As n increases, the transition between soluble 

and insoluble problems occurs at larger 1. In Fig. l(b), we plot the same data but 
with the parameter, Z/m along the x-axis. As expected from ( I), there is a rapid 
transition in solubility around a fixed value of l/m. As n increases, the transition 

occurs over a smaller range of the control parameter. We next applied finite-size scaling 

methods [ 1 ] to determine more precisely how the distribution of tour lengths scales 
with problem size. Around some critical point, averages for sets of problems of different 
sizes ought to be indistinguishable except for a change of scale. This suggests that the 
probability of a tour existing is a simple function of the single parameter, 

where LY is the critical point, and n’l” provides the change of scale. The size depen- 
dency around the critical point is perhaps a little surprising. In finite-size scaling, the 
size dependency is explained by means of the correlation length, the distance over which 
behaviour is correlated. This diverges at the critical point in an infinite system. If two 

points are separated by more than the correlation length, they behave independently. De- 
spite the fact that lengths appear in the traveling salesman problem, the size dependency 
of the crossover obeys a simple power law not with a length but with n, the number of 
cities. Similar power law behaviour was seen with finite-size scaling in Boolean satisfi- 
ability [ 151 where there are no lengths and the number of variables replaces the usual 

scaling with respect to a length. 
If finite-size scaling holds, then there will be a critical value, (Y, of the control 

parameter, where the probability of a tour existing will be invariant as 12 changes. To 
find this critical value, we measured the spread of observed probabilities. That is, for 
given l/a we measured the probability of a tour existing for each n, interpolating 
between observed values of 1 where necessary. We then noted the spread between the 
largest and smallest such probabilities over all values of n. This spread was minimized 
at l/m = 0.78, giving CY = 0.78 f 0.01, where the errors indicate the range over 
which the probabilities differ by less than 5%. To compute V, we then set (Y = 0.78 and 
compared median tour lengths. If Ii and 12 are the median tour lengths for ni and n2 
cities respectively (nt # nz), then 

Rearranging this equation gives, 
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Fig. 1. (a) The probability of a tour existing plotted against tour length 1 for 6, 12, 18, 24, and 30 city 
random problems. 1000 instances were used at each problem size giving roughly 3% accuracy. (b) The same 
data plotted against the control parameter l/m. The curves become sharper as n increases. (c) The same 
data plotted against the resealed parameter y. Only the curve for II = 6 can be distinguished statistically from 
a normal distribution with parameters independent of n. The vertical line at y = 0.6 indicates where 50% of 
instances are soluble. 

U= 
log(n1 /n2> 

1% (( I,_ 
Jn;Tii CY I > ( A-ff 1)’ 

Every distinct pair of values nl and n2 thus provides an estimate for v. We computed 

all possible estimates from our data and took the median. This gives Y = 1.5 f 0.2 
where errors represent the upper and lower quartiles of the estimates made from pairs 

nl, n2. 

We therefore define a resealed parameter y = (r/a - 0.78) . TZ’/‘.~. In Fig. 1 (c), 
we plot the probability of a tour existing against y. Viewing our data for the distributions 

of optimal tour lengths lopt in terms of the resealed parameter y, we observe a mean 
of y = 0.58, median of 0.60 and a standard deviation of 0.50. We tested the hypothesis 
that the distribution of y is normally distributed with median 0.6 and standard deviation 
0.5, using a goodness of fit test with 50 intervals. Using data for n from 8 to 30 in steps 
of 1, we could not reject this hypothesis at the 5% significance level, but it could be 
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Fig. 2. Median number of nodes searched by the branch and bound algorithm in solving the decision problem, 

plotted against y for 6. 12, 18, 24, and 30 t ci y random problems. 1000 random instances were used at 

each point. The vertical line indicates where 50% of the instances are soluble. Other probabilities can be 

interpolated from Fig. I (c). 

rejected for II = 6 and n = 7. We have shown that using finite-size scaling we can model 
the entire distribution of tour lengths using a single normal distribution, from n = 8-30. 
While it does not follow that tour lengths are in fact normally distributed, providing a 

significantly better model will require much more experimentation with larger sample 

sizes, number of cities, or both. 
Whilst finite-size scaling fits our data extremely well, caution is required if we wish 

to extrapolate to larger n. The asymptotic value of the control parameter, at the phase 
transition reported in [ 131 is 0.7124 i 0.0002. This is significantly smaller than the 
value of a used here. If LY is set to 0.7124, a critical value like, for example, the 

mean or median tour length can be modelled using finite-size scaling. However, this 
resealing fails to describe accurately the complete tour length distribution. To obtain a 
good fit for the whole distribution, we must scale around not a fixed value but a critical 
and varying value (for example, the value of the control parameter at the median 

optimal tour length). A similar issue appears to occur in random Boolean satisfiability 
problems. In [ 151 the critical value used for finite-size scaling is 4.17. This gives a 

crossover point where 50% of problems with N variables and L clauses are satisfiable 

at L E 4.17N + 3. IN’/“. By contrast, the crossover point is empirically determined to 
be L = 4.258N + 58.68Np2j3 in [ 51. The differences between these two models remain 
to be resolved. 

4. Search cost 

As in other combinatorial problems, a peak in search cost is associated with the phase 
transition in solubility. With a very large bound on the required tour length, many tours 
satisfy the bound and it is typically easy to find one. With a very small bound, almost 
all tours are too long and many are quickly ruled out, so again problems are typically 
easy. Problems at the phase boundary are often hard, as it is difficult to determine if 
a tour of the required length exists without exhaustive search. Surprisingly, search cost 
appears to be directly correlated with the resealed parameter y. In Fig. 2, we plot the 
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Fig. 3. Percentiles in the number of nodes searched by the branch and bound algorithm in solving 1000 

decision problems at each point, plotted against the control parameter l/m. The vertical line indicates 

where 50% of the instances are soluble. (a) Random problems with 24 cities. (b) Random sets of 24 capitals 

of the contiguous states in the USA. A is taken to be the surface area of the 48 states. 

median number of nodes searched by the branch and bound algorithm as we vary y. 
For 6 and 12 city problems, median search cost is never large, but for 18 and more 
cities there is a well-defined peak. This is closely associated with the phase transition 
in probability of a tour existing. Median search cost for n = 18, 24, and 30 peaks at 
y = 0.6 fO.1, exactly the point where we observe that 50% of the problems have no tour 

of the required length. The connection between search cost and the resealed parameter 
used in finite-size scaling has also been noted in satisfiability and constraint satisfaction 

problems [ 7,211. Whilst the results here are restricted to a branch and bound algorithm, 
experience with other NP-complete problems suggests that search cost is likely to peak 
in the phase transition for a wider variety of procedures. 

It is important to study measures other than median search cost. In Fig. 3(a) we plot 

further percentiles of search cost for 24 city problems against the control parameter, 
including the best and worst cases seen in each of the 1000 problems. Search cost 
in the worst case can be orders of magnitude more than the median. We see similar 

behaviour if we fix the tour length and vary the number of cities visited [ 111. Occasional 
underconstrained problems can be very hard for the branch and bound algorithm even 
where median behaviour is almost trivial. A similar phenomenon has been observed for 
graph colouring and Boolean satisfiability problems [ 10,121. It appears to be the result 
of commitment to poor branching decisions early in search. 

Random problems may be different to problems derived from geographical data. We 
therefore compared our results with some standard benchmark data from TSPLIB [ 201. 
We use the capitals of the 48 contiguous states of the USA. In Fig. 3(b), we fix the 
number of capitals visited at 24 and vary the tour length required. An ensemble of 
problems was generated by picking 1000 random subsets of 24 out of the 48 capitals. 
Behaviour is similar to that seen with random problems although the phase transition 
occurs at a smaller value of the control parameter, and search cost is typically greater. 
We have also observed similar behaviour using other procedures like simulated anneal- 
ing [ 141 with both random and geographical data. Since simulated annealing cannot 
prove problems insoluble, we can only look at soluble traveling salesman problems. 
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Nevertheless, search cost grows rapidly as we approach the phase boundary from the 

soluble side [ 11 I. 

5. Conclusions 

Our results correct the claim of Kirkpatrick and Selman in [ 151 that “there are other 

NP-complete problems (for example, the traveling salesman problem or max-clique) 

that lack a clear phase boundary at which ‘hard problems’ cluster”. We have shown 
here that there is a sharp phase boundary for the traveling salesman decision problem 

at which search cost peaks. The max-clique problem is an optimization problem rather 
than a decision problem. The related NP-complete decision problem is deciding if a 
graph contains a k-clique. That is, if there exist k nodes of the graph which are all 
connected to each other. Again, there is a sharp boundary between soluble and insoluble 

random k-clique problems, and hard problems cluster around this point. We showed this 
by investigating the (isomorphic) independent set problem [9]. 

Our results help to explain the hardness of optimization problems. To solve an opti- 
mization problem you effectively solve the related decision problem at the optimal tour 
length. That is, by solving the optimization problem, you have also shown that there 
exists a tour of length lopt but no tour of length lopt - 1, thus solving the decision 

problem immediately either side of the optimal tour length. Especially at large n, such 
decision problems are likely to be close to the phase boundary. They are thus usually 
very difficult. Indeed, the search process in an algorithm such as branch and bound 
represents precisely the solution of increasingly more constrained decision problems 
until finally the decision problems either side of the optimal tour length are solved. 
These results may therefore have implications in understanding the behaviour of other 
optimization procedures. In particular, they justify our earlier claim that traveling sales- 
man optimization problems are typically more difficult than traveling salesman decision 
problems. However, traveling salesman optimization problems do also display transitions 
in behaviour. Using branch and bound, Zhang and Korf [24] have observed a transition 

in the cost of finding an optimal tour as inter-city distances are changed. They asso- 
ciated this transition with the probability that inter-city distances are the same length. 

Cheeseman et al. [4] have also observed that the difficulty of the optimization problem 
depends on the standard deviation in inter-city distances. 

The phase transition phenomena described here appear to be widespread. It may 
seem surprising that methods like finite-size scaling developed in statistical mechanics 
to describe systems like spin glasses should be so widely applicable to combinatorial 
problems. There are, however, several important analogies to be made. For instance, 
interactions between atoms in a spin glass are both ferromagnetic (promoting alignment 
of spins) and anti-ferromagnetic (promoting opposite spins). As a result, a spin glass 
is a “frustrated” system with a large number of near optimal equilibrium configurations 
which cannot be locally improved by flipping a spin. It is difficult therefore to get the 
spin glass into a state of least energy. A traveling salesman problem is also usually a 
frustrated system, having a large number of near optimal tours which cannot be locally 
improved by making small changes. Frustration arises from the tension between visiting 
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all cities (i.e., making a tour) and minimizing the distance travelled. Because of this 
frustration, it is very difficult to find the optimal tour from amongst the many near 

optimal tours. Similar remarks apply to many other NP-complete problems [ 161. It 
remains an open question therefore if phase transition behaviour will be seen in a]1 
NP-complete problems. 
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