Extensions to Proof Planning for Generating
Implied Constraints

Alan M. Frisch, Ian Miguel and Toby Walsh

University of York, York, England. frisch,ianm,tw@cs.york.ac.uk

Abstract. We describe how proof planning is being extended to gen-
erate implied algebraic constraints. This inference problem introduces a
number of challenging problems like deciding a termination condition and
evaluating constraint utility. We have implemented a number of methods
for reasoning about algebraic constraints. For example, the eliminate
method performs Gaussian-like elimination of variables and terms. We
are also re-using proof methods from the PRESS equation solving system
like (variable) isolation.

1 Introduction

Users of computer algebra systems typically have well-defined goals. For exam-
ple, they might wish to find the solutions to some algebraic equations, or factorize
a polynomial. We are interested in an inference problem about algebraic con-
straints which is less well-defined. We wish to infer some implied constraints that
will help a constraint solver. It is difficult to know how many implied constraints
to infer, and which will be useful to a particular constraint solver. To tackle
this problem, we are using Bundy’s proof planning framework [Bun91]. This is
one of the most promising inference techniques for dealing with combinatori-
ally explosive search problems. Proof plans are built by methods which come
with strong preconditions to limit their applicability. Some of the proof methods
we are developing are extensions of those used by the PRESS equation solving
system [BW81]. Others of the proof methods are novel, and perform tasks like
eliminating variables and linearizing constraints.

The paper is structured as follows. In Sections 2 and 3, we introduce proof
planning, and describe how it has been extended to deal with generating implied
constraints. In Section 4, we describe the proof methods currently implemented
that infer implied constraints. In Section 5, we illustrate their behaviour on two
examples taken from the literature. In Section 6, we describe related work. We
end in Section 7 with future work and conclusions.

2 Proof Planning

Proof planning is a technique used for guiding the search for a proof in auto-
mated theorem proving [Bun91]. Common patterns in proofs are identified and
encapsulated in methods which are made available to a planner. Methods have



strong preconditions which limit their applicability and prevent combinatori-
ally explosive search. Proof planning has often been associated with “rippling”
[BSYH'93], a powerful heuristic for guiding search in inductive proof. However,
proof planning can easily be adapted to other mathematical tasks like finding
closed form sums to series [WNB92] or, as here, generating logical consequences
which may make useful implied constraints.

A proof planner like CLAM [BvHHS90] takes a goal to prove, and selects a
method from a database of methods which matches this goal. The proof planner
checks that the pre-conditions of the method (which are a sequence of statements
in a meta-logic) hold. If the pre-conditions hold then the proof planner executes
the post-conditions (which are also a sequence of statements in the meta-logic).
This constructs the output goal or goals. Associated with each method is a tactic
which applies individual inference rules to construct the actual proof. A typical
method is the induction method, whose input is an universally quantified goal,
and whose preconditions then select a suitable induction variable, and induction
scheme. The output of the induction method are appropriate base and step
cases. Proof planning terminates when all the goals have been satisfied.

Proof planning offers several potential advantages over other theorem proving
techniques for the task of generating implied constraints automatically. First,
methods can be given very strong preconditions to limit the generation of logical
consequences to those that are likely to make useful implied constraints. Second,
methods can act at a very high level. For example, they can perform complex
rewriting, simplifications, and transformations. Such steps might require very
long and complex proofs to justify at the level of individual inference rules. And
third, the search control in proof planning is cleanly separated from the inference
steps. We can therefore easily try out a variety of different search strategies like
best-first search or limited discrepancy search.

3 Extensions to Proof Planning

Whilst proof planning has a number of features which make it well suited to the
task of generating implied constraints, we have extended it along a number of
different dimensions to deal with the following issues:

Non-monotonicity: Our proof methods transform one set of constraints into
another. In some cases, they might add a new constraint. In others, they
might replace one constraint by a tighter one, or eliminate a redundant
constraint. The set of constraints may therefore increase or decrease. To
deal with this, we replace the “output” slot in a method by the “add” and
“delete” lists used in classical planning.

Pattern matching: Existing proof planners like CLAM [BvHHS90] use Pro-
log’s (first-order) unification to match a proof method’s input against the
current proof goal or subgoal. We use a richer pattern matching language
specialized to the task of reasoning about sets of constraints. For example,
the input to a proof method is a set of constraints, and this is matched
against any subset of the initial or inferred constraints.



Looping: Unless a proof method deletes one (or more) if the input constraints,
the preconditions of the method will typically continue to hold. Proof meth-
ods may therefore repeatedly fire, generating identical implied constraints.
We therefore added an history mechanism to the proof planner to prevent
such repeated method application.

Termination: Previously, proof planning had a clear termination condition.
We reduced a goal to subgoals, and when all these had been proven, we
finished. It is much less clear when to terminate when using proof planning
to infer implied constraints. There are many logical consequences (including
the solution to the problem) which could be inferred. At some point, we
must decide to stop inferring new constraints and start searching for an
answer. At present, our methods have strong enough preconditions that we
can run them till exhaustion. However, we may in the future have to add an
executive along the lines of Ireland’s proof critics [Ire92] which terminates
proof planning when future rewards look poor.

Constraint utility: Deciding which implied constraints will be useful to a con-
straint solver is also very difficult. The proof planner uses measures like
constraint arity and tightness to eliminate implied constraints which are ob-
viously useless. However, it remains difficult for the proof planner to decide
which of the remaining constraints to keep. We are therefore inventing some
heuristics to decide which of the inferred constraints to give to the constraint
solver.

Explanation: Methods do not explain what they do. In order for the user to see
how an implied constraint was generated, we adapted the tactic mechanism
already used within proof planning. Tactics now write out text explaining
the application of the methods.

4 Methods

We will illustrate the implemented methods used by our proof planner by means
of the following example. This is taken from the implied constraint section of the
Oz finite domain constraint programming tutorial'. We wish to find 9 distinct
non-zero digits, A to I, which satisfy the constraint:

A D G
BCTEF T HI (1)

Note that BC' is shorthand for 10 x B + C, EF for 10 x E + F and HI for
10« H + 1.

4.1 Symmetry method

The first method to fire is often the symmetry method. The preconditions to the
symmetry method identify variables or terms which are indistinguishable. In the

! http://www.mozart—oz.org/documentation/fdt/node31.html#section.propagators.fractions



former case, if swapping the variable x for the variable y (and vice versa) gives
the same set of constraints, then x and y are indistinguishable. In the latter case,
pairs of variables within two terms are swapped and the same check is made.
To break this symmetry, the symmetry method adds an ordering constraint
that puts an order on the indistinguishable variables or terms. In the above case,
it adds the constraints that x < y. Note that this is not an implied constraint
since it does not follow from the initial model. However, symmetry breaking
constraints are very useful both for reducing search, and, as we show in the next
section, for generating other implied constraints using the eliminate method.
Identifying symmetries, especially of non-atomic terms is potentially expen-
sive. We are therefore developing heuristics to identify terms for comparison that
are likely to be symmetrical. These heuristics are based primarily on structural
equivalence. Two terms are said to be structurally equivalent if they are identical
when explicit variable names in each are replaced with a common indistinguish-

able ‘marker’. For example,
A D

BC’ EF

become:
X X

P
and are therefore structurally equivalent. Each pair of variables, A and D, B
and E, and C and F are swapped throughout the problem definition and the
indistinguishability test is made.

The symmetry method applied to the initial problem definition of the frac-
tions puzzle identifies the fact that the three fractions are indistinguishable and
breaks the symmetry by adding the constraints:

A D G
— < —=< — 2
BC — EF — HI )

We are currently investigating methods for identifying and breaking other

forms of symmetry like rotations and reflections.

4.2 Eliminate method

The next method to fire is often the eliminate method. This uses symmetry
breaking constraints, as well as other equations and inequalities, to perform
Gaussian-like variable elimination. The preconditions to the eliminate method
identify variables or terms which can be eliminated from a non-linear constraint.
This gives an implied constraint of smaller arity than the original non-linear
constraint. As constraint solvers typically delay non-linear constraints until their
variables are ground, the eliminate method generates an implied constraint
which may be used by a constraint solver at an earlier point in its search.

For example, in the fractions puzzle, eliminate can be used to simplify

equation (1) by eliminating first % and then 2= in favour of éic as follows:
A D
—+2—=<1 (3)

BC EF —



A
— <
355 <1 (4)

Similarly, by eliminating first % and then E—% in favour of % produces:

D G
— = >
2EF+HI_1 (5)
G
- >
3HI_1 (6)

Equations (4) and (6) are both ternary, as opposed to the original arity 9 con-
straint and are therefore much more likely to be useful for pruning earlier in the
search.

The eliminate method uses both equations and inequalities to rewrite con-
straints. When rewriting with inequalities, it computes the polarity of the terms
being rewritten based on the monotonicity properties of the algebraic operators
[Sch99]. For instance, addition is monotonic in both of its arguments as replac-
ing either argument with a larger number increases the sum. On the other hand,
division is monotonic in the numerator argument but anti-monotonic in the de-
nominator argument; replacing the numerator with a larger number increases
the fraction, whilst replacing the denominator with a larger number decreases
the fraction.

4.3 Linearise method

As mentioned before, constraint solvers typically delay non-linear constraints
until their variables are ground. A linearise method therefore attempts to
infer linear constraints from non-linear constraints as these will be of more use
to a constraint solver. The preconditions to the linearise method identify
non-linear constraints which can be converted to linear constraints by cross-
multiplying terms. We are currently investigating other ways to linearise terms.

The linearise method can be applied effectively to equations (4) and (6)
to produce:

34<10B+C (7)
3G > 10H + I (8)

Bounds consistency can now be employed to start pruning values even before
search starts.

4.4 All-different method

In many problems, we have a constraint that certain variables must take distinct
values. For example, the times of classes assigned to a particular teacher must all
be different from each other. A specialized all-different method reasons about
constraints containing variables which take distinct values. The preconditions
to the all-different method identify variables in a summation or product



constraint which take distinct values. The method then computes upper and
lower bounds based upon the variables taking distinct values. We are again
looking at extending the method to other types of constraints.

The all-different method produces the following when applied to equa-
tions (7) and (8):

12 < 10B+C < 98 9)
12 < 10H + I < 98 (10)

A further application of eliminate gives a tight lower bound for G:
G>4 (11)

Note that, on this occasion, bounds consistency establishes the same lower bound
on G using equation (8). In general, however, when more all-different variables
are involved, this method can be expected to do significantly better than naive
bounds consistency.

4.5 Introduce method

The introduce method is complimentary to the eliminate method as it in-
troduces a new variable into a constraint. The preconditions to the introduce
method identify a non-atomic subterm common to two (or more) constraints. It
then introduces a new variable for this common subterm. As the introduced vari-
able is common to two (or more) constraints, this tightens the constraint graph.
This can lead to increased propagation within a constraint solver. For exam-
ple, in the Golomb rulers problems, Smith et al introduce auxiliary variables for
the inter-tick distances as these were common to a large number of constraints
[SSWO00]. We are also considering methods to introduce new variables equal to
the sum of certain other variables. This is a common trick for reasoning about
slack or wastage. For example, introducing a new variable equal to sum of some
of the existing decision variables on a circular Golomb ruler problem produces a
significant reduction in search [SSW00].

5 Other methods

In many examples, we have found that we may have to do some algebraic ma-
nipulations in order to eliminate some sub-term. We currently use the isolate
method from the PRESS equation solving system [BW81] to isolate a variable
on one side of an equation or inequality. We also see uses for other methods from
PRESS [BW81] like collect and attract.

In addition, some methods may produce output which could be usefully sim-
plified before being added to the current set of constraints. A simplify method
is therefore used to perform any possible simplification, again using methods such
as isolate and, in the future, collect and attract. A normalise method is
also applied to the output of other methods in order to maintain a normal form
on the set of equations the proof planner is working on. This helps to avoid the
same constraint being added twice (in slightly re-arranged form).



6 Results

We illustrate the behaviour of these methods on two examples taken from the
literature. In addition to listing the implied constraints generated, we show the
reductions in runtimes that result with the SICSTUS finite domain constraint
solver.

6.1 Fractions puzzle

The proof planner takes as input a set of constraints specifying the problem. For
example, the input for the fractions puzzle is given below:

prob(’Fractions Puzzle’,

[domain(var(’A’), [1, 2, 3, 4, 5, 6, 7, 8, 91),
domain(var(’B’), [1, 2, 3, 4, 5, 6, 7, 8, 91),
domain(var(’C’), [1, 2, 3, 4, 5, 6, 7, 8, 91),
domain(var(’D’), [1, 2, 3, 4, 5, 6, 7, 8, 91),
domain(var(’E’), [1, 2, 3, 4, 5, 6, 7, 8, 91),
domain(var(’F’), [1, 2, 3, 4, 5, 6, 7, 8, 91),
domain(var(’G’), [1, 2, 3, 4, 5, 6, 7, 8, 91),
domain(var(’H’), [1, 2, 3, 4, 5, 6, 7, 8, 91),

domain(var(’1’), [1, 2, 3, 4, 5, 6, 7, 8, 9]),
all_different([var(’A’),var(’B’),var(’C’),var(’D’),var(’E’?),
var (’F’) ,var(°G’) ,var(’H’) ,var(°1’)]),
eq(var(’A?)/(10*var (’B? )+var(’C’)) +
var(’D?)/(10xvar (E?)+var (’F’)) +
var(’G’)/(10xvar (°H?)+var(’1’)),
n»h.

In the future, we intend to accept input in a high level constraint modelling
language like OPL or ESRA [FHO1]. The proof planner outputs a set of implied
constraints. In addition, associated with each method is a tactic which explains
how the implied constraint generated by the method is inferred. In the future,
we intend to output BTEX and HTML as well as plain ascii text. Part of the
proof planner’s output on the fractions puzzle is given below:

Using var(A)/(10*var (B)+var(C)) =< var(D)/(10*var(E)+var(F)),

we eliminate var(A)/(10xvar(B)+var(C)) in favour of

var (D) / (10*var (E)+var (F)) in

var (A) / (10*var (B) +var (C) ) +var (D) / (10*var (E) +var (F) )+

var (G) / (10*var (H)+var(I)) = 1.

This gives: 1 =< 2*(var(D)/(10*var (E)+var(F)))+
var(G)/(10*var (H)+var(I)).

Using var(D)/(10*var (E)+var(F)) =< var(G)/(10*var (H)+var(I)),
we eliminate var(D)/(10*var(E)+var(F)) in favour of



var (G) / (10*var (H)+var(I)) in
1 =< 2x(var(D)/(10*var (E) +var (F)))+var(G) / (10*var (H) +var (I)).
This gives: 1 =< 3%(var(G)/(10*var(H)+var(I))).

Linearising 1 =< 3*(var(G)/(10xvar (H)+var(I)))
Gives: 10*var(H)+var(I) =< 3*var(G)

Since we know that the variables in 10*var (H)+var(I)
are all-different, the lower bound of this summation is 12,
and the upper bound 98.

Using 12 =< 10*var (H)+var(I),

we eliminate 10*var (H)+var(I) in favour of 12 in
10*var (H)+var(I) =< 3*var(G).

This gives: 4 =< var(G).

The proof planner generates some 22 implied constraints in total in this
manner. We are currently developing heuristics to prune this set. One of the
simplest heuristic is the constraint arity. If we delete all implied constraints of
arity 4 or greater, we get the following five implied constraints to add to the
problem definition:

Table 1 presents the results obtained when solving the fractions problem with
the SICSTUS finite domain constraint library. The first column gives the results
using the basic model only, the second shows the result of adding the small set
of implied constraints described above, and the third shows the results of adding
all the implied constraints generated by the proof planner. In both cases, the
implied constraints provide a significant reduction in search.

Although the 22 implied constraint model takes longer to solve than the 5
implied constraint model, it also significantly reduces the size of the search tree.
This suggests that there is a mid-point between the 2 which out-performs them
both. In [SS] Schulte and Smolka report that the adding the symmetry breaking
and implied constraints to their model of the fractions puzzle reduces the size of
Oz’s search tree by one order of magnitude.



Basic Model Basic Model+ Basic Model+
5 Implied Constraints|22 Implied Constraints
Backtracks 3203 2689 1529
(1st solution)
Time Taken(ms) 1450 1280 2460
(1st solution)
Backtracks 13359 3556 2059
(all solutions)
Time Taken(ms) 5470 1690 3310
(all solutions)

Table 1. The Fractions Problem: Results

6.2 Professor Smart’s Safe

This example problem is also taken from the Oz finite domain constraint pro-
gramming tutorial?. The code of Professor Smart’s safe is a sequence of 9 non-
zero digits 1, ..., zg such that the following constraints are satisfied:

T4 — T = X7 (12)

T1X2T3 = T§ + X9 (13)

T2+ 23+ x5 < g (14)

Tg < T8 (15)

T £ 10 (16)

all-different(z1, ..., zg) (17)

The proof planner produces the following set of constraints:

2x9 < 12273 < 2238
6 < z12223 < 504
6 <ao+x3+x5 <24
3<axg+a7r <17
3< g+ 29 <17
6 < zg
3< 4

Table 2 presents the results of comparing the basic model and the basic model
with implied constraints. Run-times are negligible and so are not reported. Even
though this problem in its basic state is very easy to solve, the addition of the
implied constraints still gives some improvement. It is also important to note
that the addition of implied constraints to this easy problem does not degrade
the performance of the solver. For example, the implied constraints reduce the
problem of deciding a value for variable zg to choosing either the value 7 or 9.

%2 http://www.mozart—oz.org/documentation/fdt/node19.html#section.problem.safe



10

Basic Model|Basic Model + Implied Constraints

Backtracks 5 5
(1st solution)
Backtracks 20 17

(all solutions)

Table 2. Professor Smart’s Safe: Results

7 Related Work

Proof planning has been implemented in a number of systems. The CLAM proof
planner developed in Edinburgh controls search in the Oyster proof checker
[BvHHS90]. CLAM has also been linked to the HOL theorem prover [BSBG9S].
Whilst much of the development of CLAM has been for inductive proof [BSYH'93],
several other domains have been explored including finding closed form sums to
series [WNB92]. Prior to CLAM, the PRESS system used a meta-level represen-
tation of proof methods to solve algebraic equations [BW&1]. Despite the lack of
a planner to put its methods together, PRESS was competitive with computer
algebra systems of its era. The {2 system developed in Saarbriicken also imple-
ments proof planning, but in this case for a a higher order natural deduction
style logic [HKK*94]. Recently, the third author has built a simple proof plan-
ning shell, CLAM-Lite, on top of the Maple computer algebra system [Wal00].
This system allows us to explore how proof and computation can be mixed to-
gether. It can, for example, find a closed form sum to a series, and prove by
induction that the answer is correct.

As exemplified by [SSW99], several recent studies show that implied con-
straints added by hand to a problem representation can lead to significant re-
ductions in search. However, outside a highly focused domain like planning (see,
for example, [EMW97]), there has been little research on how to generate such
implied constraints automatically. One exception is [Fri99], which generalises
resolution to multi-valued clauses in which variables can take more than just the
two values True and False, and proves that implied constraints generated by the
closure of this operation will eliminate search.

A number of other projects have combined tools for performing inference and
algebraic reasoning. For example, the Theorema project [BJKT97] is extending
the Mathematica computer algebra system with theorem proving capabilities.
The system consists of a collection of special purpose provers. These include a
prover for induction over the natural numbers, another for induction over lists, as
well as an interface to external theorem provers. The Analytica prover [BCZ96)
also adds theorem proving capabilities to the Mathematica computer algebra



11

system. The system is able to prove some complex theorems in analysis about
sums and limits, as well as some simple inductive theorems.

8 Future Work and Conclusions

We have described a new application for proof planning, the generation of im-
plied (algebraic) constraints. This required a number of extensions to proof plan-
ning like the inclusion in methods of add and delete lists (as in classical plan-
ning). We have implemented a number of proof methods for generating implied
constraints automatically including: the symmetry method which breaks sym-
metries between indistinguishable variables and terms, the eliminate method
which eliminates variables and terms from non-linear constraints, the introduce
method which introduces new variables, the linearize method which linearizes
non-linear constraints, and the all-different method which reasons about
constraints containing variables which take distinct values. In future work, we
will test these methods on a larger corpus of examples. In addition, we intend
to develop a number of specialized methods. For instance, in many scheduling,
partitioning and cutting problems, new variables are introduced equal to sums of
certain decision variables (for example, to compute the tardiness or wastage) and
implied constraints inferred about these variables. We will implement methods
to perform such variable introduction and inference.

Acknowledgements

This project and the second author are supported by EPSRC Grant GR/N161293.
The third author is supported by an EPSRC advanced research fellowship. The
authors wish to thank Brahim Hnich for discussions about generating implied
constraints automatically. Julian Richardson’s adaptation of PRESS to manip-
ulate inequalities and its success at generating a number of implied constraints
automatically helped inspire the search for the methods presented here.

References

[BCZ96] A. Bauer, E. Clarke, and X. Zhao. Analytica: an experiment in combining
theorem proving and symbolic computation. In Proceedings of the Inter-
national Conference on Artificial Intelligence and Symbolic Computation,
AISMC-3, 1996.

[BJKT97] B. Buchberger, T. Jebelean, F. Kriftner, M. Marin, E. Tomuta, and
D. Vasaru. A survey of the Theorema project. In Proceedings of the Inter-
national Symposium on Symbolic and Algebraic Computation, ISSAC’97,
1997.

3 http://www.cs.york.ac.uk/aig/projects/implied/index .html



12

[BSBG9S]

R. Boulton, K. Slind, A. Bundy, and M. Gordon. An interface between
Clam and HOL. In Proceedings of the 11th International Conference on
Theorem Proving in Higher Order Logics. Springer Verlag, Lecture Notes
in Computer Science, 1998.

[BSvHT93] A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, and A. Smaill. Rip-

[Bun91]

pling: A heuristic for guiding inductive proofs. Artificial Intelligence,
62:185-253, 1993. Also available from Edinburgh as DAI Research Paper
No. 567.

A. Bundy. A science of reasoning. In J-L. Lassez and G. Plotkin, editors,
Computational Logic: Essays in Honor of Alan Robinson, pages 178-198.
MIT Press, 1991. Also available from Edinburgh as DAI Research Paper
445.

[BVHHS90] A. Bundy, F. van Harmelen, C. Horn, and A. Smaill. The Oyster-Clam

[BW81]

[EMW97]

[FHO1]

[Fri99]

[HKK*94]

[Ire92]

[Sch99]

[SS]

[SSW99]

system. In M.E. Stickel, editor, 10th International Conference on Auto-
mated Deduction, pages 647—-648. Springer-Verlag, 1990. Lecture Notes in
Artificial Intelligence No. 449.

A. Bundy and B. Welham. Using meta-level inference for selective appli-
cation of multiple rewrite rules in algebraic manipulation. Artificial Intel-
ligence, 16(2):189-212, 1981. Also available as DAI Research Paper 121,
Dept. Artificial Intelligence, Edinburgh.

M.D. Ernst, T.D. Millstein, and D.S. Weld. Automatic SAT-compilation
of planning problems. In Proceedings of the 15th IJCAI, pages 1169-1176.
International Joint Conference on Artificial Intelligence, 1997.

P. Flener and B. Hnich. Compiling high-level type constructors in constraint
programming. In Ramakrishnan. 1.V., editor, Proceedings of PADL-01,
pages 229-244. Springer Verlag, 2001. LNCS 1990.

A.M. Frisch. Solving constraint satisfaction problems with nb-resolution.
Electronic Transactions in Artificial Intelligence, 3, Section B:105-120,
1999.

Xiaorong Huang, Manfred Kerber, Michael Kohlhase, Erica Melis, Dan Ne-
smith, Jorn Richts, and Jorg Siekmann. 2-MKRP: A proof development
environment. In Alan Bundy, editor, Automated Deduction — CADE-12,
Proceedings of the 12th International Conference on Automated Deduc-
tion, pages 788-792, Nancy, France, 1994. Springer-Verlag, Berlin, Ger-
many. LNAI 814.

A. Ireland. The Use of Planning Critics in Mechanizing Inductive Proof.
In Proceedings of LPAR’92, Lecture Notes in Artificial Intelligence 624.
Springer-Verlag, 1992. Also available as Research Report 592, Dept of AI,
Edinburgh University.

W.M. Schorlemmer. Term rewriting in a logic of special relations. In
Proceedings of the Seventh International AMAST Conference, LNAI 1548,
pages 178-195. Springer Verlag, 1999.

C. Schulte and G. Smolka. Finite Domain Constraint Programming in Oz.
A Tutorial. http://www.mozart-oz.org/documentation/fdt/index.html.
B.M. Smith, K. Stergiou, and T. Walsh. Modelling the golomb
ruler problem. In Proceedings of the IJCAI-99 Workshop on Non-
Binary Constraints. International Joint Conference on Artificial Intel-
ligence, 1999. Also available as APES report, APES-11-1999 from
http://apes.cs.strath.ac.uk/reports/apes-11-1999.ps.gz.



[SSW00]

[Wal00]

[WNB92]

13

B. Smith, K. Stergiou, and T. Walsh. Using auxiliary variables and implied
constraints to model non-binary problems. In Proceedings of the 16th Na-
tional Conference on AI pages 182-187. American Association for Artificial
Intelligence, 2000.

T. Walsh. Proof planning in Maple. In Proceedings of the Workshop on
Automated Deduction in the Context of Mathematics. 17th Conference on
Automated Deduction, 2000.

T. Walsh, A. Nunes, and A. Bundy. The use of proof plans to sum series.
In D. Kapur, editor, 11th Conference on Automated Deduction, pages 325—
339. Springer Verlag, 1992. Lecture Notes in Computer Science No. 607.
Also available from Edinburgh as DAI Research Paper 563.



