
Beyond NP: the QSAT phase transitionIan P. Gent and Toby Walsh �Department of Computer ScienceUniversity of StrathclydeGlasgow G1 1XL United Kingdomipg@cs.strath.ac.uk, tw@cs.strath.ac.ukAbstractWe show that phase transition behavior similar to thatobserved in NP-complete problems like random 3-Satoccurs further up the polynomial hierarchy in problemslike random 2-Qsat. The di�erences between Qsatand Sat in phase transition behavior that Cadoli et alreport are largely due to the presence of trivially unsat-is�able problems. Once they are removed, we see be-havior more familiar from Sat and other NP-completedomains. There are, however, some di�erences. Prob-lems with short clauses show a large gap between worstcase behavior and median, and the easy-hard-easy pat-tern is restricted to higher percentiles of search cost.We compute the \constrainedness" of k-Qsat problemsfor any k, and use this to predict the location of phasetransitions. We conjecture that these predictions areless accurate than in NP-complete problems becauseof the super-exponential size of the state space, andof the weakness of �rst moment methods in complex-ity classes above NP. Finally, we predict that similarphase transition behavior will occur in other Pspace-complete problems like planning and game playing.IntroductionA simple generalization of propositional satis�ability(Sat) is quanti�ed satis�ability (Qsat). This is theprototypical Pspace-complete problem. Pspace is theclass of problems that can be solved using polynomialspace. Many search problems in AI lie within this com-plexity class (for example, propositional reasoning inmany types of non-monotonic, modal, belief, temporal,and description logics). Do we observe phase transitionbehavior in this complexity class similar to that seen inP and NP? Is the de�nition of constrainedness proposedin (Gent et al. 1996) again useful?We �rst introduce Qsat and the random model usedin (Cadoli, Giovanardi, & Schaerf 1997). We then argue�We thank Marco Cadoli for binaries for the Evaluatealgorithm. We are members of the cross-site APES Re-search Group, http://www.cs.strath.ac.uk/~apes, andwe thank our fellow members from both Leeds and Strath-clyde Universities. We thank reviewers of AAAI for help-ful comments. Toby Walsh is supported by EPSRC grantGR/L24014.Copyright c
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that randommodels should avoid unary constraints likeunit clauses as they are often responsible for trivially in-soluble problems. We show that Cadoli et al's modelsu�ers from this 
aw and propose instead two `
aw-less' models for generating random Qsat. We concernourselves with k-Qsat, a restricted subclass of Qsatdetailed below. We de�ne the constrainedness, �, of k-Qsat problems for all k and predict the location of thephase transition, the �rst time this has been done fora complexity class above NP. For 2-Qsat, we comparethis prediction with empirical results. The predictionis not always as accurate as in many NP problems, andwe conjecture why. QSATQsat is the problem of deciding the satis�ability ofpropositional formulae in which the Boolean variablesare either existentially or universally quanti�ed. For ex-ample, 8x9y (x_:y)^ (:x_ y) evaluates to true sincewhatever truth value, T or F we give to x, there is atruth value for y, namely the same value as x, whichsatis�es the quanti�ed formula. We can group consec-utive variables sharing the same quanti�er into a setbound by a single quanti�er, so we assume that thequanti�ers alternate, an universal following an existen-tial and vice versa. A k-Qsat problem is a Qsat prob-lem in which there are k alternating quanti�ers appliedto disjoint sets of variables, with the innermost quanti-�er being existential. Our example above is in 2-Qsat,while 1-Qsat is the same as Sat. Many games likegeneralized versions of checkers, Go, Hex, and Othelloare Pspace-complete. Indeed, we can view Qsat as agame between the existential quanti�ers, which try topick instantiations that give a satis�able subformula,and the universal quanti�ers, which try to pick instan-tiations that give an unsatis�able subformula.Whilst Sat is NP-complete, Qsat is Pspace-complete, and k-Qsat is �kP-complete (Papadimitriou1994). Notice that the di�erence between Qsat and k-Qsat is that in Qsat there is no a priori limit on thenumber k of alternations. The union of the classes �kPfor all k de�nes the `cumulative polynomial hierarchy'PH. If for some i, �i+1P = �iP then the polynomial hi-erarchy `collapses' at level i and Pspace = PH = �iP.
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n=500Figure 1: Random 2-Qsat problems from Cadoli et al's 
awed model, generated with k = 3 and varying n and l=n.(left) fraction of unsatis�able problems; (right) fraction of unsatis�able problems that are not trivial. The scale onthe y-axis shows that at least 90% of all unsatis�able problems were trivially insoluble in every case.It is conjectured that no such collapse occurs.In this paper, we analyse k-Qsat for all k and per-form experiments on 2-Qsat. As in Sat, we can restrictthe quanti�ed formulae in a Qsat problem to conjunc-tive normal form (cnf). Qsat with formulae in cnfremains Pspace-complete, and k-Qsat with formulaein 3-cnf remains �kP-complete. (Cadoli, Giovanardi,& Schaerf 1998) propose an algorithm for solvingQsatproblems in cnf which we use throughout this paper.(Cadoli, Giovanardi, & Schaerf 1997) generalize thewell known �xed clause model from Sat to Qsat. Inthis model, we �x the number of alternating quanti-�ers k, the cardinality of the set of variables to whicheach quanti�er applies (typically an uniform size, n),the number of clauses l, and the size of the clauses h.Each clause is generated by choosing h distinct vari-ables, negating each with probability 1/2. Repeatedclauses or clauses just containing universals (which aretrivially unsatis�able) are discarded.Flawed and Flawless ProblemsIn Sat, empty and unit clauses are normally omittedin random generation methods where the number ofliterals in each clause varies. For example, in the `con-stant probability' model proposed in (Mitchell, Selman,& Levesque 1992), each variable is included in a clausewith some constant probability, but if only zero or onevariable is included, the clause is discarded. An emptyclause immediately makes a problem insoluble, but thereason for omitting unit clauses is more subtle. Supposethe model did not exclude unit clauses. Each clausegenerated from the n variables would have a certainprobability of being unit. If the average clause size isconstant, then for all n this probability is above somenon-zero value q. As the l clauses are generated inde-pendently, about ql will be units. As there are only2n di�erent unit clauses, we expect to generate comple-mentary unit clauses when ql � p2n, just as we expectto �nd two people with the same birthday in a groupof about p365 people. If an instance contains com-plementary unit clauses it is trivially unsatis�able. So

we expect problems to be trivially unsatis�able whenl = O(pn), but non-trivial unsatis�ability occurs atl = O(n). Phase transition behavior is therefore even-tually dominated by trivial insolubility. In short, anaive version of the constant probability model wouldbe 
awed, but Mitchell et al's version is 
awless.An analogous 
aw was identi�ed by (Achlioptas et al.1997) in much-used randommodels of binary constraintsatisfaction problems, although most experiments re-ported in the literature use parameters that are toosmall to be a�ected by 
aws. (Gent et al. 1998) pro-poses a 
awless model which eliminates the unit con-straints that lead to trivially insolubility.Cadoli et al's random Qsat model also contains a
aw. A Qsat instance is trivially unsatis�able if it con-tains one clause with a single existential and the restuniversal, and a second clause with the negation of thisexistential and the rest universals distinct from the �rstset. Such a pair of clauses is unsatis�able since, whenall the universals are F , the two units that remain af-ter simpli�cation are contradictory. In Cadoli et al'smodel with equal numbers of existential and universalvariables and a �xed clause size h, the probability ofeach clause being unit-existential is h=(2h � 1). This isindependent of n and so bounded above 0 as n ! 1.As before, we expect to see two clauses with the sin-gle existential literals complementary when l = O(pn).With h �xed and n ! 1, these two clauses will al-most certainly have disjoint sets of universals. Unlikethe constraint satisfaction models, the 
aw occurs atsu�ciently small problem sizes to have had a signi�-cant impact on previous experimental studies. Table 1in (Cadoli, Giovanardi, & Schaerf 1997) appear to con-�rm this argument. The phase transition in solubilityoccurs when l is approximately proportional to pn.To remove such trivial problems, we propose twonew generation methods. We propose the name `unit-
awless' for these methods since instances are immunefrom the 
aws we have identi�ed caused by unit clauses.Since it is possible that other 
aws might exist the name`
awless' is not justi�ed, but we use it below as short-hand for `unit-
awless' in the context of this paper. In
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n=50Figure 2: Random 2-Qsat problems from model A, k = 3, varying n and l=n. (left) fraction of satis�able problems;(right) 99% percentile in search cost.model A, we simply discard a clause that contains oneor fewer existentials, and replace with a newly gener-ated clause. In model B, we �x the number of exis-tentials e > 1 that occur in each clause. We cannotgenerate a problem that is trivially unsatis�able in ei-ther model.Experimental veri�cationTo show that trivially unsatis�able problems dominatebehavior in Cadoli et al's model, we ran an experi-ment with similar parameters to (Cadoli, Giovanardi, &Schaerf 1997). We use random 2-Qsat problems withh = 3. In this and subsequent experiments, we gener-ate 1000 problems at each data point. Figure 1 showsthe fraction of unsatis�able problems and the fractionof these that are trivially unsatis�able. We see thatthe phase transition is almost entirely due to triviallyunsatis�able problems. Only a few problems are unsat-is�able and not trivial, and the fraction of non-trivialones goes down as n increases.
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n=5Figure 3: Median search cost of model A Random 2-Qsat problems, h = 5, varying n and l=n.We next tested our proposed 
awless model A, inwhich we discard clauses containing one or no existen-tials. We now observe a phase transition at an ap-proximately �xed value of l=n. In Figure 2, we plotthe fraction of satis�able problems for random 2-Qsat

problems generated by model A, with h = 3. Thephase transition occurs around l=n � 2. There is aneasy-hard-easy pattern in search cost but only in thehigher percentiles. Notice that there is an increase insearch cost after the phase transition, probably associ-ated with the overheads of dealing with more clauses.Median search cost is rather uniform across the phasetransition. Model A problems are signi�cantly harderto solve than problems from the 
awed model. With the
awed model, we easily ran a phase transition experi-ment at n = 500. With model A, we were unable to runa complete phase transition experiment for n > 200.For problems with larger clauses, the easy-hard-easypattern is not restricted to the higher percentiles. Forexample, in Figure 3 we plot the median search cost forrandom 2-Qsat with h = 5. The phase transition nowoccurs around l=n � 6. and we observe an easy-hard-easy pattern in median cost.We also tested our second 
awless model, model B,in which number of existentials is �xed. With two ormore existentials in every clause, we again see a phasetransition at an approximately �xed value of l=n. Forexample, in Figure 4 we plot results for random 2-Qsatproblems generated by model B in which 2 out of 3 liter-als in each clause are existentials. The phase transitionoccurs around l=n � 1:4. As in Figure 2, search costincreases with l=n after the phase transition. Althoughthese are the highest costs, we expect that the peaksin the phase transition region will dominate as n in-creases since they will grow faster than the overheads.The easy-hard-easy pattern in search cost is again re-stricted to the higher percentiles, as in model A withh = 3. Problems from model B are more uniform,and they tend to have less variation in problem di�-culty than problems from model A. As has been seenin NP problems, more uniform models tend to lead tofewer exceptionally hard problems (Gent &Walsh 1994;Smith & Grant 1995).State spaceWe can use the theory of constrainedness of searchproblems proposed in (Gent et al. 1996) to predict thelocation of phase transitions like this. Whilst this the-
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n=50Figure 4: Random 2-Qsat problems from model B generated with 2 out of 3 literals in each clause being existentials,and varying n and l=n. (left) fraction of satis�able problems; (right) 99% percentile in search cost.ory was developed for NP-complete problems such asSat, it has also been used in the complexity class P(Gent et al. 1997). To determine the constrainedness� of random Qsat problems, we �rst identify the statespace. A state is described by a set of substitutionsfor the existential variables. We need a set as there isa (possibly di�erent) substitution for each set of val-ues of the universal variables. The size of problems isequal to the number of bits needed to describe a state.For random 1-Qsat problems, we need n bits to de-scribe a state as there are n existentials needing 1 biteach. For 2-Qsat problems, we need n2n bits to de-scribe a state since there are 2n di�erent values for theuniversals, each of which requires n bits to specify thevalues for the existentials. In general, if we need sk bitsto specify a k-Qsat state for k even, we need sk + nbits for a k+1-Qsat state. And if we need sk bits tospecify a k-Qsat state for k odd, we need 2nsk bitsto specify one k-Qsat state for each of the 2n valuesof the new universal variables and hence a k+1-Qsatstate. Thus, 2i-Qsat problems have size nPij=1 2jnand (2i+1)-Qsat problems have size nPij=0 2jn.Constrainedness of QSATThe informal notion of the constrainedness of asearch problem has been formalised by the introduc-tion of a constrainedness parameter, � (Gent et al.1996). Search problems with small � values are under-constrained and almost surely soluble. Problems withlarge values of � are over-constrained and almost surelyinsoluble. Inbetween, near � = 1, problems are \crit-ically constrained" and on the knife-edge between sol-ubility and insolubility: in this region of � we expectto see phase transition behavior and the hardest searchproblems. By de�nition (Gent et al. 1996) we have,� =def � log2(Prfa state is a solutiong)size of problemWe �rst derive a general formula for the constrained-ness, �, of k-Qsat problems. We will then specializethis formula for models A and B. For the general case,we assume that each of the l clauses has a probability

pj of containing exactly j existentials but that p0 = 0to exclude clauses without any existentials. To simplifycomputation, we assume that clauses are generated in-dependently of each other.Prfa state is a solutiong= Prfa state satis�es a set of l clausesg= (Prfa state satis�es a clauseg)l= (Xj pjPrfa state satis�es a clause of j existentialsg)lGiven a state, and a clause with j existentials, atleast one of the h � j universals is true in all but 1out of 2h�j of the substitutions in the state. Hence,for random 2i- or 2i + 1-Qsat problems, we neednot consider 2in di�erent substitutions for the exis-tentials, but just 2in=2h�j = 2in+j�h, each of whichis assumed to be independent1. One of the j ex-istentials in a clause is true in all but 1 out of 2jcases. Hence, Prfa state satis�es a clause of j existentialsg =(1� 1=2j)2in+j�h . For random 2i-Qsat, this gives us� = � ln 1Pij=1 2jn log2( hXj=1 pj(1� 1=2j)2in+j�h )Similarly, for random 2i+ 1-Qsat,� = � ln 1Pij=0 2jn log2( hXj=1 pj(1� 1=2j)2in+j�h )Model AAs clauses containing zero or one existentials are dis-carded, p0 = p1 = 0 and pj = � hj �=Phi=2� hi � =� hj �=(2h � h� 1) for j > 1. For random 2-Qsat,� = � ln 12n log2( hXj=2 pj(1 � 12j )2n+j�h )1For 2-Qsat, this assumption is correct. For k-Qsat fork > 2, the innermost existentials can vary more than theoutermost, so the assumption will start to break.



For large h, we make a mean-�eld approximation thateach clause has h=2 existentials and universals. Hence,� � � ln 12n log2((1 � 12h=2 )2n�h=2 )= � ln 12h=2 log2(1� 12h=2 )� � ln log2(1� 12h )Model BEach of the l clauses contains exactly e existentials.That is, pe = 1 and pj = 0 for j 6= e. For random2-Qsat , this gives,� = � ln2e�h log2(1 � 12e )As log2(1 + x) � x= ln(2) for small x, if h and e arelarge then,� � ln2e�h 12e ln(2) = ln 12h ln(2) � � ln log2(1� 12h )This is the same approximation as we derived for modelA. Note that the constrainedness is independent of e,the number of existentials provided this and the clausesize are large. Where there are n universal and n exis-tential variables, the constrainedness of random 2-Qsatproblems from either model is approximately doublethe constrainedness of a random Sat problem with thesame number of variables, clauses, and clause size. Thisis perhaps not too surprising. Universally quantifyinghalf the variables in a Sat problem is likely to give amuch more constrained problem.Location of phase transitionConstrainedness can be used to predict the locationof phase transitions. In many NP-complete problems,phase transition behavior is seen at � � 1 (Gent et al.1996). For model B problems with 2 out of 3 literals ineach clause being existential, the phase transition oc-curs at � � 0:30, (l=n � 1:4). For model A problemswith h = 5, the transition is at � � 0:28, (l=n � 6).To investigate why phase transitions occur earlierthan predicted, we ran experiments with model B prob-lems with n = 25 and h = 5, i.e. 5 literals in eachclause, and varying numbers of existentials e in eachclause. The phase transition occurs at larger values ofl=n as we increase the number of existentials. Withfewer, more constraining universals, we need more con-straints on each of the less constraining existentials. Aswe move from e = 4 to e = 5, we move down a com-plexity class to NP. Not too surprisingly, there is asigni�cant drop in problem hardness as we move frome = 4 to e = 5. More surprisingly, problem hardnessincreases as we increase the number of existentials (andreduce the number of universals) in each clause frome = 2 (and 3 universals in each clause) to e = 4 (and

just 1 universal). In Figure 5, we plot the constrained-ness, �, against the 99% percentile of search cost: asexpected the peaks in search cost line up closely withthe satis�ability transition. The location of the phasetransition approaches � � 1 as we increase the numberof existentials in each clause. The rather constant shiftof the phase transition as e increases may indicate asystematic error in our estimate for �.
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e=5Figure 5: Model B problems with n = 25 and h = 5,varying number of existentials e, search cost vs. �.There is an alternative explanation for these errors.The prediction that the phase transition occurs around� � 1 is based in part by the �rst moment Markovbound (that is, prob(sol) � hSoli). The location ofphase transitions in NP problems can be predicted bet-ter by a second moment method using the variance inthe number of solutions (Smith & Dyer 1996). In fact,at the Sat phase transition, an exponentially smallnumber of problems have an exponential number of so-lutions (Kamath et al. 1995). In a Pspace problem likeQsat, the variance in the number of solutions, and thesuper-exponential size of the state space, may result inthe Markov bound being a less good predictor for thelocation of the phase transition.Related and Further WorkThis work is entirely novel in showing that the theoryof constrainedness developed for NP problems (Gent etal. 1996) can be applied to a Pspace problem. Sincethe theory has also been applied to a problem in P,that of establishing arc-consistency (Gent et al. 1997),constrainedness can be used both up and down the com-plexity hierarchy.Phase transitions in Pspace problems have beenstudied outside a general framework like the theoryof constrainedness. Cadoli et al introduced an algo-rithm for Qsat and performed experimental evalua-tions (Cadoli, Giovanardi, & Schaerf 1997; 1998). Aswe discussed above, their randomly generated instancessu�er from a 
aw that can make them trivially insolu-ble. This may have given misleading impressions aboutthe e�ciency of their algorithm. We have introducedtwo new methods for generating `
awless' randomQsatproblems that are typically much harder.



The modal propositional logic K, which is Pspace-complete, displays a phase transition and an easy-hard-easy pattern in search cost (Giunchiglia et al. 1998).The problem generator used in these experiments im-proves upon an earlier one that was criticised for givinginstances that are `trivial' as they are propositionallyunsatis�able (Hustadt & Schmidt 1997). Our use ofthe term `trivial' is a complexity class lower: the un-satis�able instances we identify in Cadoli et al's modelcan be found in almost linear time.Bylander performed an average-case analysis on cer-tain classes of problems within his model of ran-dom propositional STRIPS problems (Bylander 1996).He concluded by \suggesting that Pspace-completeproblems exhibit threshold phenomena similar to NP-complete problems." We can extend this conjectureby suggesting that the prediction of threshold phenom-ena using constrainedness can be extended from NP-complete problems through the polynomial hierarchyand to Pspace-complete problems.We have only tested our predictions experimentallyfor 2-Qsat. It would be interesting to investigate k-Qsat for k > 2, to see whether � still makes reasonablepredictions of the location of phase transitions. Thereare technical issues extending our de�nition of � be-yond k-Qsat to full Qsat (assuming the polynomialhierarchy does not collapse). Since any instance of aQsat problem has some maximumnumber of alternat-ing quanti�ers, it would seem that our de�nition of � forthe relevant k�Qsat would apply. It is likely that thiswould work, provided that the values of pj used in thederivation were correct. In particular, pj would have tobe the conditional probability of j existentials existingin a clause given that the instance contained exactly kalternating quanti�ers. Even then, it is possible thattechnical di�culties would arise in de�ning �, and weleave this question open for further investigation.ConclusionsWhat general lessons can be learnt from this study?First, we can de�ne the constrainedness of problems inPspace in a similar way to problems in NP. A phasetransition in satis�ability and an easy-hard-easy pat-tern again occur at a critical value of constrainedness.However, predictions made by our theory are less accu-rate than in NP: we conjecture that this may be due tothe huge state spaces of PSPACE-complete problems.Second, we must take care to avoid trivially insol-uble problems when generating random problems innew domains. Trivially insoluble problems have causeddi�culties in propositional satis�ability, binary con-straint satisfaction problems, and as we have shownhere, Qsat. Since unit constraints are often the cause oftrivially insolubility, we can usually generate un
awedproblems by simply disallowing unit constraints.Third, Qsat plays a similar role in PSPACE to therole played by Sat in NP. Because of this, we conjec-ture that constrainedness will be a useful theory in thestudy of many PSPACE problems of great interest in

AI. Outstanding examples include games playing andplanning problems. While it will be interesting to seephase transitions in these problems, it will be fascinat-ing if constrainedness can be used, as it has in NP, tosuggest new search methods.ReferencesAchlioptas, D.; Kirousis, L.; Kranakis, E.; Krizanc,D.; Molloy, M.; and Stamatiou, Y. 1997. Randomconstraint satisfaction: A more accurate picture. InProc. CP97, 107{120. Springer.Bylander, T. 1996. A probabilistic analysis ofpropositional STRIPS planning. Arti�cial Intelligence81:241{271.Cadoli, M.; Giovanardi, A.; and Schaerf, M. 1997. Ex-perimental analysis of the computational cost of eval-uation quanti�ed Boolean formulae. In Proceedings ofthe AI*IA-97, 207{218. Springer-Verlag. LNAI-1321.Cadoli, M.; Giovanardi, A.; and Schaerf, M. 1998. Analgorithm to evaluate quanti�ed Boolean formulae. InProc. AAAI-98, 262{267.Gent, I. P., and Walsh, T. 1994. Easy problems aresometimes hard. Arti�cial Intelligence 335{345.Gent, I.; MacIntyre, E.; Prosser, P.; and Walsh, T.1996. The constrainedness of search. In Proc. AAAI-96, 246{252.Gent, I.; MacIntyre, E.; Prosser, P.; Shaw, P.; andWalsh, T. 1997. The constrainedness of arc consis-tency. In Proc. CP-97, 327{340. Springer.Gent, I.; MacIntyre, E.; Prosser, P.; Smith,B.; and Walsh, T. 1998. Random con-straint satisfaction: Flaws and structure. Tech-nical Report APES-08-1998, APES research group.http://www.cs.strath.ac.uk/~apes/apereports.html.Giunchiglia, E.; Giunchiglia, F.; Sebastiani, R.; andTacchella, A. 1998. More evaluation of decision pro-cedures for modal logics. In Proc. KR 98. MorganKau�mann.Hustadt, U., and Schmidt, R. 1997. On evaluatingdecision procedures for modal logic. In Proc. IJCAI-97, 202{207.Kamath, A.; Motwani, R.; Palem, K.; and Spirakis,P. 1995. Tail bounds for occupancy and the satis�a-bility threshold conjecture. Randomized Structure andAlgorithms 7:59{80.Mitchell, D.; Selman, B.; and Levesque, H. 1992.Hard and easy distributions of SAT problems. In Proc.AAAI-92, 459{465.Papadimitriou, C. 1994. Computational Complexity.Addison-Wesley.Smith, B., and Dyer, M. 1996. Locating the phasetransition in binary constraint satisfaction problems.Arti�cial Intelligence 81:155{181.Smith, B., and Grant, S. 1995. Sparse constraintgraphs and exceptionally hard problems. In Proc.IJCAI-95, 646{651.


