Arc Consistency and Quasigroup Completion

Paul Shaw Kostas Stergiou Toby Walsh

APES Research Group
Department of Computer Science
University of Strathclyde
Glasgow G1 1XH, Scotland

{ps,ks,tw}@cs.strath.ac.uk

April 7, 1998

Abstract

Quasigroup completion is a recently proposed benchmark constraint
satisfaction problem that combines the features of randomly generated
instances and highly structured problems. A quasigroup completion prob-
lem can be represented as a CSP with n? variables, each with a domain
of size n. The constraints can be represented either by 2n all different
n-ary constraints or by binary pairwise constraints, giving a constraint
graph with 2n cliques of size n. We present a comparison between the two
representations and show that the n—ary representation reduces the cost
of solving quasigroup completion problems drastically.

1 Introduction

Quasigroup completion [GS9Tb, GS97a, GSCI7] is a recently proposed bench-
mark constraint satisfaction problem that combines the features of randomly
generated instances and highly structured problems. A quasigroup is an ordered
pair (Q,-), where @) is a set and (-) is a binary operation on @ such that the
equations @ -z = b and y-a = b are uniquely solvable for every pair of elements
a,bin (). The constraints on a quasigroup are such that its multiplication table
forms a Latin square. That is, each element occurs exactly once in every row or
column of its n by n multiplication table. The order n of the quasigroup is the
cardinality of the set). Quasigroup completion problem is the NP-complete
problem of determining whether the remaining entries of a partially filled n by
n table can be filled in such a way that a full quasigroup multiplication table
is obtained.

A quasigroup completion problem can be represented as a CSP with n?
variables, each with a domain of size n. The constraints can be represented by
2n all different n-ary constraints (one for each row and column). Alternatively,
we can use binary “not equal to” constraints, giving a constraint graph with
2n cliques of size n. We present a comparison of the two representations and

show that the n—ary representation can make quasigroup completion a largely
trivial problem.

2 Constraint propagation

In [GS97b], quasigroup completion problems were solved by maintaining arc
consistency on the 2n cliques of binary constraints. By comparison, [MW9§]
uses a forward checking algorithm on the binary constraints. A third method to
solve quasigroup completion problems is by maintaining general arc consistency
on the n—ary all different constraints using the algorithm of [Reg94]. We first
show that forward checking on the binary constraints is less powerful than en-
forcing arc consistency on the binary constraints, which in turn is less powerful
than enforcing general arc consistency on the all different constraints.
Consider, for instance, the following completion problem,

{r} | {rg}
{rg} | {rg}

Forward checking gives,

i} | {e}
{g} | {r.g}

By comparison, enforcing arc consistency on the binary constraints completes
the quasigroup,

{r} | {g}
{e} | {r}

The example can be generalized to any order n.

Enforcing general arc consistency on the all different constraints is strictly
stronger than enforcing arc consistency on the binary constraints. Consider the
following quasigroup completion problem,

{r} | {rgb} | {rgb}
{rgb} | {r} | {rgb}
{r.g,b} | {rg,b} | {r,gb}

Enforcing arc consistency on the binary representation gives,

{r} | {gb} | {gb}
{g,b} | {r} | {gb}
{g,b} | {g,b} | {r,g,b}

However, enforcing general arc consistency on the all different constraints filters
out two more values in the bottom right square,

{ry | {g.b} | {gb}
{gb} | {r} | {gb}
{g,b} [{g,b} | {r}

This example can be generalized to any order n,

Oy [{L...o}] ... [{L...n) [{L...0)
M..ny | {1 .. |{. o [{L. .o

{1,.:.11} {1,.:.11} {1} {1,.:.11}
{1,...n} | {1,...n} | ... | {1,...n} | {1,...n}

3 Random Preassignment

The random preassignment of some of the variables in the multiplication table
introduces perturbations in the structured set of original constraints. [GS97b]
uses a backwards checking method to generate problems with random preas-
signments. First, they randomly select the desired number of variables to be
preassigned. For each variable they iterate over its possible values until a value
consistent with all the previous assignments is found. If no such value exists,
the current attempt to generate a problem fails and a new one is initiated.
Using this method, a randomly generated quasigroup of order n with p% pre-
assignments will have p * n?/100 variables assigned and all the other variables
will have their domains intact.

Alternatively, in [MW98] the possible random assignments are forward check-
ed against the unassigned variables until a consistent assignment is found. This
suggests two other ways to generate random problems. The first is to propa-
gate using arc consistency on the binary constraints for every assignment, and
the second is to propagate using general arc consistency on the n—ary all dif-
ferent constraints. A stronger propagation method will perform more domain
pruning. A side effect of the last three methods is that some variables that
are not randomly preassigned may become bound because of constraint prop-
agation. Using these methods, a randomly generated quasigroup of order n
with p% preassignments will have p * n?/100 variables assigned and some of
the other variables may have their domains pruned. In our implementation of
the fourth method, preassignment stops when the number of variables that are
bound, either through random assignment or propagation, reaches the desired
number. If constraint propagation causes more variables to become bound than
the desired number then the instance is “thrown away”.

[GS97Db] observed that the cost of solving a quasigroup completion problem
with random preassignment peaks around the point where 42% of the variables
have been preassigned. They also observed a phase transition from a region
where almost all problems are soluble to a region where almost all problems are
insoluble around the same point.

4 Search Algorithm

Quasigroup completion was encoded using ILOG Solver, a powerful C+4 con-
straint programming library [Pug94]. [GS97b, GSC97] have used the standard
Solver backtracking algorithm with either the Brelaz [Bre79] or the r-Brelaz

20 | .

0 ! ! ! ! ! ! !
10 20 30 40 50 60 70 80 90

Figure 1: Percent satisfiable problems for quasigroups of order 10, 15 and 20 as
a function of the preassignment percentage with initial assignments made using
general arc consistency.

heuristic for variable selection, and random value selection. We have used the
same algorithm but used Geelen’s promise heuristic for value ordering [Gee92].
This value ordering heuristic was also used in [MW98]. This heuristic selects
the value v at each variable z so that v least reduces the possibility of finding
consistent values for the remaining unassigned variables. To achieve that, we
select the value v that maximizes the product of the number of values that
support v in all variables that are involved in a constraint with z. We say
that these variables are adjacent to x. In terms of quasigroup completion, the
variables that are involved in a constraint with a variable z are the variables
in the same row or column with z. For a value v of variable z, the values that
support v in an adjacent variable x; are all the values in the domain of z; except
v. This means that if v is assigned to x then all the values in the domain of
x;, apart from v, can be assigned to z; without violating a constraint. In ad-
dition, we used Solver’s powerful all different propagator to achieve general arc
consistency on the n—ary all different constraints. This propagation algorithm
is based on the filtering algorithm presented in [Reg94].

5 Experimental Results

Our experiments show that when general arc consistency is used during random
preassignment, almost all generated instances for every preassignment percent-
age are easy. Figures 1 and 2 demonstrate the effects of two different methods
of preassigning variables on the percentage of satisfiable instances. Figure 1
shows what happens when random preassignments are propagated using gen-
eral arc consistency, while Figure 2 corresponds to random preassignment using
Gomes and Selman’s backward checking method. Note that when the backward
checking preassignment method is used, the way the constraints are represented
(i.e., n—ary or binary) does not affect the percentage of consistent instances.
At each data point, 100 instances were solved.

Experiments with Gomes and Selman’s random preassignment method show

100 €8 | T
10 ©—
80 15 +
20 =—
60
40 S
20 —
0 ' ' S ——

=
10 20 30 40 50 60 70 80 90 100

Figure 2: Percent satisfiable problems for quasigroups of order 10, 15 and 20
as a function of the preassignment percentage with preassignments made using
the backward checking model of Gomes and Selman.

that enforcing general arc consistency on n—ary all different constraints instead
of arc consistency on binary constraints reduces the cost of solving the problem
drastically. This is demonstrated in Table 1, giving the percentiles in backtracks
required to complete a quasigroup of order 10 with p% of its entries preassigned.

100 ¢ T T 3
F10 <—]

20 H— 7

10 F 3
i +]

+ o :

+ \1

14 A ¢ B

10 20 30 40 50 60 70 80 90

Figure 3: 90th percentile in branches explored to complete a quasigroup as a
function of the preassignment percentage, with general arc consistency used to
perform both preassignments and completion.

Figures 3 and 4 show how the cost of quasigroup completion scales when
using general arc consistency to perform both preassignments and completion.

Figure 3 gives the 90th percentile in the number of backtracks required to
find a completion or to show that none exists for quasigroups of order 10, 15
and 20, while Figure 4 gives the 100th percentile. Along the horizontal axis is
the percentage of preassigned variables.

Table 2 shows how the cost of quasigroup completion scales when the ran-
dom preassignments are done using the backward checking method, and general
arc consistency on the all different constraints is used during the search. Note

p | AC,— AC, | BC —AC, | BC — AG,
100th 90th | 100th 90th | 100th 90th
0] 0 0 0 0 | 163 0
20| 0 0 0 0 ¥ 0
30| 0 0 1 0 * 14
35| 0 0 1 0 123
0] 1 0 1 0 ¥ 172
2] 2 0 1 0 * ¥
5] 1 0 1 0 * ¥
8] 5 1 1 0 ¥ 2770
50 | 1 0 1 0 | 5691 1262
55 | 4 1 1 0 | 323 70
60 | 2 0 0 0 | 46 6
65| 15 3 0 0 7 2
0] 5 2 0 0 1 1
80| 1 0 0 0 1 1
90| 0 0 0 0 1 1

Table 1: 100th and 90th percentiles in backtracks required to complete a quasi-
group of order 10. AC, — AC), corresponds to generating and solving using
general arc consistency, BC'— AC'; corresponds to generating using Gomes and
Selman’s backward checking method and solving using general arc consistency,
and BC' — ACY corresponds to generating preassignments with the backward
checking method and solving using arc consistency on binary constraints. A
means that the instance was abandoned after 10000 leaf nodes had been visited.
100 problems were solved at each data point.

that for order 25 when 42% of the variables were preassigned, there was one
extremely hard instance that was abandoned after 10000 backtracks. Apart
from that, all instances were solved with less than 4 backtracks. The propaga-
tion algorithm we have used allowed us to solve easily almost all the generated
instances for quasigroups of order 25 using a complete search method. This is
a very significant improvement over the results of [GSC97] where despite the
use of random restarts to enhance performance problems of order 25 were too
expensive to solve, especially at the phase transition.

6 Conclusion

We have presented a comparison between the binary and n—ary representation
of quasigroup completion problems. We have shown that enforcing general
arc consistency on the n—ary constraints is strictly stronger than enforcing
arc consistency on the binary constraints, and this is in turn strictly stronger
than forward checking. We have studied the impact of such stronger constraint
propagation on the cost to solve problems. Enforcing general arc consistency

10000 E 3

1000 10 <— E

20 =— E

100 ¢ E

i +]

o+

10 & T4+ . -

: : + 2l

[o]
18-S i i ! | |

10 20 30 40 50 60 70 80 90

Figure 4: 100th percentile in branches explored to complete a quasigroup as a
function of the preassignment percentage, with general arc consistency used to
perform both preassignments and completion.

makes almost all problems easy. By comparison, problems can be very hard to
solve if we just enforce arc consistency on the binary constraints.

There are two important lessons to be learnt from this study. First, while
[GS97Db] argue that it is desirable to add structure to random problems, you
have to be careful that the structure you add is not exactly that which your
propagators can use. And second, we should not restrict research to algorithms
for binary constraints since some problems can be hard in a binary representa-
tion but relatively easy when expressed using n-ary constraints. In our future
work, we intend to see if similar lessons apply to other related problems (e.g.
sports scheduling and exam time-tabling).

References

[Bre79] D. Brelaz. New Methods to color the vertices of a graph. JACM,
22(4):251-256, 1979.

[Gee92] P. A. Geelen. Dual viewpoint heuristics for binary constraint satisfac-

tion problems. In Proceedings of the Tenth Furopean Conference on
Artificial Intelligence (FCAI92), pages 31-35, 1992.

GS97a]l C. P. Gomes and B. Selman. Algorithm portfolio design: Theory vs.
g g
practice. In Proceedings of UAI-97, Providence, RI., USA, 1997.

[GS97b] C. P. Gomes and B. Selman. Problem structure in the presence of
perturbations. In Proceedings of the AAAI-97 National Conference,
pages 221-226, Providence, RI., USA, 1997.

[GSCIT7] C. P. Gomes, B. Selman, and N. Crato. Heavy-tailed probability
distributions in combinatorial search. In Proceedings of C'P-97, pages
121-135, Vienna, Austria, 1997.

p

order 10
100th 90th

order 15
100th 90th

order 20
100th 90th

order 25
100th 90th

10

0

0

0

0

0

0

0

0

20

30

35

40

42

45

48

50

55

60

65

70

80

90

olo|lo|lolo|—|~~|—lR|=|~l—lo

jeo)] Rev] Hen) Hen) Ren) e} ool Jev) Jev) Hev) e} Hen) Ren)

jen) Neol Ren) Nen) Neol Bl Bl B o V2 Bl el Bl =] i =]

jeo)] Rev] Hen) Hen) Ren) e} ool Jev) Jev) Hev) e} Hen) Ren)

OIS OO WIIN PN PP PO

jeo)] Rev] Hen) Hen) Ren) e} ool Jev) Jev) Hev) e} Hen) Ren)

OO OO DI WIN| I * == =D

jeo)] Rev] Hen) Hen) Ren) e} ool Jev) Jev) Hev) e} Hen) Ren)

Table 2: 100th and 90th percentiles in backtracks required to complete quasi-
groups of order 10, 15, 20 and 25 using the backward checking method for

preassignment and general arc consistency when searching.

[MWO8] P. Meseguer and T. Walsh. Interleaved and discrepancy based search.

1998. Submitted to ECAI-98.

[Pug94] J.F.Puget. A C++ Implementation of CLP. Technical Report 94-01,

ILOG S.A., Gentilly, France, 1994.

[Reg94] J. C. Regin. A filtering algorithm for constraints of difference in csps.

In Proceedings of AAAI-94, pages 362-367, 1994.

