
Arc Consistency and Quasigroup CompletionPaul Shaw Kostas Stergiou Toby WalshAPES Research GroupDepartment of Computer ScienceUniversity of StrathclydeGlasgow G1 1XH, Scotlandfps,ks,twg@cs.strath.ac.ukApril 7, 1998AbstractQuasigroup completion is a recently proposed benchmark constraintsatisfaction problem that combines the features of randomly generatedinstances and highly structured problems. A quasigroup completion prob-lem can be represented as a CSP with n2 variables, each with a domainof size n. The constraints can be represented either by 2n all di�erentn-ary constraints or by binary pairwise constraints, giving a constraintgraph with 2n cliques of size n. We present a comparison between the tworepresentations and show that the n�ary representation reduces the costof solving quasigroup completion problems drastically.1 IntroductionQuasigroup completion [GS97b, GS97a, GSC97] is a recently proposed bench-mark constraint satisfaction problem that combines the features of randomlygenerated instances and highly structured problems. A quasigroup is an orderedpair (Q; �), where Q is a set and (�) is a binary operation on Q such that theequations a �x = b and y � a = b are uniquely solvable for every pair of elementsa; b in Q. The constraints on a quasigroup are such that its multiplication tableforms a Latin square. That is, each element occurs exactly once in every row orcolumn of its n by n multiplication table. The order n of the quasigroup is thecardinality of the set Q. Quasigroup completion problem is the NP-completeproblem of determining whether the remaining entries of a partially �lled n byn table can be �lled in such a way that a full quasigroup multiplication tableis obtained.A quasigroup completion problem can be represented as a CSP with n2variables, each with a domain of size n. The constraints can be represented by2n all di�erent n-ary constraints (one for each row and column). Alternatively,we can use binary \not equal to" constraints, giving a constraint graph with2n cliques of size n. We present a comparison of the two representations and1



show that the n�ary representation can make quasigroup completion a largelytrivial problem.2 Constraint propagationIn [GS97b], quasigroup completion problems were solved by maintaining arcconsistency on the 2n cliques of binary constraints. By comparison, [MW98]uses a forward checking algorithm on the binary constraints. A third method tosolve quasigroup completion problems is by maintaining general arc consistencyon the n�ary all di�erent constraints using the algorithm of [Reg94]. We �rstshow that forward checking on the binary constraints is less powerful than en-forcing arc consistency on the binary constraints, which in turn is less powerfulthan enforcing general arc consistency on the all di�erent constraints.Consider, for instance, the following completion problem,frg fr,ggfr,gg fr,ggForward checking gives, frg fggfgg fr,ggBy comparison, enforcing arc consistency on the binary constraints completesthe quasigroup, frg fggfgg frgThe example can be generalized to any order n.Enforcing general arc consistency on the all di�erent constraints is strictlystronger than enforcing arc consistency on the binary constraints. Consider thefollowing quasigroup completion problem,frg fr,g,bg fr,g,bgfr,g,bg frg fr,g,bgfr,g,bg fr,g,bg fr,g,bgEnforcing arc consistency on the binary representation gives,frg fg,bg fg,bgfg,bg frg fg,bgfg,bg fg,bg fr,g,bgHowever, enforcing general arc consistency on the all di�erent constraints �ltersout two more values in the bottom right square,frg fg,bg fg,bgfg,bg frg fg,bgfg,bg fg,bg frg2



This example can be generalized to any order n,f1g f1,. . . ng . . . f1,. . . ng f1,. . . ngf1,. . . ng f1g . . . f1,. . . ng f1,. . . ng... ... ... ... ...f1,. . . ng f1,. . . ng . . . f1g f1,. . . ngf1,. . . ng f1,. . . ng . . . f1,. . . ng f1,. . . ng3 Random PreassignmentThe random preassignment of some of the variables in the multiplication tableintroduces perturbations in the structured set of original constraints. [GS97b]uses a backwards checking method to generate problems with random preas-signments. First, they randomly select the desired number of variables to bepreassigned. For each variable they iterate over its possible values until a valueconsistent with all the previous assignments is found. If no such value exists,the current attempt to generate a problem fails and a new one is initiated.Using this method, a randomly generated quasigroup of order n with p% pre-assignments will have p � n2=100 variables assigned and all the other variableswill have their domains intact.Alternatively, in [MW98] the possible random assignments are forward check-ed against the unassigned variables until a consistent assignment is found. Thissuggests two other ways to generate random problems. The �rst is to propa-gate using arc consistency on the binary constraints for every assignment, andthe second is to propagate using general arc consistency on the n�ary all dif-ferent constraints. A stronger propagation method will perform more domainpruning. A side e�ect of the last three methods is that some variables thatare not randomly preassigned may become bound because of constraint prop-agation. Using these methods, a randomly generated quasigroup of order nwith p% preassignments will have p � n2=100 variables assigned and some ofthe other variables may have their domains pruned. In our implementation ofthe fourth method, preassignment stops when the number of variables that arebound, either through random assignment or propagation, reaches the desirednumber. If constraint propagation causes more variables to become bound thanthe desired number then the instance is \thrown away".[GS97b] observed that the cost of solving a quasigroup completion problemwith random preassignment peaks around the point where 42% of the variableshave been preassigned. They also observed a phase transition from a regionwhere almost all problems are soluble to a region where almost all problems areinsoluble around the same point.4 Search AlgorithmQuasigroup completion was encoded using ILOG Solver, a powerful C++ con-straint programming library [Pug94]. [GS97b, GSC97] have used the standardSolver backtracking algorithm with either the Brelaz [Bre79] or the r-Brelaz3



020406080
100

10 20 30 40 50 60 70 80 90
10 33 3 3 3 3 33333333333333333333 3 3 315 ++ + + + + ++++++++++++++++++++ + + +20 22 2 2 2 2 2 22222 2 2 2 2 2 2

Figure 1: Percent satis�able problems for quasigroups of order 10, 15 and 20 asa function of the preassignment percentage with initial assignments made usinggeneral arc consistency.heuristic for variable selection, and random value selection. We have used thesame algorithm but used Geelen's promise heuristic for value ordering [Gee92].This value ordering heuristic was also used in [MW98]. This heuristic selectsthe value v at each variable x so that v least reduces the possibility of �ndingconsistent values for the remaining unassigned variables. To achieve that, weselect the value v that maximizes the product of the number of values thatsupport v in all variables that are involved in a constraint with x. We saythat these variables are adjacent to x. In terms of quasigroup completion, thevariables that are involved in a constraint with a variable x are the variablesin the same row or column with x. For a value v of variable x, the values thatsupport v in an adjacent variable xi are all the values in the domain of xi exceptv. This means that if v is assigned to x then all the values in the domain ofxi, apart from v, can be assigned to xi without violating a constraint. In ad-dition, we used Solver's powerful all di�erent propagator to achieve general arcconsistency on the n�ary all di�erent constraints. This propagation algorithmis based on the �ltering algorithm presented in [Reg94].5 Experimental ResultsOur experiments show that when general arc consistency is used during randompreassignment, almost all generated instances for every preassignment percent-age are easy. Figures 1 and 2 demonstrate the e�ects of two di�erent methodsof preassigning variables on the percentage of satis�able instances. Figure 1shows what happens when random preassignments are propagated using gen-eral arc consistency, while Figure 2 corresponds to random preassignment usingGomes and Selman's backward checking method. Note that when the backwardchecking preassignment method is used, the way the constraints are represented(i.e., n�ary or binary) does not a�ect the percentage of consistent instances.At each data point, 100 instances were solved.Experiments with Gomes and Selman's random preassignment method show4



020406080
100

10 20 30 40 50 60 70 80 90 100
10 333333333333333333333333333 3 3333

315 +++++++++++++++++++++++++++ + +20 22 2 2 2 2 2222222 22 2 2 2 2Figure 2: Percent satis�able problems for quasigroups of order 10, 15 and 20as a function of the preassignment percentage with preassignments made usingthe backward checking model of Gomes and Selman.that enforcing general arc consistency on n�ary all di�erent constraints insteadof arc consistency on binary constraints reduces the cost of solving the problemdrastically. This is demonstrated in Table 1, giving the percentiles in backtracksrequired to complete a quasigroup of order 10 with p% of its entries preassigned.
110

100
10 20 30 40 50 60 70 80 90

10 33 3 3 3 3 3 33333 3 3 3 3 3 315 ++ + + + + + +++++ + + + + + +20 22 2 2 2 2 2 22222 2 2 2 2 2 2Figure 3: 90th percentile in branches explored to complete a quasigroup as afunction of the preassignment percentage, with general arc consistency used toperform both preassignments and completion.Figures 3 and 4 show how the cost of quasigroup completion scales whenusing general arc consistency to perform both preassignments and completion.Figure 3 gives the 90th percentile in the number of backtracks required to�nd a completion or to show that none exists for quasigroups of order 10, 15and 20, while Figure 4 gives the 100th percentile. Along the horizontal axis isthe percentage of preassigned variables.Table 2 shows how the cost of quasigroup completion scales when the ran-dom preassignments are done using the backward checking method, and generalarc consistency on the all di�erent constraints is used during the search. Note5



p ACg �ACg BC �ACg BC � ACb100th 90th 100th 90th 100th 90th10 0 0 0 0 163 020 0 0 0 0 * 030 0 0 1 0 * 1435 0 0 1 0 * 12340 1 0 1 0 * 172542 2 0 1 0 * *45 1 0 1 0 * *48 5 1 1 0 * 277050 1 0 1 0 5691 126255 4 1 1 0 323 7060 2 0 0 0 46 665 15 3 0 0 7 270 5 2 0 0 1 180 1 0 0 0 1 190 0 0 0 0 1 1Table 1: 100th and 90th percentiles in backtracks required to complete a quasi-group of order 10. ACg � ACg corresponds to generating and solving usinggeneral arc consistency, BC �ACg corresponds to generating using Gomes andSelman's backward checking method and solving using general arc consistency,and BC � ACb corresponds to generating preassignments with the backwardchecking method and solving using arc consistency on binary constraints. A �means that the instance was abandoned after 10000 leaf nodes had been visited.100 problems were solved at each data point.that for order 25 when 42% of the variables were preassigned, there was oneextremely hard instance that was abandoned after 10000 backtracks. Apartfrom that, all instances were solved with less than 4 backtracks. The propaga-tion algorithm we have used allowed us to solve easily almost all the generatedinstances for quasigroups of order 25 using a complete search method. This isa very signi�cant improvement over the results of [GSC97] where despite theuse of random restarts to enhance performance problems of order 25 were tooexpensive to solve, especially at the phase transition.6 ConclusionWe have presented a comparison between the binary and n�ary representationof quasigroup completion problems. We have shown that enforcing generalarc consistency on the n�ary constraints is strictly stronger than enforcingarc consistency on the binary constraints, and this is in turn strictly strongerthan forward checking. We have studied the impact of such stronger constraintpropagation on the cost to solve problems. Enforcing general arc consistency6



110100100010000
10 20 30 40 50 60 70 80 9010 33 3 3 3 3 3 33333 3 3 3 3 3 315 ++ + + + + + +++++ + + + + + +20 22 2 2 2 2 2 22222 2 2 2 2 2 2Figure 4: 100th percentile in branches explored to complete a quasigroup as afunction of the preassignment percentage, with general arc consistency used toperform both preassignments and completion.makes almost all problems easy. By comparison, problems can be very hard tosolve if we just enforce arc consistency on the binary constraints.There are two important lessons to be learnt from this study. First, while[GS97b] argue that it is desirable to add structure to random problems, youhave to be careful that the structure you add is not exactly that which yourpropagators can use. And second, we should not restrict research to algorithmsfor binary constraints since some problems can be hard in a binary representa-tion but relatively easy when expressed using n-ary constraints. In our futurework, we intend to see if similar lessons apply to other related problems (e.g.sports scheduling and exam time-tabling).References[Bre79] D. Brelaz. New Methods to color the vertices of a graph. JACM,22(4):251{256, 1979.[Gee92] P. A. Geelen. Dual viewpoint heuristics for binary constraint satisfac-tion problems. In Proceedings of the Tenth European Conference onArti�cial Intelligence (ECAI92), pages 31{35, 1992.[GS97a] C. P. Gomes and B. Selman. Algorithm portfolio design: Theory vs.practice. In Proceedings of UAI-97, Providence, RI., USA, 1997.[GS97b] C. P. Gomes and B. Selman. Problem structure in the presence ofperturbations. In Proceedings of the AAAI-97 National Conference,pages 221{226, Providence, RI., USA, 1997.[GSC97] C. P. Gomes, B. Selman, and N. Crato. Heavy-tailed probabilitydistributions in combinatorial search. In Proceedings of CP-97, pages121{135, Vienna, Austria, 1997.7



p order 10 order 15 order 20 order 25100th 90th 100th 90th 100th 90th 100th 90th10 0 0 0 0 0 0 0 020 0 0 0 0 0 0 0 030 1 0 0 0 1 0 1 035 1 0 1 0 1 0 1 040 1 0 1 0 1 0 1 042 1 0 1 0 1 0 * 045 1 0 2 0 2 0 2 048 1 0 1 0 1 0 1 050 1 0 1 0 1 0 2 055 1 0 1 0 2 0 3 060 0 0 0 0 3 0 0 065 0 0 0 0 0 0 0 070 0 0 0 0 0 0 0 080 0 0 0 0 0 0 0 090 0 0 0 0 0 0 0 0Table 2: 100th and 90th percentiles in backtracks required to complete quasi-groups of order 10, 15, 20 and 25 using the backward checking method forpreassignment and general arc consistency when searching.[MW98] P. Meseguer and T. Walsh. Interleaved and discrepancy based search.1998. Submitted to ECAI-98.[Pug94] J. F. Puget. A C++ Implementation of CLP. Technical Report 94-01,ILOG S.A., Gentilly, France, 1994.[Reg94] J. C. Regin. A �ltering algorithm for constraints of di�erence in csps.In Proceedings of AAAI-94, pages 362{367, 1994.
8


