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Abstract

We show that phase transition behavior similar to that
observed in NP-complete problems like random 3-SAT
occurs further up the polynomial hierarchy in problems
like random 2-QsAT. The differences between QSAT
and SAT in phase transition behavior that Cadoli et al
report are largely due to the presence of trivially unsat-
isfiable problems. Once they are removed, we see be-
havior more familiar from SAT and other NP-complete
domains. There are, however, some differences. Prob-
lems with short clauses show a large gap between worst
case behavior and median, and the easy-hard-easy pat-
tern is restricted to higher percentiles of search cost.
We compute the “constrainedness” of k-QSAT problems
for any k, and use this to predict the location of phase
transitions. We conjecture that these predictions are
less accurate than in NP-complete problems because
of the super-exponential size of the state space, and
of the weakness of first moment methods in complex-
ity classes above NP. Finally, we predict that similar
phase transition behavior will occur in other PSPACE-
complete problems like planning and game playing.

Introduction

A simple generalization of propositional satisfiability
(SAT) is quantified satisfiability (QsaT). This is the
prototypical PspPacE-complete problem. PSPACE 1s the
class of problems that can be solved using polynomial
space. Many search problems in Al lie within this com-
plexity class (for example, propositional reasoning in
many types of non-monotonic, modal, belief, temporal,
and description logics). Do we observe phase transition
behavior in this complexity class similar to that seen in
P and NP? Is the definition of constrainedness proposed
in (Gent et al. 1996) again useful?

We first introduce QSAT and the random model used
in (Cadoli, Giovanardi, & Schaerf 1997). We then argue
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that random models should avoid unary constraints like
unit clauses as they are often responsible for trivially in-
soluble problems. We show that Cadoli et al’s model
suffers from this flaw and propose instead two ‘flaw-
less’ models for generating random QSAT. We concern
ourselves with k-QSAT, a restricted subclass of QsAT
detailed below. We define the constrainedness, &, of k-
QsAT problems for all £ and predict the location of the
phase transition, the first time this has been done for
a complexity class above NP. For 2-QQsAT, we compare
this prediction with empirical results. The prediction
1s not always as accurate as in many NP problems, and
we conjecture why.

QSAT

QsAT is the problem of deciding the satisfiability of
propositional formulae in which the Boolean variables
are either existentially or universally quantified. For ex-
ample, Yoy (# V —y) A (- V y) evaluates to true since
whatever truth value, 7" or F' we give to x, there is a
truth value for y, namely the same value as x, which
satisfies the quantified formula. We can group consec-
utive variables sharing the same quantifier into a set
bound by a single quantifier, so we assume that the
quantifiers alternate, an universal following an existen-
tial and vice versa. A k-QSAT problem is a QSAT prob-
lem in which there are k£ alternating quantifiers applied
to disjoint sets of variables, with the innermost quanti-
fier being existential. OQur example above is in 2-(QSAT,
while 1-QSAT is the same as SAT. Many games like
generalized versions of checkers, Go, Hex, and Othello
are PspAacE-complete. Indeed, we can view QQSAT as a
game between the existential quantifiers, which try to
pick instantiations that give a satisfiable subformula,
and the universal quantifiers, which try to pick instan-
tiations that give an unsatisfiable subformula.

Whilst SAT is NP-complete, QSAT i1s PSPACE-
complete, and k-QSAT is Xj P-complete (Papadimitriou
1994). Notice that the difference between QsaT and k-
QsSAT is that in QSAT there is no a prior: limit on the
number k of alternations. The union of the classes ¥, P
for all £ defines the ‘cumulative polynomial hierarchy’
PH. If for some ¢, ¥; 41 P = X, P then the polynomial hi-
erarchy ‘collapses’ at level ¢ and PspacE = PH = X;P.
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Figure 1: Random 2-QSAT problems from Cadoli et al’s flawed model, generated with & = 3 and varying n and [/n.
(left) fraction of unsatisfiable problems; (right) fraction of unsatisfiable problems that are not trivial. The scale on
the y-axis shows that at least 90% of all unsatisfiable problems were trivially insoluble in every case.

It is conjectured that no such collapse occurs.

In this paper, we analyse k-QsAT for all & and per-
form experiments on 2-QSAT. Asin SAT, we can restrict
the quantified formulae in a QSAT problem to conjunc-
tive normal form (cNF). QSAT with formulae in ONF
remains PSPACE-complete, and k-QsAT with formulae
in 3-ONF remains X P-complete. (Cadoli, Giovanardi,
& Schaerf 1998) propose an algorithm for solving QSAT
problems in ¢NF which we use throughout this paper.

(Cadoli, Giovanardi, & Schaerf 1997) generalize the
well known fixed clause model from SAT to QsaAT. In
this model, we fix the number of alternating quanti-
fiers k, the cardinality of the set of variables to which
each quantifier applies (typically an uniform size, n),
the number of clauses [, and the size of the clauses h.
Each clause is generated by choosing A distinct vari-
ables, negating each with probability 1/2. Repeated
clauses or clauses just containing universals (which are
trivially unsatisfiable) are discarded.

Flawed and Flawless Problems

In SaT, empty and unit clauses are normally omitted
in random generation methods where the number of
literals in each clause varies. For example, in the ‘con-
stant probability’ model proposed in (Mitchell, Selman,
& Levesque 1992), each variable is included in a clause
with some constant probability, but if only zero or one
variable 1s included, the clause is discarded. An empty
clause immediately makes a problem insoluble, but the
reason for omitting unit clauses is more subtle. Suppose
the model did not exclude unit clauses. Each clause
generated from the n variables would have a certain
probability of being unit. If the average clause size is
constant, then for all n this probability is above some
non-zero value gq. As the [ clauses are generated inde-
pendently, about ¢/ will be units. As there are only
2n different unit clauses, we expect to generate comple-
mentary unit clauses when ¢l & v/2n, just as we expect
to find two people with the same birthday in a group
of about /365 people. If an instance contains com-
plementary unit clauses it is trivially unsatisfiable. So

we expect problems to be trivially unsatisfiable when
I = O(v/n), but non-trivial unsatisfiability occurs at
[ = O(n). Phase transition behavior is therefore even-
tually dominated by trivial insolubility. In short, a
naive version of the constant probability model would
be flawed, but Mitchell et al’s version is flawless.

An analogous flaw was identified by (Achlioptas et al.
1997) in much-used random models of binary constraint
satisfaction problems, although most experiments re-
ported in the literature use parameters that are too
small to be affected by flaws. (Gent et al. 1998) pro-
poses a flawless model which eliminates the unit con-
straints that lead to trivially insolubility.

Cadoli et al’s random QSAT model also contains a
flaw. A QSAT instance is trivially unsatisfiable if it con-
tains one clause with a single existential and the rest
universal, and a second clause with the negation of this
existential and the rest universals distinct from the first
set. Such a pair of clauses is unsatisfiable since, when
all the universals are F’, the two units that remain af-
ter simplification are contradictory. In Cadoli et al’s
model with equal numbers of existential and universal
variables and a fixed clause size h, the probability of
each clause being unit-existential is h/(2" —1). This is
independent of n and so bounded above 0 as n — co.
As before, we expect to see two clauses with the sin-
gle existential literals complementary when [ = O(y/n).
With A fixed and n — oo, these two clauses will al-
most certainly have disjoint sets of universals. Unlike
the constraint satisfaction models, the flaw occurs at
sufficiently small problem sizes to have had a signifi-
cant 1mpact on previous experimental studies. Table 1
in (Cadoli, Giovanardi, & Schaerf 1997) appear to con-
firm this argument. The phase transition in solubility
occurs when [ is approximately proportional to \/n.

To remove such trivial problems, we propose two
new generation methods. We propose the name ‘unit-
flawless’ for these methods since instances are immune
from the flaws we have identified caused by unit clauses.
Since it is possible that other flaws might exist the name
‘flawless’ 1s not justified, but we use it below as short-
hand for ‘unit-flawless’ in the context of this paper. In
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Figure 2: Random 2-QsAT problems from model A, k = 3, varying n and {/n. (left) fraction of satisfiable problems;

(right) 99% percentile in search cost.

model A, we simply discard a clause that contains one
or fewer existentials, and replace with a newly gener-
ated clause. In model B, we fix the number of exis-
tentials e > 1 that occur in each clause. We cannot
generate a problem that is trivially unsatisfiable in ei-
ther model.

Experimental verification

To show that trivially unsatisfiable problems dominate
behavior in Cadoli et al’s model, we ran an experi-
ment with similar parameters to (Cadoli, Giovanardi, &
Schaerf 1997). We use random 2-QsAT problems with
h = 3. In this and subsequent experiments, we gener-
ate 1000 problems at each data point. Figure 1 shows
the fraction of unsatisfiable problems and the fraction
of these that are trivially unsatisfiable. We see that
the phase transition is almost entirely due to trivially
unsatisfiable problems. Only a few problems are unsat-
isfiable and not trivial, and the fraction of non-trivial
ones goes down as n increases.
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Figure 3: Median search cost of model A Random 2-
QsAT problems, h = 5, varying n and {/n.

We next tested our proposed flawless model A, in
which we discard clauses containing one or no existen-
tials. We now observe a phase transition at an ap-
proximately fixed value of I/n. In Figure 2, we plot
the fraction of satisfiable problems for random 2-QsAT

problems generated by model A, with A = 3. The
phase transition occurs around !/n = 2. There is an
easy-hard-easy pattern in search cost but only in the
higher percentiles. Notice that there is an increase in
search cost after the phase transition, probably associ-
ated with the overheads of dealing with more clauses.
Median search cost is rather uniform across the phase
transition. Model A problems are significantly harder
to solve than problems from the flawed model. With the
flawed model, we easily ran a phase transition experi-
ment at n = 500. With model A, we were unable to run
a complete phase transition experiment for n > 200.
For problems with larger clauses, the easy-hard-easy
pattern is not restricted to the higher percentiles. For
example, in Figure 3 we plot the median search cost for
random 2-QSAT with h = 5. The phase transition now
occurs around !/n = 6. and we observe an easy-hard-
easy pattern in median cost.

We also tested our second flawless model, model B,
in which number of existentials is fixed. With two or
more existentials in every clause, we again see a phase
transition at an approximately fixed value of {/n. For
example, in Figure 4 we plot results for random 2-QSAT
problems generated by model B in which 2 out of 3 liter-
als in each clause are existentials. The phase transition
occurs around I/n &~ 1.4. As in Figure 2, search cost
increases with [/n after the phase transition. Although
these are the highest costs, we expect that the peaks
in the phase transition region will dominate as n in-
creases since they will grow faster than the overheads.
The easy-hard-easy pattern in search cost is again re-
stricted to the higher percentiles, as in model A with
h = 3. Problems from model B are more uniform,
and they tend to have less variation in problem diffi-
culty than problems from model A. As has been seen
in NP problems, more uniform models tend to lead to
fewer exceptionally hard problems (Gent & Walsh 1994;
Smith & Grant 1995).

State space

We can use the theory of constrainedness of search
problems proposed in (Gent et al. 1996) to predict the
location of phase transitions like this. Whilst this the-
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Figure 4: Random 2-QSAT problems from model B generated with 2 out of 3 literals in each clause being existentials,
and varying n and [/n. (left) fraction of satisfiable problems; (right) 99% percentile in search cost.

ory was developed for NP-complete problems such as
SAT, 1t has also been used in the complexity class P
(Gent et al. 1997). To determine the constrainedness
k of random QSAT problems, we first identify the state
space. A state is described by a set of substitutions
for the existential variables. We need a set as there is
a (possibly different) substitution for each set of val-
ues of the universal variables. The size of problems is
equal to the number of bits needed to describe a state.
For random 1-QsAT problems, we need n bits to de-
scribe a state as there are n existentials needing 1 bit
each. For 2-QsAT problems, we need n2" bits to de-
scribe a state since there are 2" different values for the
universals, each of which requires n bits to specify the
values for the existentials. In general, if we need si bits
to specify a k-QSAT state for & even, we need s; + n
bits for a k+1-QSAT state. And if we need s; bits to
specify a k-QsAT state for k odd, we need 27s; bits
to specify one k-QSAT state for each of the 27 values
of the new universal variables and hence a k+1-QSAT

state. Thus, 2i-QSAT problems have sizg nzzzl 2In
and (2¢41)-QsAT problems have size n E;’:O 20,

Constrainedness of QSAT

The informal notion of the constrainedness of a
search problem has been formalised by the introduc-
tion of a constrainedness parameter, & (Gent et al.
1996). Search problems with small £ values are under-
constrained and almost surely soluble. Problems with
large values of x are over-constrained and almost surely
insoluble. Inbetween, near x = 1, problems are “crit-
ically constrained” and on the knife-edge between sol-
ubility and insolubility: in this region of x we expect
to see phase transition behavior and the hardest search
problems. By definition (Gent et al. 1996) we have,

logz(Pr{a state is a solution})

K =
def size of problem

We first derive a general formula for the constrained-
ness, &, of k-QSAT problems. We will then specialize
this formula for models A and B. For the general case,
we assume that each of the [ clauses has a probability

p; of containing exactly j existentials but that po = 0
to exclude clauses without any existentials. To simplify
computation, we assume that clauses are generated in-
dependently of each other.

PI’{a state is a solution}

= PI’{a state satisfies a set of { clauses}

= (PI’{a state satisfies a clause})l

(Z Y2 PI’{a state satisfies a clause of j existentials})l
J

Given a state, and a clause with j existentials, at
least one of the A — j universals is true in all but 1
out of 2°=7 of the substitutions in the state. Hence,
for random 2¢- or 2¢ + 1-QSAT problems, we need
not consider 2" different substitutions for the exis-
tentials, but just 2%/2/=J = 20"+~ each of which
is assumed to be independent'. One of the j ex-
istentials in a clause is true in all but 1 out of 27
cases. Hence, PI’{a state satisfies a clause of j existentials} =

(1— 1/2j)zm+j_h. For random 2i-QSAT, this gives us
po= L1 ————lo Zh: (1—1/29)2""
= n Z gz p]
Jj= 1 j=1

Similarly, for random 2¢ + 1—QSAT
l intji—h
ko= 10%2 ZPJ - 1/2])2 )
n Z
J= 02 Jj=1

Model A

As clauses containing zero or one existentials are dis-
h A A\ _
ot (1) =

h —1) for j > 1. For random 2-QSAT,

carded, pp = p1 = 0 and p; =

(s

J
ndi—h
e logzgpyl——2 )

'For 2-QsAT, this assumption is correct. For k-QSAT for
k > 2, the innermost existentials can vary more than the
outermost, so the assumption will start to break.



For large h, we make a mean-field approximation that
each clause has h/2 existentials and universals. Hence,

{1 1 gn-nse
k= —52710%2((1——2;1/2) )
1
= —gmlogz(l—m)

l 1
~ —glogz(l - Q_h)

Model B

Each of the | clauses contains exactly e existentials.
That is, p. = 1 and p; = 0 for j # e. For random
2-QSAT | this gives,

1

%)

As logy (1 + ) = #/In(2) for small z, if h and e are
large then,

loeop 1 I 1 l 1
—2¢7 =— ~ ——logy (1 — =—

n 2¢In(2) n2"In(2) n o8 2h )

l
ko= ——2""log,(1 —
n

R~

This 1s the same approximation as we derived for model
A. Note that the constrainedness is independent of e,
the number of existentials provided this and the clause
size are large. Where there are n universal and n exis-
tential variables, the constrainedness of random 2-QsAT
problems from either model is approximately double
the constrainedness of a random SAT problem with the
same number of variables, clauses, and clause size. This
is perhaps not too surprising. Universally quantifying
half the variables in a SAT problem is likely to give a
much more constrained problem.

Location of phase transition

Constrainedness can be used to predict the location
of phase transitions. In many NP-complete problems,
phase transition behavior is seen at k = 1 (Gent et al.
1996). For model B problems with 2 out of 3 literals in
each clause being existential, the phase transition oc-
curs at k & 0.30, ({/n =~ 1.4). For model A problems
with h = b, the transition is at & ~ 0.28, ({/n =~ 6).

To investigate why phase transitions occur earlier
than predicted, we ran experiments with model B prob-
lems with n = 25 and A = 5, i.e. b literals in each
clause, and varying numbers of existentials e in each
clause. The phase transition occurs at larger values of
[/n as we increase the number of existentials. With
fewer, more constraining universals, we need more con-
straints on each of the less constraining existentials. As
we move from e = 4 to e = 5, we move down a com-
plexity class to NP. Not too surprisingly, there is a
significant drop in problem hardness as we move from
e = 4 to e = 5. More surprisingly, problem hardness
increases as we increase the number of existentials (and
reduce the number of universals) in each clause from
e = 2 (and 3 universals in each clause) to e = 4 (and

just 1 universal). In Figure 5, we plot the constrained-
ness, x, against the 99% percentile of search cost: as
expected the peaks in search cost line up closely with
the satisfiability transition. The location of the phase
transition approaches k & 1 as we increase the number
of existentials in each clause. The rather constant shift
of the phase transition as e increases may indicate a
systematic error in our estimate for «.
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Figure 5: Model B problems with n = 25 and h = 5,
varying number of existentials e, search cost vs. «.
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There 1s an alternative explanation for these errors.
The prediction that the phase transition occurs around
k & 1 is based in part by the first moment Markov
bound (that is, prob(sol) < (Sol)). The location of
phase transitions in NP problems can be predicted bet-
ter by a second moment method using the variance in
the number of solutions (Smith & Dyer 1996). In fact,
at the SAT phase transition, an exponentially small
number of problems have an exponential number of so-
lutions (Kamath ef al. 1995). In a PsPACE problem like
QsSAT, the variance in the number of solutions, and the
super-exponential size of the state space, may result in
the Markov bound being a less good predictor for the
location of the phase transition.

Related and Further Work

This work is entirely novel in showing that the theory
of constrainedness developed for NP problems (Gent et
al. 1996) can be applied to a PSPACE problem. Since
the theory has also been applied to a problem in P,
that of establishing arc-consistency (Gent et al. 1997),
constrainedness can be used both up and down the com-
plexity hierarchy.

Phase transitions in PSPACE problems have been
studied outside a general framework like the theory
of constrainedness. Cadoli et al introduced an algo-
rithm for QSAT and performed experimental evalua-
tions (Cadoli, Giovanardi, & Schaerf 1997; 1998). As
we discussed above, their randomly generated instances
suffer from a flaw that can make them trivially insolu-
ble. This may have given misleading impressions about
the efficiency of their algorithm. We have introduced
two new methods for generating ‘flawless’ random QSAT
problems that are typically much harder.



The modal propositional logic K, which is PSPACE-
complete, displays a phase transition and an easy-hard-
easy pattern in search cost (Giunchiglia et al. 1998).
The problem generator used in these experiments im-
proves upon an earlier one that was criticised for giving
instances that are ‘trivial’ as they are propositionally
unsatisfiable (Hustadt & Schmidt 1997). Our use of
the term ‘trivial’ is a complexity class lower: the un-
satisfiable instances we identify in Cadoli et al’s model
can be found in almost linear time.

Bylander performed an average-case analysis on cer-
tain classes of problems within his model of ran-
dom propositional STRIPS problems (Bylander 1996).
He concluded by “suggesting that PsPACE-complete
problems exhibit threshold phenomena similar to NP-
complete problems.” We can extend this conjecture
by suggesting that the prediction of threshold phenom-
ena using constrainedness can be extended from NP-
complete problems through the polynomial hierarchy
and to PsPAacE-complete problems.

We have only tested our predictions experimentally
for 2-QsaT. It would be interesting to investigate k-
QsaAT for k > 2, to see whether & still makes reasonable
predictions of the location of phase transitions. There
are technical issues extending our definition of & be-
yond k-QsAT to full QsaT (assuming the polynomial
hierarchy does not collapse). Since any instance of a
QsAT problem has some maximum number of alternat-
ing quantifiers, it would seem that our definition of & for
the relevant k — QsAT would apply. It is likely that this
would work, provided that the values of p; used in the
derivation were correct. In particular, p; would have to
be the conditional probability of j existentials existing
in a clause given that the instance contained exactly &
alternating quantifiers. Even then, it is possible that
technical difficulties would arise in defining &, and we
leave this question open for further investigation.

Conclusions

What general lessons can be learnt from this study?
First, we can define the constrainedness of problems in
PsSPACE in a similar way to problems in NP. A phase
transition in satisfiability and an easy-hard-easy pat-
tern again occur at a critical value of constrainedness.
However, predictions made by our theory are less accu-
rate than in NP: we conjecture that this may be due to
the huge state spaces of PSPACE-complete problems.
Second, we must take care to avoid trivially insol-
uble problems when generating random problems in
new domains. Trivially insoluble problems have caused
difficulties in propositional satisfiability, binary con-
straint satisfaction problems, and as we have shown
here, QSAT. Since unit constraints are often the cause of
trivially insolubility, we can usually generate unflawed
problems by simply disallowing unit constraints.
Third, QSAT plays a similar role in PSPACE to the
role played by SAT in NP. Because of this, we conjec-
ture that constrainedness will be a useful theory in the
study of many PSPACE problems of great interest in

Al. Outstanding examples include games playing and
planning problems. While it will be interesting to see
phase transitions in these problems, it will be fascinat-
ing if constrainedness can be used, as it has in NP, to
suggest new search methods.
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