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Abstract

Recently several local hill-climbing procedures for propositional satis-
fiability have been proposed, which are able to solve large and difficult
problems beyond the reach of conventional algorithms like Davis-Putnam.
By the introduction of some new variants of these procedures, we provide
strong experimental evidence to support the conjecture that neither greed-
iness nor randomness is important in these procedures. One of the variants
introduced seems to offer significant improvements over earlier procedures.
In addition, we investigate experimentally how their performance depends
on their parameters. Our results suggest that run-time scales less than
simply exponentially in the problem size.

1 Introduction

Recently several local hill-climbing procedures for propositional satisfiability have
been proposed [4, 3, 11]. Propositional satisfiability (or SAT) is the problem of
deciding if there is an assignment for the variables in a propositional formula that
makes the formula true. SAT was one of the first problems shown to be NP-hard
[1]. SAT is also of considerable practical interest as many Al tasks can be encoded
quite naturally as SAT problems (eg. planning [5], constraint satisfaction, vision
interpretation [9], refutational theorem proving). Much of the interest in these
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local hill-climbing procedures is because they scale well and because they can solve
large and difficult SAT problems beyond the reach of conventional algorithms like
the Davis-Putnam procedure [2].

These hill-climbing procedures share three common features. First, they attempt
to determine the satisfiability of a formula in conjuctive normal form (CNF)!.
Second, they hill-climb on the number of satisfied clauses. And third, their local
neighbourhood (which they search for a better truth assignment) is the set of
truth assigments with the assignment to one variable changed. Typical of such
procedures is GSAT [11], a greedy random hill-climbing procedure. GSAT starts
with a randomly generated truth assignment, and hill-climbs by changing (or
“flipping”) the variable assignment which gives the largest increase in the number
of clauses satisfied. Given the choice between several equally good flips, it picks
one at random.

In [3] we investigated some features of GSAT. In particular, we focused on three
questions. Is greediness important? Is randomness important? Is hill-climbing
important? One of the aims of this paper is to provide stronger and more complete
answers to each of these three question. In particular, we will show that neither
greediness nor randomness is important.

We will propose some new procedures which show considerably improved perform-
ance over GSAT on certain classes of problems. Finally, we will explore in more
detail how these procedures scale, and how best to set their parameters. Since
there is nothing particularly special about GSAT or the other procedures we ana-
lyse, we expect that our results will translate to any procedure which performs
local hill-climbing on the number of satisfied clauses (for example SAT 1.1 and
SAT 6.0 [4]). To perform these investigations, we use a generalisation of GSAT
called “GenSAT” first introduced in [3].

procedure GenSAT(Y)
for i :=1 to Max-tries
T := initial(¥X) ; generate an initial truth assignment
for j := 1 to Max-flips
if T satisfies ¥ then return T
else Poss-flips := hill-climb(X,T) ; compute best local neighbours
V := pick(Poss-flips) ; pick one to flip
T := T with V’s truth assignment flipped
end
end
return “no satisfying assignment found”

'A formula, ¥ is in CNF iff it is a conjunction of clauses, where a clause is a disjunction of
literals.
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GSAT is a particular instance of GenSAT in which initial generates a random truth
assignment, hill-climb returns those variables whose truth assignment if flipped
gives the greatest increase in the number of clauses satisfied (called the “score”
from now on) and pick choses one of these variables at random. An important
feature of GSAT’s hill-climbing is sideways flips — if there exists no flip which
increases the score, then a variable is flipped which does not change the score.
GSAT’s performance degrades greatly without sideways flips.

2 Greediness and Hill-climbing

To study the importance of greediness, we introduced CSAT [3], a cautious variant
of GenSAT. In CSAT, hill-climb returns all variables which increase the score when
flipped, or if there are no such variables, all variables which make no change to the
score, or if there are none of these, all variables. Since we found no problem sets
on which CSAT performed significantly worse than GSAT, we conjectured that
greediness is not important [3]. To test this conjecture, we introduce three new

variants of GenSAT: TSAT, ISAT, and SSAT.

TSAT is timid since hill-climb returns those variables which increase the score
the least when flipped, or if there are no variables which increase the score, all
variables which make no change, or if there are none of these, all variables. [SAT
is indifferent to upwards and sidways flips since hill-climb returns those variables
which do not decrease the score when flipped, or if there are none of these, all
variables. SSAT, on the other hand, is a sideways moving procedure since hill-
climb returns those variables which make no change to the score when flipped, or
if there are no such variables, all those variables which increase the score, or if
there are none of these, all variables. The results for these procedures are given
in table 1.

As in [3], we test these procedures on two types of problems: satisifability encod-
ings of the n-queens problems, and random k-SAT. The n-queens problem is to
place n-queens on an n x n chesshoard so that no two queens attack each other. Its
encoding as a SAT problem use n? variables, each true iff a particular square is oc-
cupied by a queen. Problems in random £-SAT with N variables and L clauses are
generated as follows: for each clause a random subset of size k of the N variables is
selected and each of these variables is made positive or negative with probability
%. For random 3-SAT the ratio L/N = 4.3 has been identified as giving problems
which are particularly hard for Davis-Putnam and many other algorithms [8, 6].
This ratio was also used in an earlier study of GSAT [11] and in [3]. Note that
because GenSAT variants typically do not determine unsatisfiablity, unsatisfiabile
formulas were filtered out by the Davis-Putnam procedure.

In every experiment in this paper (unless explicitly mentioned otherwise) Max-flips
was set at 5 times the number of variables while Max-tries was set large enough
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Problem | Procedure | Tries | Flips | Total Flips s.d.
Random GSAT | 5.87| 93.8 1310 2200
50 vars TSAT | 5.32 | 96.4 1180 2090
ISAT | 6.35 | 127 1460 2560
Random GSAT | 10.7| 158 3550 6090
70 vars TSAT | 10.2 | 161 3390 5980
ISAT | 11.9 | 208 4030 7890
Random GSAT | 25.7| 261 12600 22800
100 vars TSAT | 26.1 | 272 12800 22000
ISAT | 34.6 | 327 17100 43200
6-queens GSAT | 2.14 | 65.0 271 267
TSAT | 2.26 | 74.1 301 296
ISAT | 2.22 | 78.8 298 310
8-queens GSAT | 1.18 | 84.5 141 170
TSAT | 1.20 | 101 165 171
ISAT | 1.21 | 112 178 173
16-queens GSAT | 1.03 | 253 288 251
TSAT | 1.04 | 282 326 295
ISAT | 1.02 | 339 365 226

Table 1: Comparison of GSAT, TSAT, and ISAT

to allow all experiments to succeed. The figures for tries are the average number
of tries taken until success (and is therefore at least 1), while the figures for flips
give the average number of flips in successful tries only. 1000 experiments were
performed in each case, all of which were successful. For each random problem
class, we performed all experiments in this paper on the same set of randomly
generated problems; this reduces the variance between the results.

The results in table 1 confirm our conjecture that greediness is not important. Like
cautious hill-climbing [3], timid hill-climbing gives very similar performance to
greedy hill-climbing. The differences between GSAT and TSAT in table 1 are less
than variances we have observed on problem sets of this size. ISAT does, however,
perform significantly worse than GSAT. ISAT’s performance falls off much more
quickly as the problem size increases. We conjecture that as the problem size
increases, the number of sideways flips offered increases and these are typically
poor moves compared to upwards flips. Combined with other heuristics, however,
some of these sideways flips can be good flips to make. In section 4, we will
introduce a variant of ISAT which can give improved performance over GSAT.
As well as SSAT, we tried a variant of ISAT which is indifferent to flips which
increase the score, leave it constant and decrease it by 1. Both this variant and

SSAT failed to solve any of 25 random 3-SAT 50 variable problems in 999 tries.
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We therefore conclude that you need to perform some sort of hill-climbing.

Greediness has also proved useful in several local search procedures for the gen-
eration of start positions (eg. in a constraint satisfaction procedure [7], and in
various algorithms for the n-queens problems [12]). To investigate whether such
initial greediness would be useful for satisfiability, we introduce a new variant of
GenSAT called OSAT which is opportunistic in its generation of an initial truth
assignment. In OSAT, the score function (number of satisfied clauses) is extended
to partial truth assignments by ignoring unassigned variables. OSAT increment-
ally builds an initial truth assignment by considering the variables in some random
order and picking those truth values which maximize the score; considering the
variables in a random order helps prevent any variable from dominating. In addi-
tion, if the score is identical for the assignment of a variable to true and false, a
truth assignment is chosen at random. OSAT is identical to GSAT in all other re-
spects. A comparison of OSAT and GSAT is given in table 2. (Figures in brackets
give the Total Flips figure as a percentage of the comparable figure for GSAT.)

Problem Procedure | Tries | Flips | Total Flips (% GSAT) s.d.
Random 50 vars OSAT | 6.82 | 78.6 1530 (120%) 4750
Random 70 vars OSAT | 9.50 | 139 3110 (88%) 7570
Random 100 vars OSAT | 326 | 235 16000 (130%) 74800
6-queens OSAT | 2.15| 62.0 270 (100%) 298
8-queens OSAT | 1.18 | 67.8 126 (89%) 161
16-queens OSAT | 1.02 | 145 165 (57%) 211

Table 2: Comparison of GSAT and OSAT

OSAT always takes less flips on average than GSAT on a successful try. OSAT also
takes the same or slightly more tries as GSAT. The total number of flips performed
by OSAT can therefore be slightly less than GSAT on the same problems. However,
if we include the O(N) computation necessary to perform the greedy start, OSAT
is nearly always slower than GSAT.

To conclude, our results confirm that greediness is neither important in hill-
climbing nor in the generation of the initial start position. Any form of hill-
climbing which prefers up or sideways moves over downwards moves (and does
not prefer sideways over up moves) appears to work.

3 Randommness

GSAT uses randomness in generating the initial truth assignment and in picking
which variable to flip when offered more than one. To explore the importance of
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such randomness, we introduced in [3] three variants of GenSAT: FSAT, DSAT,
and USAT. FSAT uses a fixed initial truth assignment but is otherwise identical
to GSAT. DSAT picks between equally good variables to flip in a deterministic
but fair way, whilst USAT picks between equally good variables to flip in a de-
terministic but unfair way?. On random k-SAT problems both USAT and FSAT
performed poorly. DSAT, however, performed considerably better than GSAT. We
therefore concluded that there is nothing essential about the randomness of pick-
ing in GSAT (although fairness is important) and that the initial truth assignment
must vary from try to try.

To explore whether the initial truth assignment can be varied deterministically,
and to determine if randomness can be eliminated simultaneously from all parts
of GenSAT, we introduce three new variants: NSAT, VSAT, and VDSAT. NSAT
generates initial truth assignments in “numerical” order. That is, on the n-th try,
the m-th variable in a truth assignment is set to true iff the m-th bit of the binary
representation of n is 1. VSAT, by comparison, generates initial truth assignments
to maximize the variability between successive assignments. On the first try, all
variables are set to false. On the second try, all variables are set to true. On
the third try, half the variables are set to true and half to false, and so on. The
exact algorithm used to generate assignments is given in the Appendix. Since
this algorithm cycles through all possible truth assignments, VSAT is a complete
decision procedure for SAT when Max-tries is set to 2V. NSAT and VSAT are
identical to GSAT in all other respects. VDSAT uses the same start function as
VSAT and is identical to DSAT in all other respects. Unlike all previous variants,
VDSAT is entirely deterministic.

As table 3 demonstrates, NSAT’s performance was very poor on 50 variable
problems. We conjecture thst this poor performance is a consequence of the lack of
variability between successive initial truth assignments. VSAT and VDSAT have
initial truth assignments which vary much more than initial truth assignments
in NSAT. VSAT’s performance is very close to GSAT’s. VDSAT performs very
similarly to DSAT, and better than GSAT. Note that the results for VDSAT on
queens problems are not averages but exact since VDSAT’s performance is entirely
determined once the problem is specified.

To conclude, randomness is neither important in the initial start position nor in the
picking between equally good variables. It is important, however, that successive
initial truth assignments vary on a large number of variables. In section 4 we
will introduce a new and deterministic variant of GenSAT which supports this
hypothesis.

ZWe call a variant of GenSAT “fair” if it will eventually pick any variable that is offered
continually. USAT always picks the least variable in a fixed ordering. DSAT picks variables in
an order which cycles.
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Problem | Procedure | Tries | Flips | Total flips (% GSAT) s.d.
Random VSAT | 6.18 | 91.6 1390 (110%) 2370
50 vars DSAT | 479 | 71.5 1020 (78%) 2040
VDSAT | 4.32 | 74.1 904  (69%) 2070

NSAT | 40.1 106 9870 (750%) 46400

Random VSAT | 10.4 155 3440  (97%) 5710
70 vars DSAT | 6.82| 123 2160 (61%) 3410
VDSAT | 6.90 | 124 2190 (62%) 3950

Random VSAT | 30.4 270 14900 (120%) 36400
100 vars DSAT | 152 | 227 7350 (58%) 16500
VDSAT | 14.7| 227 7090 (56%) 16300

6-queens VSAT | 227 | 76.0 305 (110%) 346
DSAT | 1.09 | 46.1 61.6 (23%) 60.2

VDSAT | 2| 50 230 (85%) —

NSAT | 2.07 | 65.1 258 (95%) 275

8-queens VSAT | 117 | 775 132 (94%) 160
DSAT | 1.11 | 45.8 80.7 (57%) 110

VDSAT 1] 30 30 (21%) —

NSAT | 1.17 | 74.4 128 (91%) 147

16-queens VSAT | 1.03 | 160 196  (68%) 299
DSAT | 1.03| 155 198 (69%) 242

VDSAT | 2| 296 1576 (550%) —

NSAT | 1.03| 156 190 (66%) 259

Table 3: Comparison of VSAT, DSAT, VDSAT, NSAT and GSAT

4 Memory

Information gathered during a run of GenSAT can be used to guide future search.
For example, Selman and Kautz [10] have introduced a variant of GSAT in which
a failed try is used to weight the emphasis given to clauses by the score function
in future tries. They report that this technique enables GSAT to solve problems
that it otherwise cannot solve.

In [3] we introduced MSAT, which is like GSAT except that it uses memory to
avoid making the same flip twice in a row except where climbing gives no other
choice. MSAT showed improved performance over GSAT particularly on the n-
queens problem, although the improvement declines as problems grow larger in
size. This is, of course, not the only way we can use memory of the earlier search.
In this section we introduce HSAT, and IHSAT. These variants of GenSAT use
historical information to choose deterministically which variable to pick. When
offered a choice of variables, HSAT always picks the one that was flipped longest
ago (in the current try): if two variables are offered which have never been flipped
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in this try, an arbitrary (but fixed) ordering is used to choose between them. HSAT
is otherwise like GSAT. THSAT uses the same pick as HSAT but is indifferent like
ISAT. Results for HSAT and THSAT are summarised in table 4.

Problem | Procedure | Tries | Flips | Total Flips (% GSAT)  s.d.
Random HSAT | 3.82 | 58.7 763 (58%) 1660
50 vars [HSAT | 3.38 | 96.0 690 (53%) 1490
Random HSAT | 4.93 | 101 1480  (42%) 2510
70 vars [HSAT | 3.84 | 165 1160  (33%) 1900
Random HSAT | 8.11 184 3740 (30%) 7770
100 vars [HSAT | 6.95 | 274 3250 (26%) 6480
6-queens HSAT | 1.11 | 43.3 62.9 (23%) 68.7

[HSAT | 1.08 | 55.8 70.6  (26%) 58.1
8-queens HSAT | 1.09 | 44.1 73.9  (52%) 110

[HSAT | 1.08 | 66.2 90.5 (64%) 95.2
16-queens HSAT | 1.02 | 156 183 (64%) 190

[HSAT | 1.02 | 220 245 (85%) 183

Table 4: Comparison of HSAT and THSAT

Both HSAT and THSAT perform considerably better than GSAT. Indeed, both
perform better than any previous variant of GenSAT. Many other variants of
HSAT also perform very well (eg. HSAT with cautious hill-climbing, with timid
hill-climbing, with VSAT’s start function). Note also that, unlike MSAT, the
improvement in performance does not appear to decline as the number of variables
increases.

HSAT picks based on when variables were last flipped: a natural variant uses
instead the last time that variables were returned by hill-climb whether or not
they were picked. Since hill-climb can return a set of variables, a method is needed
to pick one variable if a number were offered equally long ago. We implemented
three such versions of HSAT using random, deterministic and historical methods
for this subsidiary picking. The performance of the random and deterministic
methods was not as good as HSAT, whilst the the last method seemed to offer
closely comparable performance to HSAT. To date we have not observed any of
these variants offering a significant performance improvement over HSAT.

To conclude, memory of the current try can significantly improve the performance
of many variants of GenSAT. In particular, picking variables based on the history
of the try rather than randomly is one such improvement.
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5 Running GenSAT

We have studied the behaviour of GenSAT as the functions initial, hill-climb, and
pick are varied. However, we have not discussed the behaviour of GenSAT as
we vary its explicit parameters, Max-tries and Max-flips. The setting of Max-
tries is quite simple — it depends only on one’s patience. Increasing Max-tries
will increase one’s chance of success. Indeed, since all our experiments are on
satisfiable problem sets, we have often set Max-tries to infinity.

The situation for Max-flips is rather different to that for Max-tries. Although
increasing Max-flips increases the probability of success on a given try, it can
decrease the probability of success in a given run time. To understand this fully
it is helpful to review some features of GenSAT’s search space identified in [3].
GenSAT’s hill-climbing is initially dominated by increasing the number of satisfied
clauses. GSAT, for example, on random 3-SAT problems is typically able to climb
for about 0.25N flips, where N is the number of variables in the problem, increasing
the percentage of satisfied clauses from 87.5% (% of the clauses are initially satisfied
by a random assignment) to about 97%. From this point on, there is little climbing;
the vast majority of flips are sideways, neither increasing nor decreasing the score.
Occasionally a flip can increase the score. On some tries, this happens often
enough before Max-flips is reached that all the clauses are satisfied.

In Figure 1, we have plotted the percentage of problems solved against the total
numbers of flips used by HSAT for 50 variable random problems, with Max-flips
= 150. The dotted lines represent the points when new tries were started. During
the initial climbing phase almost no problems are solved: in fact no problems were
solved in less that 10 flips on the first try. Note that 10 is 0.2N, approximately
the length of the initial climbing phase. This behaviour is repeated during each
try: very few problems are solved during the first 10 flips of a try. After about
10 flips, there is a dramatic change in the gradient of the graph. There is now
a significant chance of solving a problem with each flip. Again, this behaviour is
repeated on each try. Finally, after about 100 flips of a given try, the gradient
declines noticeably. From now on, there is a very small chance of solving a problem
during the current try if it has not been solved already.

In Figure 2, we have added the comparable graph with Max-flips = 75. The
performance over the first 75 flips is identical. After this, the first experiment
with Max-flips = 150 continues to solve problems on the first try, but the second
experiment with Max-flips = 75 starts another try, and hence fails to solve any
problems for a short period. However, it very soon enters a highly productive
phase and overtakes the experiment with Max-flips = 150. These graphs suggest
that 75 is a better setting for Max-flips for HSAT on these problems than 150.

To determine the optimal values for Max-flips, we have plotted in Figure 3 the
average total number of flips used on 50 variable problems against integer values

of Max-flips from 25 to 300 for three variants of GenSAT: HSAT, DSAT, and
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Figure 1: HSAT, Max-flips = 150 Figure 2: HSAT, Max-flips = 75, 150

GSAT. The total number of flips used is a measure of computational resources.
Note that it does not bear a simple linear relationship with cpu time as there is a
start-up cost of O(N) associated with each try. For small values of Max-flips, not
enough flips remain after the hill-climbing phase to give a high chance of success
on each try. Each variant performs much the same which is to be expected as each
is performing the same (greedy) hill-climbing. The optimum value for Max-flips is
about 60. Since this minimum is not very sharp, it is not, however, too important
to find the exact optimal value. For Max-flips larger than about 100, the later
flips of most tries are unsuccessful and hence lead to wasted work. As Max-flips
increases, the amount of wasted work increases almost linearly. For everything but
small values of Max-flips, HSAT takes fewer flips than DSAT, which in turn takes
fewer than GSAT. The type of picking performed thus seems to have a significant
effect on the chance of success in a try if more than a few flips are needed.

Average Total Flips

2000
50 Var /215 Clause problems
1600]
GSAT
1200
DSA
800 HSAT
400,
0 T T T T T T
0 50 100 150 200 250 300 0 N 2N 3N 4N 5N 6N
Max-flips Max-flips
Figure 3: Varying Max-flips Figure 4: Varying Max-flips & N

Similar results are observed when the problem size is varied. In Figure 4, we
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have plotted the average total number of flips used by HSAT on random problems
against integer values of Max-flips for differing numbers of variables N. The optimal
value of Max-flips appears to increase approximately as N?. Even with 100 variable
random problems, the optimal value is, however, only about 2N flips. Figure 4
also supports the claim made in [11] and [3] that these hill-climbing procedures
appear to scale better than conventional procedures like Davis-Putnam.

To investigate more precisely how various GenSAT variants scale, Figure 5 gives
the average total number of flips used by GSAT, DSAT and HSAT on random
problems against the number of variables N (at 10 variable intervals from 10 to
100). Although the average total flips increases rapidly with N, the rate of growth
seems to be less than a simple exponential. In addition, the improvement in per-
formance offered by HSAT over DSAT, and by DSAT over GSAT increases greatly
with N. One cause of variability in these results is that Max-flips is set to 5N and
not its optimal value. In figure 6, we have therefore plotted the optimal values
for the average total flips against the number of variables again at 10 variable
intervals. For clarity, the average total flips is plotted on a log scale. The per-
formances of GSAT, DSAT and HSAT in Figure F are consistent with a small (less
than linear) exponential dependence on N. Note that the data does not rule out
a polynomial dependency on N of about order 3. Further experimentation and a
more complete theoretical understanding are needed to choose between these two
interpretations. We can, however, observe (as have Selman, Kautz and Mitchell
[11]) that these hill-climbing procedures have solved some large and difficult ran-
dom 3-SAT problems well beyond the reach of conventional procedures. At worse,
their behaviour appears to be exponential with a small exponent. Note also that
the improvement in performance offered by HSAT over DSAT, and by DSAT over
GSAT increases with N. Procedures like HSAT therefore offer real advantages over
GSAT and DSAT, not just constant factor speed-ups.

Average Total Flips Average Total Flips
10000
1oooq (log scale) GSAT
goop  LIN=43 GSAT DSAT
100Q] HoAT
6000) DSAT
100/
4000|
HSAT
2000, 10
1
0 T I I I T I I I I I

0 20 40 60 80 100
N N

Figure 5: Max-flips = 5N Figure 6: Max-flips Optimal
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6 Related and Future Work

Hill-climbing search has been used in many different domains, both practical (eg.
scheduling) and artificial (eg. toy problems like the 8-puzzle). Only recently,
however, has hill-climbing been applied to SAT. Some of the first procedures to hill-
climb on the number of satisfied clauses were proposed in [4]. GSAT also hill-climbs
on the number of satisfied clauses and was first presented in [11]. Unfortunately,
it is difficult to compare these procedures directly as they use different control
structures. One common problem with hill-climbing is escaping local maxima.
Although simulated annealing has often proved successful at tackling this problem,
it is probably of little use in GenSAT given the low density of local maxima, and
the use of different start positions.

These experiments have been performed with just two types of SAT problems:
random k-SAT for £ = 3 and L/N = 4.3, and an encoding of the n-queens. Al-
though we expect that similar results would be obtained with other random and
structured problem sets, we intend to confirm this conjecture experimentally. In
particular, we would like to try other values of £ and L/N, and other non-random
problems (eg. blocks world planning encoded as SAT [5], boolean induction, stand-
ard graph colouring problems encoded as SAT). To test problem sets with large
numbers of variables, we intend to implement GenSAT on a Connection Machine.
This will be an interesting exercise as GenSAT appears to have a large degree of
parallelizability.

Two aspects of GenSAT that we have not probed in detail are the control structure
and the scoring function. Alternative control structures for hill-climbing on the
number of satsified clauses are proposed in [4]. We intend to perform some exper-
iments to determine if such control structures give rise, as we expect, to similar
performance. In GenSAT the score function has always been the number of clauses
satisfied. Since much of the search consists of sideways flips, this score function
is perhaps a little insensitive. We therefore intend to investigate alternative score
functions. Finally, we would like to develop a better theoretical understanding of
these experimental results. Unfortunately, as with simulated annealing, we fear
that such a theoretical analysis may be rather difficult to construct.

7 Conclusions

Recently, several local hill-climbing procedures for propositional satisfiability have
been proposed [11, 3]. In [3], we conjectured that neither greediness nor random-
ness was essential for the effectiveness of the hill-climbing in these procedures. By
the introduction of some new variants, we have confirmed this conjecture. Any
(random or fair deterministic) hill-climbing procedure which prefers up or side-
ways moves over downwards moves (and does not prefer sideways over up moves)
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appears to work. In addition, we have shown that randomness is not essential for
generating the initial start position, and that greediness here is actually counter-
productive. We have also proposed a new variant, HSAT, which performs much
better than previous procedures on our problem sets. Finally, we have studied in
detail how the performance of these procedures depends on the setting of their
parameters. At worst, our experimental evidence suggests that they scale with a
small (less than linear) exponential dependence on the problem size. This sup-
ports the conjecture made in [11] that such procedures scale well and can be used
to solve large and and difficult SAT problems beyond the reach of conventional
algorithms.

Appendix

The initial truth assignment generated by VSAT uses a successive binary division
on the variables. VSAT therefore ideally needs 2™ variables. Given a number
of variables N which is not a power of 2, VSAT generates a truth assignment
for 2M variables where 2M is the smallest integer power of 2 equal to or bigger
than N and truncates to the first N assignments. Let vstart(M,p) be the truth
assigment given to 2 variables at the p-th try by VSAT. Truth assignments will
be represented by lists of truth values.

The function vstart uses a simple recursion on M. For the base case (M =0, ie. 1
variable), vstart(0, p) is [ false] if p is even, and [true] otherwise. This is, of course,
maximally variable. For the step case, we divide the 2 variables into two sets
of 2M=1 variables. We assume that we can assign truth values in some maximally
variable way to 2Y~1 variables (with a cycle of length 22" ™"). We assign both sets
of variables using this cycle. With the first set, however, we rotate through the
cycle every time we go through it completely (that is, after every 2277 calls to
vstart). Thus,

vstart(M,p) = wvstart(M — 1,p+r) <> vstart(M — 1,p)

where r = floor(zQML_l) and <> is the infix list append operator. This function
cycles through all possible truth assignments.
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