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Abstract 

We present a detailed experimental investigation of the easy-hard-easy phase transi- 
tion for randomly generated instances of satisfiability problems. Problems in the hard 
part of the phase transition have been extensively used for benchmarking satisfiability 
algorithms. This study demonstrates that problem classes and regions of the phase 
transition previously thought to be easy can sometimes be orders of magnitude more 
difficult than the worst problems in problem classes and regions of the phase transition 
considered hard. These difficult problems are either hard unsatisfiable problems or are 
satisfiable problems which give a hard unsatisfiable subproblem following a wrong split. 
Whilst these hard unsatisfiable problems may have short proofs, these appear to be 
difficult to find, and other proofs are long and hard. 

1. In troduc t ion  

Many  techniques for generat ing problems r andomly  depend on a natural  
parameter ;  for  example  the average connect ivi ty  of  a graph or the ratio o f  the 
n u m b e r  o f  clauses to variables  in a proposi t ional  formula.  As this pa rame te r  
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is varied, there is often a phase transition from problems which are almost 
always soluble to a region where they are almost always insoluble. Furthermore 
this phase transition is usually associated with problems which are typically 
hard to solve [2]. In this paper, we show that with SAT, the problem of 
determining the satisfiability of propositional formulae, there are also regions 
in which problems are usually easy but sometimes extraordinarily hard. The 
same effect appears to have been observed for graph colouring [8]. 

Random 3-SAT (this and other problem classes are described in Section 2) 
undergoes a phase transition for unsatisfiable to satisfiable when there about 
4.25 clauses for every variable [3, 11, 12]. This is generally considered a good 
method of generating hard instances of SAT. By comparison, the constant 
probability model is considered to give easy problems since various theoretical 
results have shown that certain cases can be solved in polynomial average 
time [13]. In addition, limited experimental studies have reached similar 
conclusions [ 12 ]. 

One of the aims of this paper is to demonstrate that these conclusions are 
premature. We will show that extraordinary hard problems can be found in 
"easy" problem classes like the constant probability model, and in "easy" re- 
gions of the phase transition. For example, we found one 100-variable problem 
in the easy region of the constant probability model that required over 350 
million branches to solve using a simplified Davis-Putnam procedure. This 
was considerably more than the total number of branches required by the 
same procedure on a thousand 100-variable problems from the hard region 
of random 3-SAT, a supposedly much harder problem class. Whilst problems 
generated by the constant probability model are indeed typically easy, there 
is enormous variability between problems generated in the same way. Fur- 
thermore, the greatest variability occurs not in a region where about 50% of 
problems are satisfiable, but in a region where nearly 100% are, and it occurs 
with both satisfiable and unsatisfiable problems. 

2. Propositional satisfiability, SAT 

SAT, the problem of deciding if there is an assignment for the variables in 
a propositional formula that makes the formula true, is an interesting problem 
since it was the first computational task shown to be NP-hard [1]. It is also 
useful since many AI problems can be encoded quite naturally in SAT (e.g. 
constraint satisfaction, diagnosis, planning). We consider SAT problems in 
conjunctive normal form (CNF); a formula, Z is in CNF iff i t  is a conjunction 
of clauses, where a clause is a disjunction of literals. We consider two methods 
of randomly generating SAT problems, namely random 3-SAT and the constant 
probability model. 

Problems in random 3-SAT with N variables and L clauses are generated as 
follows: 3 of the N variables are selected for each clause, and each variable is 

1 made positive or negative with probability ~. 
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procedure DP (27) 
if 27 empty then 

return satisfiable 
if 27 contains an empty clause then 

return unsatisfiable 
(Tautology rule) 

if Z contains a tautologous clause c then 
return D P ( Z  - {c}) 

(Unit Propagation) 
if Z contains a unit clause c then 

return DP (Z simplified by assigning truth value which satisfies c) 
(Pure-literal Deletion) 

if 27 contains a literal l but not the negation of l then 
return D P ( Z  simplified by assigning truth value which satisfies 1) 

(Split-rule) 
if DP(27 simplified by assigning a variable arbitrarily) is satisfiable then 

return satisfiable 
else return DP(27 simplified by assigning variable opposite value) 

Fig. 1. The Davis-Putnam procedure. 

In the constant probability model, clause sets with N variables and L clauses 
are generated according to a parameter p, 0 < p ~< 1. For each clause, each 
literal (that is, a variable or the negation of a variable) is included with 
probability p, independently of the inclusion of other literals. Note that tautol- 
ogous clauses (containing both a literal and its negation) are allowed, and that 
clauses can vary in size. For several methods of varying L and p in terms of 
N, problems from the constant probability model can be solved in polynomial 
average time (see for example [13]). One source of easiness is that empty and 
unit clauses (clauses containing zero or one literal) typically makes problems 
easily unsatisfiable, while making p large enough to exclude them often makes 
clause sets very easily satisfied. Accordingly, we use a variant of  the constant 
probability model used in [9] in which if an empty or unit clause is generated, 
it is discarded and another clause generated in its place. The results mentioned 
earlier do not apply to this model. We call this the "CP" model. We shall 
contrast our results with those for random 3-SAT. 

3. The Davis-Putnam algorithm 

A standard procedure for determining satisfiability is due to Davis and 
Putnam [4]. This is shown in Fig. 1. To simplify a clause set with respect 
to a truth assignment, we delete each clause that is satisfied by the truth 
assignment, and in every other clause delete any literals that contradict the 
truth assignment. In [12], a study of the phase transition for random 3-SAT 
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and CP was performed using a simplified (but nevertheless complete) version 
of this procedure with only the unit-propagation and split-rule. We will consider 
both this variant (which we will call "unit DP") as well as the full algorithm 
(which we will call "DP"). 

The Davis-Putnam procedure is non-deterministic as the literal used by the 
split-rule is unspecified. 2 In the results given in Section 4, the split-rule simply 
chooses the first literal in the first clause in the clause set. Heuristic procedures 
for determining a good literal to split on have been proposed. In Section 5 we 
use the Jeroslow-Wang heuristic [10] which estimates the contribution each 
literal is likely to make to satisfying the clause set. Each literal is scored as 
follows: for each clause c the literal appears in, 2-1< is added to the literal's 
score, where ]c[ is the number of literals in c. The split-rule is then applied to 
the literal with the highest score. 

4. Hard problems in CP 

We first report experiments using the CP model (see Section 2). In [6], 
we suggest that the position of the phase transition occurs at fixed L/N when 
2Np is kept constant. To aid comparison with results for random 3-SAT, p 
was varied so that 2Np = 3. Although this gives an average clause length of 
about 3.6 after the exclusion of unit and empty clauses, the expected number 
of models for the same number of variables and clauses is very similar to that 
of random 3-SAT [6]. We have obtained similar results varying p in other 
ways, in particular scaling p as in N/N [5]. This scaling was suggested to us 
by Paul Purdom as likely to give difficult problems for the CP model. 

First, we consider the full Davis-Putnam algorithm, DP. Fig. 2(a) shows 
results for DP applied to 100 variable CP problems. Each data point represents 
the result of 1000 experiments, and we varied L/N from 0.2 to 6.0 in steps of 
0.2. The dotted line in these graphs indicates the probability of satisfiability. 
The dashed line represents the median, and the solid line the mean, of the 
number of branches searched, 3 both plotted using the same logarithmic scale. 
The median graph shows the standard easy-hard-easy pattern as the number 
of clauses increases with the hard region being associated with the crossover 
from satisfiable to unsatisfiable problems. The peak median is only 9 branches 
at L/N = 4.0. This at first supports previous research suggesting that the CP 
model generates very easy problems compared to random 3-SAT [12]. Note, 
however, the very different behaviour of the mean in the region of L/N from 
2.2 to 3.2, where the median is never above 2 branches, while the mean is an 
order of magnitude higher and also noisy. 

2 The  condi t ional  part  o f  the  split-rule assigns a t ru th  value to a part icular  variable v. If  this  
variable is set to true, then  we say tha t  the  split-rule uses  the literal v. If  this  variable is set to 
false, then  we say tha t  it uses  the  literal -~v. 
3 By the n u m b e r  o f  branches  we m e a n  the n u m b e r  o f  leaf  nodes  in the  search tree. 
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Fig. 2. DP, N = 100, random CP problems. 

The noise seen in Fig. 2(a)  becomes clearer if we examine the worst-case 
behaviour and that of  varying percentiles. This is shown in Fig. 2(b) .  As we 
tested 1000 problems, the 99% contour, for example, gives the tenth most 
difficult problem found at each point. As we increase the percentile examined, 
the contours become more widely separated even on this logarithmic plot, 
and the peaks move towards lower values of  L/N. The 100% contour, i.e. 
the observed worst case, shows a remarkable variability at small values of  
L/N, and can be more than an order of  magnitude worse than even the 99% 
contour. The worst case was 9,471 branches at L/N = 2.6, a region where 
99.4% of  the problems generated were satisfiable. At L/N = 4.0, the point 
of  worst median performance, the worst case was just 623 branches, an order 
of  magnitude smaller. Comparison of Figs. 2(a) and (b) clearly shows that 
worst-case behaviour is responsible for almost all the features of  the mean in 
the mostly satisfiable region. Given the noise in the worst-case contour, and 
the influence the worst cases have on the mean, very large sample sizes would 
be needed to reduce this noise and produce a smooth graph. 

With larger problem sizes, this phenomenon becomes even clearer. Fig. 
3(a) shows the results of  DP applied to 150 variable CP problems, with 
1000 experiments performed at each point. The maximum mean number of  
branches is now not seen in the region where approximately 50% of  problems 
are satisfiable, but in a region where a very high percentage are satisfiable. In 
Fig. 3(b) we plot the breakdown in percentiles for the number of  branches 
used by DP. The worst case was 981,018 branches at L/N = 2.6, a region 
where 99.7% of  the problems generated were satisfiable. At L/N = 3.8 the 
point of  worst median performance, the worst case was just 8,982 branches, 
two orders of  magnitude smaller. 

We obtained very similar results with unit DP, although difficult problems 
were found with this simpler procedure at even smaller numbers of  variables 
[5]. For example, the worst case satisfiable problem for DP described above 
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Fig. 3. DP, N = 150, random CP problems. 

with 100 variables, required 350,163,776 branches using unit DP. 4 This was 
considerably more than the total number of  branches required by unit DP 
on a thousand 100-variable problems from the hard region of  random 3- 
SAT. 

To summarise, we have seen an incredible variability in the number of 
branches needed to solve problems generated randomly from the constant 
probability model without empty and unit clauses, using the Davis-Putnam 
procedure with and without pure literal deletion. This variability is sufficient 
to affect mean behaviour by many orders of magnitude. The behaviour is 
observed in regions where more than 90% of problems are satisfiable. 

5. An improved algorithm 

The versions of the Davis-Putnam procedure used in Section 4 take a 
very naive approach to application of the split-rule, simply splitting on the 
first literal in the first clause. However, even using such sophisticated heuris- 
tics as Jeroslow-Wang (see Section 3) for deciding upon which literal to 
split, we cannot eliminate variability. Fig. 4(a) shows the results of ap- 
plying DP with the Jeroslow-Wang heuristic to 250-variable CP problems, 
with 5000 problems tested at each data point, broken down in percentiles of 
the number of branches searched. The worst case was 907,614 branches at 
L/N = 2.6, a region where 99.66% of the problems generated were satisfiable. 
At L/N = 3.8, where median performance peaked at only 6 branches, the 
worst case was 576 branches, three orders of magnitude smaller. The larger 
problem size and sample size required to see the behaviour shows that the 
Jeroslow-Wang heuristic does offer great improvements over the naive splitting 

4 On a 30 Mips machine this one problem took our COMMON LISP implementation about a 
week. 
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heuristic, but it seems impossible to avoid highly variable and bad worst-case 
behaviour. 

6. Random 3-SAT 

Most recent experimental work on SAT has studied random 3-SAT [3, 11, 
12 ]. Our experiments suggest that exceptionally hard problems are considerably 
rarer in random 3-SAT than in the CP model, but that they do occur. While in 
Section 4, we performed experiments using 1000 problems per data point, we 
needed 100,000 problems per data point with random 3-SAT. Fig. 4(b)  shows 
the breakdown in percentiles for the number of  branches used by unit DP for 
50-variable random 3-SAT problems, from L/N = 1.8 to 3.0 and 3.1 to 4.5 in 
steps of  0.2. The worst case was 98,996 branches at L/N = 2.0, where 100% 
of the problems generated were satisfiable. At L/N = 4.5, the point of worst 
median performance, the worst case was just 1,238 branches. However, even 
the 99.99% contour does not show the dramatic variability visible in the worst 
case. Whilst hard problems are rarer than in CP, our results with CP suggest 
that they may nevertheless dominate the mean behaviour of random 3-SAT 
problems at large N. Unfortunately, current computational limits prevent us 
from testing this hypothesis. 

7. Problem presentation 

To explore in more detail the cause of the hardness of problems from the 
mostly satisfiable region, we examined the hard satisfiable problem described 
in Section 4 that took unit DP over 350 million branches. We were unable to 
find any obvious syntactical test, such as the distribution of clause lengths or 
variable occurrences, that distinguishes it from other problems in this region. 
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Fig. 5. Percentile behaviour on presentations of worst unsatisfiable problems. 

We next tested different presentations of this problem. 5 Even using unit DP, 
a model was found on the first branch with more than half of the presentations 
of the problem, while worst-case behaviour was still very bad. 

An interesting possibility is that in the original problem, a single bad split 
is made early on, leading to a very difficult unsatisfiable problem. 6 Indeed, 
the first split of  the original problem leads immediately to an unsatisfiable 
subproblem on which unit DP requires all but one of the millions of branches 
it searched. In addition, this unsatisfiable subproblem often remained hard 
when presented differently. Unit DP often took millions of branches and 500 
presentations of the problem to DP had a median of 1,497 and a mean of 
4,550 branches. However, the shortest proof found needed only 2 branches, 
4 unit propagations, and no pure literal deletions, and 10% of presentations 
were solved in as few as 10 branches. This suggests that the variable behaviour 
observed in this paper depends on the difficulty of  search in unsatisfiable 
problems, and that this search can go badly wrong even when there are short 
proofs available. These unsatisfiable problems can arise as randomly generated 
unsatisfiable problems, or as unsatisfiable subproblems of satisfiable problems 
after incorrect branching at an early stage. 

To explore this issue further, we compared the difficulty of different pre- 
sentations of  the worst unsatisfiable problems at different L/N. If the worst 
problem at a given L/N was satisfiable, we used the first unsatisfiable sub- 
problem found in DP's search. Fig. 5 (a) shows the breakdown in percentiles 
of applying DP to 500 random presentations of the worst CP problems at each 
point from Fig. 2, while Fig. 5 (b) shows the results of applying unit DP to 

5 These were constructed as follows: the clauses were permuted randomly; the literals in each 
clause were permuted randomly; the names of the literals were permuted randomly; and each 
literal, with probability 1/2, was negated throughout the clause set. The resulting problem is 
isomorphic to the original. 
6 We thank Alan Bundy for suggesting this to us. 
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500 random presentations of the worst 3-SAT problems at each point from 
Fig. 4(b). As a guide, we reproduce the probability of satisfiability from the 
earlier figures. The contours of 90% and worst-case behaviour show a clear 
downward trend from low values of L / N  to large values on this logarith- 
mic scale, and the median case is always comparatively hard. On the other 
hand, best case behaviour at low values of L / N  is very easy in all cases, 
and in most cases there is a proof needing only 2 branches. This strongly 
suggests that although short proofs are available, they can be much harder 
to find in regions of otherwise easy problems. Additionally, performance on 
3-SAT problems in the crossover from satisfiability to unsatisfiability varies 
by only an order of magnitude, compared to four orders of magnitude at 
L / N  = 2.0. This suggests that problems in the crossover are more uniformly 
hard. 

For the problems studied in Fig. 5(a), the ease of the 1% contour shows 
that hundredfold parallelisation would be sufficient to solve all these problems 
very quickly. However, it does not follow that this simple approach would 
continue to work as the problem size is increased. This is hinted at by an 
examination of the hard 250-variable CP problem reported in Section 5. As 
it was satisfiable, we tested different presentations of its first unsatisfiable 
subproblem. Although the shortest proof again required just 2 branches and 
10 unit propagations, DP only found a proof in fewer than 1000 branches for 
7% of presentations. This suggests that short proofs may get harder to find as 
problem sizes increase. 

8. Related work 

In an empirical study of random 3-SAT using a variant of unit DP with 
very effective branching heuristics, Crawford and Auton [3] observed a sec- 
ondary peak in problem difficulty in regions of high satisfiability for small 
problems. We believe this second peak is not due to variable behaviour, but 
more probably correlated with a peak in search depth we observed in the 
same region [7]. However, they also report anecdotally some problems be- 
low the crossover point as hard as those at the crossover point for problems 
beyond 1000 variables. This is consistent with our results (see Section 6), 
as they used a smaller sample size and we have also seen the use of im- 
proved heuristics delay the onset of variable behaviour (see Section 5). This 
suggests that very hard problems occur in otherwise easy regions of both ran- 
dom 3-SAT and the CP model, but are more easily observable in the CP 
model. 

Hogg and Williams have observed a very similar result for graph colouring 
[8]. They found that the hardest graph colouring problems were in an oth- 
erwise easy region of graphs of low connectivity. The median search cost, by 
comparison, shows the usual easy-hard-easy pattern through the phase transi- 
tion. 
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9. Conclusions 

The "easy" region of the both random 3-SAT and the constant probability 
model can sometimes give problems much harder for the Davis-Putnam pro- 
cedure than the hardest problems of the "hard" region of the random 3-SAT 
model. These very hard problems occur in a region where there is at least a 
90% chance of problems being satisfiable (and not 50% as had been previously 
proposed [12]). It is not certain if this difficult region is associated with 
the satisfiability phase transition (as proposed in [2]), with a second phase 
transition (as proposed in [8]), or with some other effect. The use of better 
heuristics appears to delay but not postpone indefnitely the appearance of 
these difficult problems. Hogg and Williams have observed the same effect in 
graph colouring [8 ]. 

Hard problems from the mostly satisfiable region appear to be potentially 
useful for testing algorithms as, in the worst case, they can be much harder than 
problems from the middle of the phase transition. We suggest that these difficult 
problems are on the knife edge between satisfiability and unsatisfiability. It 
can be difficult to determine whether they are satisfiable or unsatisfiable 
because they have relatively few constraints, even though they are mostly 
satisfiable. In this region, we have observed that hard unsatisfiable problems 
do in fact usually have short proofs, but that these proofs can be hard to find. 
Satisfiable problems can reduce to a very hard unsatisfiable subproblem if the 
wrong reduction is applied at an early stage. By comparison, in the middle 
of the phase transition, there is much more uniformity in the cost of proving 
satisfiability and unsatisfiability. 

We conjecture that the phenomena discussed in this paper will occur for 
many other, and possibly all, complete algorithms for SAT. Furthermore, it 
is very likely that similar phenomena will be observed in other classes of 
randomly generated SAT problems and in many other NP-hard problems. The 
hardness of many NP-hard problem classes may lie with rare but exponentially 
hard problems that are found in otherwise easy regions. 
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