A Fixpoint Based Encoding for Bounded Model
Checking

Alan Frisch!, Daniel Sheridan®, and Toby Walsh?

1 University of York, York, UK
{frisch,djs}@cs.york.ac.uk
2 Cork Constraint Computation Center, University College Cork, Cork, Ireland
tw@4c.ucc.ie

Abstract. The Bounded Model Checking approach to the LTL model
checking problem, based on an encoding to Boolean satisfiability, has
seen a growth in popularity due to recent improvements in SAT technol-
ogy. The currently available encodings have certain shortcomings, par-
ticularly in the size of the clause forms that it generates. We address
this by making use of the established correspondence between temporal
logic expressions and the fixpoints of predicate transformers as used in
symbolic model checking. We demonstrate how an encoding based on
fixpoints can result in improved performance in the SAT checker.

1 Introduction

Bounded Model Checking (BMC) [1] is an encoding to Boolean Satisfiability
(SAT) of the LTL model checking problem. The encoding is achieved by placing
a bound on the number of time steps of the model that are to be checked against
the specification. The resulting Boolean formula contains variables representing
the state variables of the model at each state along a path, together with con-
straints requiring the path to be contained within the model and to violate the
specification. The result of the SAT checker is thus a path in the model which
is a counterexample to the specification, or failure, which means that no such
path exists within the bound.

The encoding of the LTL specification in BMC is defined recursively on the
structure of the formula. While for simple specifications this is sufficient, more
complex specifications such as bounded existence and response patterns [5] lead
to an exponential blowup in the size of the resulting Boolean formula. Recent
improvements to the encoding in NuSMV [3] have not removed this restriction.

The fixpoint characterisations of temporal operators [6] have been exploited
in other model checking systems such as SMV [11]; we discuss an approach
to their use in an encoding of LTL for BMC which produces more compact
encodings which can be solved more quickly in the SAT solver.

2 The Bounded Model Checking Encoding

The bounded model checking encoding represents a single bounded path wga¢
of length k as a propositional formula, and checks that it violates the bounded

(M,7) =L a & a € L(w(i)) for atomic a
(M,m) i ~fi & (M) fu

(M,7) EL fiNfa & (M,7) EL fi and (M, 7) i fo
(M,m) L f1V f2 & (M,7)) f1 or (M,7) = fo

(M,) EST £ if 7 is a k-loop
M, X &
(M,m) e X fi (M,) Eitt fiNi <k otherwise
< j e .
(M,) L F £ o 35,s <j.(M,7) =, fr 1f7rls:n:1.kloop
3j,i < j < k(M,7) =] fi otherwise
(]\J7 71') |=k Gfl =2

1 otherwise

3j,i < §.(M,7)), fo AVn,i <n < j.(M,7) Ep fi if 7 is a k-loop

(M,7) Ek [f1U f2] 3j,i < j < k(M,7) BT fo AVn,i <n < j.(M,7) =" fi otherwise

Ey

(M, 7)] fi AVn,i <n < j.(M,7)) fo if 7 is a k-loop

(M,) |:k [iR fo] & < k.(M,7) ':k finVn,i <n<j.(M,r) |:k f2 otherwise

{V] 1 < g.(M,) |=k f1 if wis a k-loop

1< j
1<j

Fig. 1. The Bounded Semantics of LTL

semantics (Figure 1) of the specification f. That is, that (M, npmc)Fr f- We
will write the bounded model checking encoding of a problem with bound & as

H:Maﬂ-:_'f]]k

Biere et al. [1] show how incorporating a check for loops in the transition
graph makes bounded model checking complete for sufficiently large bound k.
The resulting theorem is paraphrased here.

Theorem 1. Let f be an LTL formula, M o Kripke structure, and 7 o path in
M. Then (M,) = f iff there exists k € IN with (M, w) =g f.

The encoding is structured as a conjunction of constraints requiring wgrc to
be a valid path in M and be a counterezample of f. The ‘valid path’ constraint is
a propositional encoding of the transition relation. We can see from the bounded
semantics of LTL (Figure 1) that there are two ways of violating each operator in
the specification, depending on whether 7y, is a k-loop; the ‘counterexample’
constraint is therefore a disjunction of the ways in which the specification may
be violated.

Given the functions ;L (7) which holds when 7 is a k-loop with (k) = 7 (l)
and Lj(7) = szo 1L which holds when 7 is any k-loop, the general translation

Table 1. The BMC Encoding for LTL

f [[f’ Tr]]}c lﬂf’ ﬂ']]}c
G fl 1 ' /\z:min(i,l) lllfl s W]I';C
Ff V;'czi'[fla W]Hc Vj:mingq;,l) l[[fl,W]Hc
X fi 'i<k/\[[f1,ﬂ']|}c+1 (i<k/\l|[f1,7r]]}c+)V(i=k/\l|[f1,7r]]§c)

[U Vol ml ANZLA 7R | VGl w1 A NS il fr, 7 7) 4

o VG2 Gl 7l A A iLf 7l A N il wIR)
AR V(L 7l AN L2 7T A —mingipy tlF2 75 V VS (L1 7 A N a2, wTR)
VV;‘;}(I[[fl’Tr]Hc A Aﬁ:z l|[f2,77]]z A /\%:1 lI[f% 71']];cl)

is defined as®:

k
[[M,’]i’, f]]k = [Ma 71—]]k A ((_'Lk(w) A [[f? 7T]]g) \% \/ (lLk(ﬂ—) A l[[f? W]]%)) (1)

=0

[M,] denotes the encoding of the transition relation of M as a constraint on
7 with bound k; [f,7]¥ and ;[f,7]¥ denote the encoding of the LTL formula f
evaluated along path 7 at time i, where 7 is a non-looping path and a k-loop
to I respectively. These encodings are given in Table 1. Biere et al. show the
correctness of some of these encodings in [1]; we will not repeat their proofs
here.

3 Exploiting Fixpoints in BMC

The approach that we have taken to making a fixpoint-based encoding for BMC
is based on a clause-style normal form for temporal logic. We can then redefine
the encoding to specifically take advantage of the properties of the normal form.

3.1 The Separated Normal Form

Gabbay’s Separation Theorem [9] states that arbitrary temporal formulse may
be written in the form G (A;(P; = F;)) where P; are (strict) past time formulae
and F; are (non-strict) future time formulse.

Fisher [7] defines a normal form for temporal logic based on the Separation
Theorem and gave a series of transformations for reaching it. The general form of
SNF is the same as the separation theorem; the implications P; = F; are referred
to as rules. Since neither LTL nor CTL have explicit past-time operators, Bolotov
and Fisher [2] define the start operator which holds only at the beginning of
time.

(M,7) = start < (i) € I

3 This comes from definition 15 in [1]

The possible rules are thus

start = \/lj An initial rule /\l,- =X \/lj A global X-rule
. ; i

J
N\li=F\/l; A global F-rule
i J

where I; and [; are literals.

The transformation functions T'(¥) recursively convert a set of rules which
do not conform to the normal form into a set of rules which do. To convert any
temporal logic formula f to SNF, it is sufficient to apply the transformation
rules to the singleton set {start = f}. For brevity, we do not list the full set of
transformations here; in general they are trivially adapted from those in [2], or
from standard propositional logic.

TG({P=>Gf}UW):{xi:;({f/\/\wx)}uﬁ
P=gV(fAzx)
To({P= fUGIU®) =z =X (gV (fAz)) S U
P=Fg

Trent({P = G f(Fg)}U®) = {P;::?'ngw)} Uw

In each of the above transformations, a new variable z is introduced: the
conversion to SNF introduces one variable for each removed operator (in the
first two transformations above) in addition to the renaming variables used to
flatten the structure of the formula (in the last transformation above).

The transformations to rules are based on the fixpoint characterisations of
the LTL operators. All LTL operators can be represented as the fixpoint of a
recursive function [6]; the transformations encode the corresponding function as
a rule which is required to hold in all states. Only those operators characterised
by greatest fixpoints are converted (always (G) and weak until (W); until (U) is
converted to weak until and sometime (F) for its transformation), which means
that the sometime (F) operator is left unchanged.

By Tarski’s fixpoint theorem [14] we know that a finite number of iterations
of a rule is sufficient to find its fixpoint. Thus the instance of the introduced
variable at time ¢ holds iff the original operator held at time i. For a formal
proof of the correctness of the transformations, see [8].

3.2 Bounded SNF

Although the fixpoint characterisations are given for unbounded temporal logic,
they are preserved for most of bounded LTL since we have bounded semantics

for X. We note that the characterisation of G is valid if and only if the path is
a k-loop; we encapsulate this constraint in the new operator X; with semantics

M) L X0 fr o {(M,w(i +1) e fi i wis akloop
1 otherwise
and modify the transformation accordingly.
The bounded semantics of G also fails to capture the concept of rules holding
in all reachable states. We give the semantics for a modified operator Gy for
bounded LTL without the restriction to paths with loops.

(Om) i G fy & {v“ < §:(M, () e if m is a k-loop
Vi,i <j<k.M,n(j)) Er fi otherwise
The correctness of the transformations rely on a sufficient number of instances
of the rules occurring. In BMC, this means that the transformations based on
fixpoints are correct only when the bound is sufficiently large. It is easy to see,
by appealing to the semantics, that the failure mode with an insufficiently large
bound is the same as that for the original encoding: no counterexample is found.
Introducing this operator allows us to restate the general form as

G (/\ (P = Fi))

i

The rules P; = F; are now of the following form:

start = \/lj An initial rule /\li = X \/lj A global X;-rule
J i J
A\Li=X\/l; A global X-rule N\L=F\/l; A global F-rule
1 7 i ki

with the transformation for the always operator being amended to

Te({P= G flUd) = {xizﬂf\f@}uw

3.3 Encoding Bounded SNF

The distributivity of Gy follows directly from its semantics; because of the un-
usual semantics of start, this means that any LTL formula may be represented
as a conjunction of instances of the following ‘universal’ rules:

Table 2. The BMC Encoding for SNF-LTL

f I7, T} iIf, =1y
start = fi [f1,7]% 1Ly, 7%
Gu(fi = X1 fo) L Nezo (L1 wlR = il 7]t
Gu(fi = Xf)| AN (U lp = [7l ™) Nezo GLfwlR = Lo, 73t
Gi(fs = F £2) | N (L1, 717 = Vima Lo 712) NS 2o (1,717 = Vi oaminguy 12, 71

start:>\/lj Gk</\lZ:>X1 \/lj)
. i j

J

bound = \/; Gk(/\li:>X\/lj)
J i J
Gk</\li =F \/l])
i J

Although it is simple to encode these rules using the standard BMC encodings
in Table 1, we can take advantage of the limited nesting depth characteristic of
these normal forms to define a more efficient encoding, in the same way as for the
depth 1 case in [3] and [13]. The more efficient encodings are given in Table 2.
Note that although we make use of the BMC encodings, they are only used for
purely propositional formulae. No further proof of these encodings is required:
they are a trivial simplification of those proved in [1].

For propositional f, [f, 7] = ([f, 7]%, so we deduce from Table 2 that this
relationship also holds for many cases where f is a rule. The obvious optimisation
to make is to introduce an extra constraint to Equation (1) which holds regardless
of the whether 7 is a loop; in many circumstances, the checks for the looping
nature of 7 cancel each other out entirely. While this type of optimisation can
be made with the standard BMC encoding, it only occurs where operators are
not nested; the renaming effect of SNF simplifies this optimisation.

3.4 The Fixpoint Normal Form

We noted in Section 3.1 that SNF converts only the greatest fixpoint opera-
tors, leaving rules containing the sometime operator; we see from Table 2 that
these rules are the pathological case for this encoding. Converting the sometime
operator in the same way requires care.

A transformation based directly on the fixpoint characterisation would be

Tr({P = F f}UD) = {wi?({fvfx)} U

The problem stems from the disjunction in the second rule. Since we are trying
to show satisfiability, it is simple to satisfy each occurrence of the rule by setting
the right hand disjunct to true at all time: the rule can always be satisfied. Since
we are interested only in the bounded semantics of the operator, it is possible
to break this chain at the bound by introducing an extra operator:

(M,7) =i bound & i > k
The transformation is now

P=fvz
Tr({P=>Fflu¥)=< z=>X(fVz) UV
bound = fV

3.5 Correctness of the Fixpoint Normal Form Transformation

We take the outline of the proof from [8]. For a transformation T to preserve
the semantics of an arbitrary formula f, we require that

for all models M and for all LTL formule f, (M, n) = f iff there exists
an M' such that M ~* M' and (M,7) = 7(f)

where z is a new propositional variable introduced, and M ~* M' if and only if
M differs from M' in at most the valuation given x. We express this in temporal
logic with quantification over propositions (QPTL)* as Fqprr, f < J2.T(f).
The proof is given for the case that the rule set is a singleton set, since for all
transformations, T is independent of ¥. The proofs may easily be extended to
non-empty ¥.

Lemma 1. For sufficiently large k, (M,w) |Ex F f1 if and only if (M',7) g
(zV f1) and (M',7) Er Gk(z & X(z V f1)) where M ~* M'.

Proof. Consider the fixpoint expression 7(Z) = f1 V X Z. We introduce the
variable z such that for all n,

(M',7) 7 @ (M, 7) =} X 75" true)

By substituting the definition of 7 once and the definition of 2, we have (M',7) =}
& (M',7m) =7 X(fi V) and by reference to the semantics, (M',7) |=¢
Gk(z & X(z V f1))
From the least fixpoint characterisation[6], (M',7) Er =z < F fi, and by
unrolling 7 by one step and substituting the definition of z, we get (M’ 7) =k
f1 V x.

Theorem 2. For any rule A, Fqprr, A © J2.Tr(A)

4 See [15] for full details; briefly, (M,i) = Jp.A iff there exists an M’ such that
(M',7) |E A, and M' and M differ at most in the valuation given to p.

Proof. Proving each direction independently:

— |_QPTL A= El.’L‘TF (A)
Substituting Lemma, 1,

Gx(P = F B) = 32.Gk(z & X(z V B)) A Gk(bound = —z) A Gk(P = (z V B))
= J2.Gk((z © X(z V B)) Abound = -z A (P = (z V B)))

which implies the set of rules {z = X(z V B), bound = -z, P = z V B}.
- |_QPTL HZ'.TF(f) = f

Starting with the transformed set of rules {z = X(z V B), bound =

-z, P = z V B}, and exploiting the corollary of Lemma 1, (M',s;)

(.’L‘ \% fl) iS4 (M', Si) 'Zk Ff1 iff (M', Si) |= Gk(bound = —|.CE)

Gy
& Gg
& Gy
= Gy
= Gy
= Gy

(z & X(zV B))Abound = -z A (P = (zV B)))

z < X(z V B)) A Gg(bound = —z) A G, (P = (z V B))
z < XF B) A Gk(bound = —z) A Gk (P = (z V B))
(x=>XFB)A(P= (zVB))

P= ((XFB)VB))

P=FB)

o~ o~ o~ o~ o~ o~

That is, the singleton rule set {P = F B}.

4 Comparisons

We compare the encodings on an example specifcation G F f. This is a reach-
ability specification, with many applications. Before encoding, the specification
is negated to

FG-f 2)

We consider only the loop encoding, as the non-loop encoding is L for all
methods due to the semantics of G.
The original, recursive encoding decomposes in two steps.In the loop case,

k
'\/lllG_'faﬂ']];.c
1;0 .

V A o)

=0 j=min(s,l)

I[F G—f, 7]}

This is a disjunction of conjunctions: the pathological case for conversion
to clauses. It is possible to define an more efficient encoding using renamed
subformulee [3], but this approach is difficult to generalise. The size of the formula
is O(k?), hence the cost to build it before CNF conversion is quadratic.

The conversion to SNF yields the following rules®

start = Fx;
T = —|f N o
Ty = X (—|f A .’172)

which encode to the three conjuncts

k
\/ X1 (l) N
=0

k
N @16) = ~£() Aza(i)) A
=0
k
N\ @20) = =i+ 1) Aali +1)
i=0

We have two introduced variables: the first establishes a renaming of the G - f
subformula, and the second renames each successive step of this subformula. This
means that steps are shared between references from the F operator, leading to
a simplification of the problem which is easier to solve as well as being smaller.
The encoding corresponds to an ideal renaming of the formula above, but the
conversion is performed in linear time, and results in a formula of size O(k).
Furthermore, we can show in advance that the encoding of each rule used here
is invariant with I, which means that the subformule can be factorised out of
the disjunction of loops seen in Equation 1.

Finally, we examine the fixpoint normal form conversion. The set of rules
corresponding to the specification is

start = 2o V 21
2o = X (zo V 1)
bound = z1 V —xg
1 = f Axg
22 = Xy (=f Ax2)

% Further reduction of the second and third rules is necessary for correct SNF; we
disregard this as it makes no difference to the final encoding

which encode to the conjuncts

20(0) V1 (0) A

k
N\ (@o(i) = (i +1) Vai (i +1)) A
i=0
z1(k) V —zo(k) A
k
N (@1G) = ~f(0) Awa(i) A
=0
k
N\ (@2(0) = =f(i + 1) Az2(i + 1))
i=0

The main difference between the SNF encoding and the fixpoint normal form
encoding is the omission of the long disjunction in the first conjunct which would
be encoded as a single long clause. This is replaced by an array of conjunctions
which rename each step in much the same way as for the G operator. Although
in this case the advantage is dependent on the SAT checker, it is clear that where
the F operator is nested, similar advantages would be seen as for SNF with the
G operator.

5 Results

We compare the SNF and Fixpoint encodings with the encoding used in NuSMV
version 2.0.2; this version of NuSMYV includes several of the optimisations dis-
cussed in [3]. For consistency, we have implemented the SNF and Fixpoint en-
codings as options in NuSMV. All of the experiments have been done using the
SAT solver zChaff [12] on a T00MHz Athlon with 256Mb main memory, running
Linux.

5.1 Scalability

We observe the difference in the behaviour of the encodings as with increasing
problem size by choosing a simple problem that is easy to scale. The bench-
mark circuits have been kept deliberately simple as it is the encoding of the
specification not the model that differentiates the encodings.

A shift register is a storage device of length n which, at each time step, moves
the values stored in each of its elements to the next element, reading in a new
value to fill the now empty first element. That is, storage elements zg . .. £,,_; and
input in are transformed such that Vi,0 < i < n-(z; + x;—1) and zo < in. The
shift register can be representative of a much more complex step-based process
such as a processor pipeline. The specification that the shift register must fulfil
will depend on its application; we explore a number of response patterns taken
from [4]. The specifications grow with the number of elements in the shift register;
in the case of a three element register,

Snf Fixpoint Fixpoint

SNF encoding SNF encoding SNF encoding
10° ¢ T n10* T n10* [T
I Global ------ 1 t Global ------ 1 I Global ------
[After ------- [After -------] [After -------
Before S | Before - o] | Before -
£

103 - - —103 - .
(/
,;’/
“ .

2 vl vl TR 2 vl vl TR 2 " Lo aaaal " PR L
10 0 0

10 10° 10* 10% 10 10° 10* 10% 10 10° 10*

NuSMV NuSMV Snf

Fig. 2. Number of clauses generated by a shift register model

— Global response (depth 2) — z goes high in response to in: G(in = F z5)

— After response (depth 3)— x5 goes high in response to in, after z; has gone
high: G (1 = G(in = F z5))

— Before response (depth 3)— z; goes high in response to in, before x5 has
gone high (this property is only true if all the registers are zero, so we test for
empty = —xg Az A g 100): [((in Aempty) = [~22 U (21 A—22)]) U (22 V
G T2)]

Number of Clauses. We see in Figure 2 that the number of clauses produced
by both Snf and Fixpoint grows, in general, less quickly than the number pro-
duced by NuSMYV, as the length of the register increases. The differing gradients
follow the behaviour predicted by the differing depths of the specifications: the
slopes decrease with depth indicating an exponential improvement in the number
of clauses.

The advantage of the Fixpoint encoding over SNF is dependent upon the
number of occurrences of G in the specification, since this is the only difference
between the encodings. We see the greatest advantage for Fixpoint in the After
and Before specifications, with two occurrences of G; the first G in the After
specification has a smaller encoding than the second as one of the corresponding
rules is an initial rule.

We can conclude that, as far as the number of clauses is concerned, the
Fixpoint encoding outperforms Snf and NuSMYV in the way that is expected: size
and rate of size increase decreasing with the nesting depth and the occurrence
of least fixpoint operators.

Snf Fixpoint Fixpoint

SNF encoding SNF encoding SNF encoding
10t ¢ T T T T 7 10 T T T T 7 10% ¢ T T
[Global +] Global +] [Global +
[After X After X] [After X
I Before Before ¥ g I Before x
10° | ; 4 10° 4 10°F E
E X]] E
=% + +
N + +
:
X & ox Wox x
A *ox + X
10t x H 10t | X ERaNS w x E
X + ¥ ;?; : £+ o X
X XK wK k xx X
X X % kX
pean HOK X K k XXX
ok + K XM K X k A x
-2 PRIV FEWRTINY BRTER TS Y NVRR Y ERNT A NS -2 ! by sl o ol 0 a0 -2 st 1l P |
10 0 0
107 100 100 100 107 107 1000 107 10T 100 100 107 16° 107 107 10t 10° 10t
NusMv NusMv Snf

Fig. 3. Time taken by zChaff for a shift register model

zChaff timings. Counting the number of clauses is far from being an effective
method of determining the efficiency of an encoding. We also look at one of the
current state-of-the-art SAT solvers, zChaff [12].

The behaviour is far less clear than for the number of clauses; zChaff is a
complex system. Broadly, the SNF and Fixpoint encodings always results in a
shorter runtime than the NuSMV encoding; the Fixpoint encoding outperforms
the SNF encoding only for After (for Global, the trend is towards an improve-
ment with larger problems)

We see a clear exponential improvement for certain specifications: the tim-
ings for Before with SNF and Fixpoint grow exponentially slower than NuSMV;
the Global specification shows the same trend less dramatically. We only see a
exponential improvement for After with the Fixpoint encoding: with the SNF
encoding, the trend appears to be towards NuSMV being faster.

5.2 Mutual Exclusion

The distributed mutual exclusion circuit from [10] forms a good basis for compar-
ing the performance of different encodings as it meaningfully implements several
specifications. We look at three here, applied to a DME of four elements:

— Accessibility: if an element wishes to enter the critical region, it eventually
will. We check the accessibility of the first two elements. This specification
is correct, so as in [1], we check at a chosen bound to illustrate the timing
differences.

— Precedence given token possession: if an element of the DME holds the token,
then its requests to enter the critical region are given precedence. We check
the converse: if the first element holds the token, the second does not have

Table 3. Timing results in zChaff for the distributed mutual exclusion circuit

Specification |(Bound|NuSMV encoding|SNF encoding|Fixpoint encoding|SMV
Accessibility 30 2.65 0.33 0.36 13.13
Accessibility 40 20.93 4.84 4.33 13.13
Priority for 0 14 0.13 0.02 0.02 12.97
Priority for 1 54 14.93 0.44 0.76 15.00
Overtaking depth 1| 40 85.73 2.15 1.11 13.96
Overtaking depth 2| 40 * 4.92 5.15 14.14

precendence and vice versa. Since the token begins at the first element, this
is the quicker to prove, with a bound of 14. For the second element, a bound
of 54 is required to find the counterexample.

— Bounded overtaking given token posession: if two elements wish to enter the
critical region, then the higer priority may enter a given number of times
before the other. We check bounded overtaking of one and two entrances.
Both specifications are correct so as above we check at a bound of 40. These
specifcations are the most complex, including up to four nested until oper-
ators.

The results are summarised in Table 3 together with the timings for Cadence
SMV on CTL representations of the same problems®. For the bounded overtaking
problems, we note that NuSMV took nearly 10 minutes to generate the formula
in the first case, and after 25 minutes had not completed in the second case.
In contrast, the time taken to perform the SNF and Fixpoint encodings were
insignificant.

While both the SNF and Fixpoint encodings outperform the the NuSMV
encoding and the SMV, we do not see a consistent advantage to either. The
results for accessibility suggest that Fixpoint scales better with increasing bound,
while the results for boudned overtaking suggest that SNF scales better with
increasing specification depth.

6 Conclusions

We have described a new encoding scheme for bounded model checking which
builds on the existing encodings and uses the fixpoint characterisations of LTL.
We have shown that these new encodings are correct, provided that the original
bounded model checking encoding is correct. We have demonstrated a reduction
in the number of clauses generated by the problem which is exponential in the
size of the problem instance, for both encodings, and also that the improvement
in performance in the SAT checker can be exponential in the size of the problem
instance, depending on the specification. We have demonstrated the advantage

6 We note that for SMV to terminate in a reasonable time on these problems, it must
be started with the -inc switch. No similar knowledge of model checker behaviour
is needed for BMC

that these encodings give BMC over conventional symbolic model checkers. Fi-
nally, we have demonstrated that extending the SNF transformations with a
transformation for the F operator results in similar advantages over SNF in
certain cases.

References

10.

11.

12.

. Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. Symbolic

model checking without BDDs. In W.R. Cleaveland, editor, Tools and Algo-
rithms for the Construction and Analysis of Systems. 5th International Conference,
TACAS’99, volume 1579 of Lecture Notes in Computer Science, pages 193-207.
Springer-Verlag Inc., July 1999.

Alexander Bolotov and Michael Fisher. A resolution method for CTL branching-
time temporal logic. In Proceedings of the Fourth International Workshop on Tem-
poral Representation and Reasoning (TIME). IEEE Press, 1997.

Alessandro Cimatti, Marco Pistore, Marco Roveri, and Roberto Sebastiani. Im-
proving the encoding of LTL model checking into SAT. In Agostino Cortesi, editor,
Third International Workshop on Verification, Model Checking and Abstract In-
terpretation, volume 2294 of Lecture Notes in Computer Science. Springer-Verlag
Inc., January 2002.

M.B. Dwyer, G.S. Avrunin, and J.C. Corbett. Property Specification Patterns for
Finite-State Verification. In M. Ardis, editor, 2nd Workshop on Formal Methods
in Software Practice, pages 7-15, March 1998.

M.B. Dwyer, G.S. Avruning, and J.C. Corbett. Patterns in property specifica-
tions for finite-state verification. In 21st International Conference on Software
Engineering, Los Angeles, California, May 1999.

E. Allen Emerson and Edmund M. Clarke. Characterizing correctness properties
of parallel programs using fixpoints. In Jan van Leeuwen J. W. de Bakker, editor,
Automata, Languages and Programming, Tth Collogquium, volume 85 of Lecture
Notes in Computer Science, pages 169—-181. Springer-Verlag Inc, 1980.

Michael Fisher. A resolution method for temporal logic. In Proceedings of Twelfth
International Joint Conference on Artificial Intelligence (IJCAI). Morgan Kauf-
mann, August 1991.

Michael Fisher and Philippe Noél. Transformation and synthesis in METATEM
Part I: Propositional METATEM. Technical Report UMCS-92-2-1, Department
of Computer Science, University of Manchester, Manchester M13 9PL, England,
February 1992.

Dov Gabbay. The declarative past and imperative future. In H. Barringer, editor,
Proccedings of the Colloguium on Temporal Logic and Specifications, volume 398
of Lecture Notes in Computer Science, pages 409—448. Springer-Verlag, 1989.

A. J. Martin. The design of a self-timed circuit for distributed mutual exclusion.
In Henry Fuchs, editor, Proceedings of the 1985 Chapel Hill Conference on VLSI,
pages 245-260. Computer Science Press, 1985.

K. L. McMillan. Symbolic Model Checking: An Approach to the State Explosion
Problem. PhD thesis, Carnegie Mellon University, 1992.

M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering
an efficient SAT solver. In 39th Design Automation Conference, Las Vegas, June
2001.

13.

14.

15.

Daniel Sheridan and Toby Walsh. Clause forms generated by bounded model
checking. In Andrei Voronkov, editor, Eighth Workshop on Automated Reasoning,
2001.

A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific
Journal of Mathematics, 5:285-309, 1955.

Pierre Wolper. Specification and synthesis of communicating processes using an
extended temporal logic. In Proceeding of the 9th Symposium on Principles of
Programming Languages, pages 20-33, Albuquerque, January 1982.

