
Discrete Applied Mathematics 222 (2017) 109–123

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Orbital shrinking: Theory and applications
Matteo Fischetti a, Leo Liberti b,*, Domenico Salvagnin a, Toby Walshc

a DEI, Università di Padova, Italy
b CNRS LIX, Ecole Polytechnique, 91128 Palaiseau, France
c NICTA and UNSW, Sydney, Australia

a r t i c l e i n f o

Article history:
Received 27 January 2016
Received in revised form 8 January 2017
Accepted 20 January 2017
Available online 21 February 2017

Keywords:
Mathematical programming
Constraint programming
Discrete optimization
Symmetry
Relaxation
MINLP

a b s t r a c t

We present a method, based on formulation symmetry, for generating Mixed-Integer
Linear Programming (MILP) relaxations with fewer variables than the original symmetric
MILP. Our technique also extends to convex MINLP, and some nonconvex MINLP with
a special structure. We showcase the effectiveness of our relaxation when embedded
in a decomposition method applied to two important applications (multi-activity shift
scheduling and multiple knapsack problem), showing that it can improve CPU times by
several orders of magnitude compared to pure MIP or CP approaches.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Branch-and-Bound (BB) type methods often become very slow when the solution set is symmetric [11,25], due to
the exploration of many symmetric subtrees. Given a Mathematical Programming (MP) formulation, we distinguish the
automorphismgroupof its solution set (called the solution group) and the groupof variable symmetries fixing the formulation
(called the formulation group). The latter is usually defined as the group of variable index permutations keeping the objective
function invariant and permuting the order of the constraints [3,23]. It is very easy to show that the formulation group is a
subgroup of the solution group.

Finding a universal technique for determining the solution group automatically would imply knowing the solution set a
priori, whichwouldmake the optimization problemmoot. On the other hand, various techniques for finding the formulation
group of a Constraint Satisfaction Program (CSP) and of a MP have been proposed in the literature [2,19,20,37]. The most
efficient methods reduce to the graph isomorphism problem, which can be solved in practice using tools such as nauty [27].

Once some symmetries are known, they can be exploited in a variety ofways. In Constraint Programming (CP) andMixed-
Integer Programming (MIP), a common technique consists in trying to make some of the symmetric solutions infeasible by:

• adjoining Symmetry-Breaking Constraints (SBC) to the original formulation [20,21,46];
• using a clever branching strategy in constraint propagation [10] or in BB (e.g. isomorphism pruning [23,24] or orbital

branching [30,31]).

In Semidefinite Programming (SDP), due to the fact that decision variables are matrices, symmetry can be exploited very
naturally through group representation theory. This yields formulations with fewer variables (in fact, the variable matrix
becomes block-diagonal) but having the same optimum [8].

* Corresponding author.
E-mail addresses:matteo.fischetti@unipd.it (M. Fischetti), liberti@lix.polytechnique.fr (L. Liberti), domenico.salvagnin@unipd.it (D. Salvagnin),

toby.walsh@nicta.com.au (T. Walsh).

http://dx.doi.org/10.1016/j.dam.2017.01.015
0166-218X/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.dam.2017.01.015
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dam.2017.01.015&domain=pdf
mailto:matteo.fischetti@unipd.it
mailto:liberti@lix.polytechnique.fr
mailto:domenico.salvagnin@unipd.it
mailto:toby.walsh@nicta.com.au
http://dx.doi.org/10.1016/j.dam.2017.01.015

110 M. Fischetti et al. / Discrete Applied Mathematics 222 (2017) 109–123

A different approach is proposed in [2], where solving an Integer Linear Program (ILP) with a highly transitive solution
group is essentially reduced to a line search in a lattice. The proposed method is very innovative, but most practically
occurring ILPs have groups that are very far from being transitive. A generalization of this approach which aims to relax
the requirement for high transitivity is given in [14]. Although applicability remains limited, this technique was used in
solving the instance toll-like in the MIPLIB2010 library [18], which was previously unsolved.

We propose another approach, called Orbital Shrinking (OS), for exploiting symmetry in MILP and certain subclasses of
Mixed-Integer Nonlinear Programming (MINLP). Orbital shrinking is a relaxation technique: given aMIP P and a subgroup G
of its formulation (or solution) group, it replaces each orbit of variables by a single variable. Therefore, OS produces compact
MIP relaxations. If G is transitive, and hence has only one orbit, the resulting MIP is trivial, because it has only one variable.
At the other extreme, if G is the trivial group, then there are as many orbits as there are variables, and the relaxation is the
same as the original MIP.

To solve problems exactly, we employ the OS relaxation (OSR) in a general purpose decomposition framework, which
we apply to two real-life applications: multi-activity shift scheduling and multiple knapsack problems. OS decomposition
naturally provides a newway for designinghybridMIP/CPdecompositions: our computational results show that the resulting
method can be orders of magnitude faster than pure MIP or CP approaches.

The outline of the paper is as follows. In Section 1.1, we review some main results on symmetry groups in the context
of optimization problems. Then, in Section 2, we present orbital shrinking, and show that it yields a relaxation of the
original problem. In Section 3 we analyze differences and similarities between OS and core point algorithms. In Section 4
we describe a general decomposition framework based on orbital shrinking, while in Sections 5 and 6 we specialize the
general framework to multi-activity shift scheduling andmultiple knapsack problems, also reporting computational results.
Conclusions are finally drawn in Section 7.

We assume the reader is familiar withmixed-integer programming, constraint programming and basic group theory. The
present paper extends and is based on the preliminary results presented in [7,42,43], by the same authors.

1.1. Some notation and terminology

Let P be an arbitrary MINLP of the form

min f (x) (1)

∀i ∈ C gi(x) ≤ 0 (2)

∀j ∈ J xj ∈ Z (3)

where J ⊆ [n] = {1, . . . , n} is the subset of integer variables. Without loss of generality, the objective function f (x) is
assumed to be convex. For a point x′

∈ Rn and a subset V ⊆ [n], we let x′
[V] be the subsequence of x′ indexed by V .

We consider the formulation group GP of P , containing the set of permutations π ∈ Sn (the symmetric group of order
n, which acts naturally on the variable indices) that leave the formulation of P unchanged, except for a possible reordering
of the constraints. The practical applicability of this definition extends to Linear Programs (LP) and MILPs. With MINLPs, we
restrict our attention to functional forms which are closed with respect to the usual operators (+,−,×,÷, (·)a) and unary
functions (log, exp). These expressions are easily represented by trees, and whole MINLP formulations can be represented
by suitable Directed Acyclic Graphs (DAG) [1]. GP is then obtained as a restriction of the automorphism group of this DAG
to the set of variable indices of P [20]. GP can be computed by means of any graph isomorphism package such as Nauty [28]
or Saucy [17]: these both implement backtracking algorithms which are exponential-time in the worst case, but which are
sufficiently fast in practice to be of use.

Any subgroupG of Sn partitions the set of variables into equivalence classes called orbits via its natural action: two variable
indices i, j are in the same class if there is g ∈ G such that g(i) = j. We denote by ΩG the orbital partition of the action
of G on [n]. We remark that, by definition, integer and continuous variables cannot be permuted with each other, so each
orbit contains only integer or only continuous variables. Constraints of P are themselves partitioned into equivalence classes,
called constraint orbits: in particular, two constraints are in the same orbit if and only if one ismapped into the other (because
of reordering) when some variable permutation π ∈ G is applied. Finally, given a subset I ⊆ [n], the point-wise stabilizer G[I]
of Gwith respect to I is the subgroup of G consisting of permutations π such that π (i) = i for all i ∈ I .

2. Orbital shrinking relaxation

The OSR with respect to a subgroup G of Sn could be best described as ‘‘formulation modulo G’’, as it replaces entire orbits
by single variables. In this section, we will describe how to construct the OSR of a given optimization problem P , and show
that this is indeed a relaxation of the original problem.

The first step is to classify variables and constraints according to their incidence and (non)linearity/convexity. Specifically,
the group G defining the OSR will be taken with respect to partitions (V1, V2) and (C1, C2, C3) of the variables and constraints
of P respectively, that satisfy the following conditions:

M. Fischetti et al. / Discrete Applied Mathematics 222 (2017) 109–123 111

• all constraints in C1 are convex w.r.t. the variables in V1 (in other words, when the variables in V2 are fixed);
• all constraints in C2 have the property that all variables in V1 can only appear through their orbit sums

∑
ℓ∈ωxℓ;

• C3 consists of all constraints not in C1 or C2.

We consider the relaxation P ′ of P obtained by removing constraints in C3 from P . Let G be any subgroup of GP ′ [V2], and
Ω = ΩG be the orbital partition of [n] induced by G. We can now define the OSR POSR as the MP formulation obtained by the
following procedure:

1. for each ω ∈ Ω , introduce a variable zω , constrained to be general integer if and only if the orbit ω consists of integer
variables; let z = (zω | ω ∈ Ω);

2. for each constraint gi(x) ≤ 0 in C1 ∪ C2, define a new constraint ḡi(z) ≤ 0, obtained from gi(x) ≤ 0 through the formal
substitution:

xj →
zω
|ω|

(4)

for all j ∈ ω;
3. define the objective function f̄ (z) as the result of applying to f (x) the same formal substitution (4);
4. drop constraints in C3 from POSR.

Example 2.1. Consider the MIP formulation P:

min
x∈{0,1}6

x1 + 2x2 + 3x3 + x4 + 2x5 + 3x6 (5)

x1 + x2 + x3 ≥ 1 (6)

x4 + x5 + x6 ≥ 1 (7)

x1 + x4 ≤ 1 (8)

x2 + x5 ≤ 1 (9)

x3 + x6 ≤ 1. (10)

It is easy to show that GP = ⟨(1, 4), (2, 5), (3, 6)⟩. The action of GP on the variable index set [n] yields the orbit set
Ω = {ω1, ω2, ω3} with ω1 = {1, 4}, ω2 = {2, 5}, ω3 = {3, 6}. We remark that the action induced by GP on the constraint
index set C(P) = {(6), . . . , (10)} yields four orbits: {(6), (7)} and the three trivial orbits {(8)}, {(9)}, {(10)}. Since all of the
constraints are convex, we can derive an OSR using partitions V1 = [n], C1 = C(P) and V2 = C2 = C3 = ∅. The resulting POSR

is:

min
z∈{0,1,2}3

z1 + 2z2 + 3z3

z1 + z2 + z3 ≥ 2
z1 + z2 + z3 ≥ 2

z1 ≤ 1
z2 ≤ 1
z3 ≤ 1,

which we can more conveniently write as

min
z∈{0,1}3

z1 + 2z2 + 3z3

z1 + z2 + z3 ≥ 2.

Now suppose we add the constraint

(x1 + x4)(x2 + x5) = 0 (11)

to P: since it is not convex in V1, it cannot belong to C1. On the other hand, it depends on sums of variables in each of their
orbits, so it qualifies as a member of C2, which is now equal to the singleton set {(11)}, and is reformulated in the OSR as

z1z2 = 0. (12)

Suppose now we add the constraint

2x3 + 3x6 ≤ 5 (13)

112 M. Fischetti et al. / Discrete Applied Mathematics 222 (2017) 109–123

to P . This breaks the symmetry (3, 6), which implies that the formulation group GP becomes the trivial group. We remark,
however, that the formulation P ′ consisting of P without the constraints in Eqs. (6), (7), (10) and (13), has formulation group
GP ′ = ⟨(1, 4), (2, 5)⟩. We can therefore define G = GP ′ and take V1 = {1, 2, 4, 5}, V2 = {3, 6}, C1 = {(8), (9)}, C2 = {(11)}
and C3 = {(6), (7), (10), (13)}. We obtain the OSR:

min
x,z∈{0,1}

z1 + 2z2 + 3x3 + 3x6 (14)

z1z2 = 0. (15)

We can, however, consider a different partition: V1 = [n], V2 = ∅, C1 = {(6), (7), (8), (9), (10)}, C2 = {(11)} and C3 = {(13)}.
This allows us to choose the larger group G = ⟨(1, 4), (2, 5), (3, 6)⟩, yielding the OSR

min
z∈{0,1}3

z1 + 2z2 + 3z3

z1 + z2 + z3 ≥ 2
z1z2 = 0,

which provides an OSR with five variables instead of six. □

Next, we show that POSR is a relaxation of P . Lemma 2.2 is a basic generalization of Burnside’s Lemma [41]: we suspect
it exists in the group theory literature, but we were not able to find it. Since the applicability to any function ψ makes the
lemma interesting in its own right, we decided to provide a proof.

Lemma 2.2. Let ω ∈ Ω and ψ be any function with domψ = [n]. Then∑
π∈G

ψ(π (j)) =
|G|

|ω|

∑
l∈ω

ψ(l) ∀j ∈ ω. (16)

Proof. For any l ∈ ω, let Tjl = {π ∈ G : π (j) = l}. It is easy to show that |Tjl| = |G[j]| (recall G[j] is the point-wise stabilizer
of j) for all l ∈ ω: given an arbitrary π ∈ Tjl, we can define the map φ : G[j] → Tjl as σ → πσ for any σ ∈ G[j]. This map is a
bijection, with inverse φ−1

: σ → π−1σ , so the two sets have the same cardinality. Hence∑
π∈G

ψ(π (j)) =

∑
l∈ω

∑
π∈Tjl

ψ(π (j)) =

∑
l∈ω

|Tjl|ψ(l) =
|G|

|ω|

∑
l∈ω

f (l),

where the last equality is justified by the orbit-stabilizer theorem. □

Corollary 2.3 is an application of Lemma 2.2 to the barycenter [2] of the group action, also called group average [8] or
Reynolds operator [47].

Corollary 2.3. Let x∗ be an arbitrary feasible solution of P, and consider the convex combination x̄ defined as

x̄ =
1
|G|

∑
π∈G

π (x∗). (17)

Then, for each ω ∈ Ω and j ∈ ω, we have

x̄j =
1

|ω|

∑
l∈ω

x∗

l . (18)

Proof. Define a function X : [n] → R as X(j) = x∗

j . Applying Lemma 2.2 we get:

x̄j =
1
|G|

∑
π∈G

x∗

π (j) =
1
|G|

∑
π∈G

X(π (j)) =
1

|ω|

∑
l∈ω

X(l) =
1

|ω|

∑
l∈ω

x∗

l . □

Lemma 2.4 is well known, and basically states that the barycenter is an invariant of the group action [47]. We provide a
proof for completeness, since it is very short.

Lemma 2.4. Let x∗ be an arbitrary feasible solution of P. Then, for any π ∈ G and for any ω ∈ Ω∑
j∈ω

x∗

j =

∑
j∈ω

π (x∗)j =

∑
j∈ω

x̄j.

Proof. By definition, all permutations in Gmap variables in ω to other variables in ω, so the sums of the variables in a given
orbit are invariant to permutations in G. This proves the first equality. The second equality follows by definition of x̄ (see
Eq. (17)). □

M. Fischetti et al. / Discrete Applied Mathematics 222 (2017) 109–123 113

Finally, we prove that POSR is a relaxation. We recall that the POSR formulation involves an objective function f̄ (z) and
constraints ḡ(z) ≤ 0.

Theorem 2.5. POSR is a relaxation of P.

Proof. Let x∗ be an arbitrary feasible solution of P . We will show that there always exists a point z∗ feasible for POSR and
such that f̄ (z∗) ≤ f (x∗), hence the claim. Given x∗, let us construct the two points x̄ and z∗ as

x̄ =
1
|G|

∑
π∈G

π (x∗) (19)

∀ω ∈ Ω z∗

ω =

∑
j∈ω

x∗

j . (20)

For each constraint i in C1, we claim gi(x̄) ≤ 0: note that x̄[V2] = x∗
[V2] and that gi is convex in each variable in V1. By

Corollary 2.3, Eq. (18) holds. Hence, for all variable indices but j fixed, we have

gi(x̄j) = gi

(
1

|ω|

∑
l∈ω

x∗

l

)
≤

1
|ω|

∑
l∈ω

gi(x∗

l) ≤ 0.

For each constraint i in C2, we have gi(x̄) = gi(x∗) ≤ 0 because of Lemma 2.4. So, all constraint in C1 ∪ C2 are satisfied by x̄.
Now let us consider z∗. The integrality requirements on z are automatically satisfied, as x∗ is a feasible solution of P , and

thus sums of integer values within an orbit yield an integer result. In addition, for each constraint in C1 ∪ C2, we have by
definition and by Corollary 2.3

ḡi(z∗) = gi(x̄) ≤ 0

since x∗ itself is feasible for those constraints. Finally, since we drop the constraints in C3 from POSR, we do not need to check
their feasibility. As far as the objective function is concerned, we have f̄ (z∗) = f (x̄) ≤ f (x∗) where the equality is by definition
of f̄ (z) and Corollary 2.3, while the inequality is by convexity of f (x) and because x̄ is a convex combination of solutions with
the same cost (by symmetry). □

Corollary 2.6 essentially follows because the barycenter is a group invariant, and is at the basis of the ideas developed in
[2,8,14].

Corollary 2.6. If P is a convex optimization problem, then POSR is an exact reformulation of P.

Proof. In the convex case, we have J = C2 = C3 = V2 = ∅. Given an optimal solution z∗ of POSR, we can construct a point x∗

as

x∗

j =
z∗
ω

|ω|

which, by convexity of constraints, is feasible for P and has the same objective value as z∗. The result easily follows. □

Corollary 2.7 shows the easiest case where POSR is an exact reformulation.

Corollary 2.7. If there exists an optimal solution x∗ of P such that |ω| divides
∑

j∈ωx
∗

j for all orbits ω associated to integer
variables, and C3 = ∅, then POSR is an exact reformulation of P.

Proof. In this case, the point x∗ constructed as in the previous corollary is also integer, and satisfies all the constraints of P .
It is then feasible for P and thus optimal. □

2.1. Remarks

1. Corollary 2.7 applies, for instance, in case a standard ILP model for the asymmetric Traveling Salesman Problem (TSP)
is solved on symmetric input arc costs. In this setting, the group action induces an orbit {(i, j), (j, i)} for each node
pair {i, j}, and orbital shrinking automatically produces the symmetric TSP formulation of the problem — which is of
course a much better way to model it when costs are symmetric. In this context, orbital shrinking can be seen as an
automatic preprocessing step to produce a more effective model for the actual input data.

2. Since P ′ (P without the constraints in C3) is a relaxation of P , GP ends up being a subgroup of GP ′ . This means that the
OSR can be derived from a group Gwhich is not actually a subgroup GP , but might instead have Gp as a subgroup. The
set C3 of constraints is provided to give freedom in the choice of which variables to put into V2.

114 M. Fischetti et al. / Discrete Applied Mathematics 222 (2017) 109–123

3. We note that the partition (C1, C2, C3) is consistent with the constraint orbits of P ′ and that all constraints in the
same orbit will be mapped to the same constraint in POSR. Hence POSR has one variable for each variable orbit and one
constraint for each constraint orbit in P associated with a constraint in C1 ∪ C2.

4. The convexity of the constraints in C1 is crucial for the above arguments. Indeed, given an arbitrary MINLP, a direct
formal substitution according to (4) does not yield a relaxation in general, as shown in Example 2.8.

5. The constraints in C2 can be convex or nonconvex, as long as their arguments are sums of original variables over the
group orbits: essentially, they carry over to the OSR unchanged, aside from the replacement of orbital sums by the
corresponding z variable.

Example 2.8. Let the feasible set of P be defined as

{(x1, x2) | (x1 − x2)(x2 − x1) ≤ −1}.

This set is not empty and the two variables are clearly symmetric. However, with the formal substitution xi → z/2we obtain
the set

{z | 0 ≤ −1}

which is empty. □

3. The role of the barycenter

In this sectionwe discuss the relationships betweenOSR and other existingmethods for exploiting symmetry inMP based
on core points. All of these methods are based on the concept of the barycenter of the group action, defined in Eq. (17).

The papers [2,14] discuss a new approach to optimize symmetric MILP (or convex MINLP). The first paper [2] requires GP
to be at least transitive on [n] (i.e. its action on [n] consists of a single orbit). This requirement is partly relaxed in the second
paper [2]: GP is only assumed to have a direct product of (possibly trivial) symmetric groups as a subgroup.1

Let P be the ILP max{c⊤x | Ax ≤ b ∧ x ∈ Zn
}, and let G ≤ GP have a transitive action on [n]. The papers [2,14] consider

a decomposition of the feasible region F of P in the fixed subset FG = {x ∈ F | ∀g ∈ G (gx = x)} (its span is called the fixed
subspace) and the affine subspaces Hk

c = {x ∈ Rn
| c⊤x = k}, where k ∈ Z, which contain the level sets. Without loss of

generality, c is assumed to be a coprime integral vector, i.e. one whose components have unit greatest common divisor. It is
shown in [2] that {Hk

c | k ∈ Z} is a partition of Zn for each coprime c.
In [2], G is assumed to be transitive: by definition, this implies that for each i ̸= j ∈ [n] there is π ∈ G mapping ci to cj,

yielding c to be a scaling of the all-one vector 1. Enters the barycenter: since it is invariant with respect to the action of G, it
spans the fixed subspace. By definition, the barycenter is a scaled sum of all the orbit elements (see Eq. (18)), and hence, by
the same reasoning as the one carried out for c , it is also a scaled version of 1. In particular, the span of c is equal to the fixed
subspace; and, moreover, each affine subspace Hk

c is orthogonal to the fixed subspace.
The fact that FG aligns precisely with the objective function direction is obviously as rare as full transitivity of G, but it

pays off handsomely: if y is an optimal solution of the continuous relaxation, then the barycenter ζ1 (where ζ =
1
n

∑
jyj) is

also optimal, so ⌊ζ⌋1 is a feasible integer point; hence the ILP optimal value must be at least as large as that of ⌊ζ⌋1, namely
⌊ζ⌋n. Trivially, we also have ⌊ζn⌋ as an upper bound. Hence it suffices to find an integer feasible point in Hk

c for the largest
possible k in K = {⌊ζ⌋n, . . . , ⌊ζn⌋}. In [2], Alg. A suggests a direct search for decreasing values of k (an obvious log(|K |)
improvement could be given by using bisection on K).

In general, the subproblem of [2, Alg. A], which consists of finding an integer feasible point in each Hk
c , is hard. However,

if G is µ-transitive (with µ ≥ ⌊
n
2⌋ + 1), then the integer feasible points in Hk

c that are closest to the fixed subspace, called
core points, can be found in polynomial time [2, Alg. B]. Transitivity rarely occurs in practical problems; and µ-transitivity,
requiring the existence of permutations mapping any µ-tuple to any other, is even rarer.

The paper [14], subsequent to [2], relaxes the transitivity requirements, generalizes the definition of a core point, and
proposes two algorithms for solving symmetric MILPs and convex MINLPs. The first algorithm is a generalization of the core
point algorithm of [2]: to address the fact that c = 1 is no longer the unique generator of the fixed subspace, [14, Alg. A] still
solves integer feasibility subproblems on Hk

c but also checks their objective function values. The second algorithm is based
on a smart parametrization of generalized core points, and the fact that it is sufficient to find an optimal core point. It turns
out that this parametrization results in a reformulation of the original problem. As mentioned above, the requirement on G
for these algorithms to work is that it should be a direct product of symmetric group Sk1 × · · · × Skd . The reformulation adds
new sets of variables: ti ∈ Z for each i ≤ d, and sij ∈ {0, 1} for each i ≤ d and j < ki; and new sets of constraints:

∀i ≤ d xij = ti1ki +
∑
j<ki

sijcj

1 We remark that the instance library data given in [20] shows that many formulation groups are isomorphic to products of symmetric groups. Further
analysis, however, shows that in most cases formulation groups are not themselves products of symmetric groups.

M. Fischetti et al. / Discrete Applied Mathematics 222 (2017) 109–123 115

∀i ≤ d
∑
j<ki

sij ≤ 1,

where1ki is the all-one vector of size ki, cj =
∑

h≤jeh (with eh the hth unit vector of the standard basis ofRn) is a representative
of the core set of H j

c , and the components of x have been appropriately re-indexed using i, j. The original variables x can then
be eliminated using the equivalent expressions in the t and s variables.

Here are the main differences between OSR and core point algorithms:

• OSR does not make any assumption on the structure of G, other than it should be nontrivial, whereas core points
algorithms make strong assumptions on G;

• OSR is a relaxation method, i.e. it acts on the formulation, whereas the core point algorithms in [2] do not;
• the reformulation derived in the second core point algorithm in [14] is exact, and, in particular, different from the

OSR.

The only similarity between the OSR and the results in [2] is that the fixed subspace LP reformulation [2, Eq. (3)] is the same
as the OSR whenever there are no integer variables (see Corollary 2.6). The only similarity with [14] is that the barycenter is
the point of departure to derive a reformulation of the original MIP.

4. Orbital shrinking decomposition

Let P be aMINLP as in the previous sections and let G be the chosen formulation subgroup for P . Using G, we can construct
the OSR POSR of P , which will act as the master problem in our decomposition scheme, much like in a traditional Benders
decomposition scheme. Indeed, the scheme is akin to a logic-based Benders decomposition [15], although the decomposition
is not based on a traditional variable splitting, but on aggregation, and the OSR master works with the aggregated variables
z. A similar approach, although problem specific, was also used in [22,32]. Note that the technique is general as a framework,
not as a black-box algorithm that can be readily applied to an arbitrary instance, in the same way as logic-based Benders is:
in both cases some problem-specific knowledge must be exploited for the method to succeed.

4.1. The slave feasibility problem

For each feasible solution z∗ of POSR, we can then define the following (slave) feasibility check problem R(z∗)

∀i ∈ C gi(x) ≤ 0 (21)

∀ω ∈ Ω
∑
j∈ω

xj = z∗

ω (22)

∀j ∈ J xj ∈ Z. (23)

If R(z∗) is feasible, then the aggregated solution z∗ can be disaggregated into a feasible solution x∗ of P , with the same cost.
Otherwise, z∗ must be removed from POSR, in either of the following two ways:

1. Generate a nogood cut that forbids the assignment z∗ to the z variables. As in logic-based Benders decomposition, an
ad-hoc study of the problem is needed to derive (strong) nogood cuts.

2. Branching. As z∗ is integer, branching on non-fractional z variables is needed, and z∗ will still be a feasible solution
in one of the two child nodes. However, the method would still converge, because the number of variables is finite
and the search tree has finite depth, assuming that z variables are bounded. Note that in this case the method may
repeatedly check for feasibility the same aggregated solution z∗: in practice, this can easily be avoided by keeping a
list (cache) of recently checked aggregated solutions with the corresponding feasibility status.

4.2. Symmetry of the slave problem

It is important to note that, by construction, problem R(z∗) may also have a nontrivial formulation group.

Lemma 4.1. The group G used to generate POSR is a subgroup of the formulation group GR of R(z∗).

Proof. Let P be theMP formulation (1)–(3), and π ∈ G ≤ GP . Then π stabilizes the constraints (2) of P , which appear in R(z∗)
as (21). Since constraints (22) are generated by means of the action of G, π fixes each orbit of this action, and hence π also
stabilizes (22). Thus π ∈ GR as claimed. □

On the other hand, GR could be a subgroup of GP or vice versa, or be such that GR = GP , depending on the value of z∗, on
the action of G and on the objective function of P .

116 M. Fischetti et al. / Discrete Applied Mathematics 222 (2017) 109–123

Example 4.2. Let P be the problemmax{
∑5

i=1xi |
∑5

i=1xi ≤ 1∧∀i ≤ 5 xi ∈ {0, 1}}: we have GP ∼= S5. Consider the subgroup
G = ⟨(1, 2), (3, 4), (3, 5)⟩ ∼= C2 × S3, having the two orbits {1, 2} and {3, 4, 5}. Then R(z∗) is:

x1 + x2 + x3 + x4 + x5 ≤ 1
x1 + x2 = z∗

1

x3 + x4 + x5 = z∗

2 ,

which, for any feasible z∗, has formulation group GR = G, a proper subgroup of GP . Obviously, by modifying P so that the
objective is x1 + x2 + 2(x3 + x4 + x5) we have GP = G and hence GR = GP .

Example 4.3. Let P be the problem

max

{∑
i≤3

xi + 2
∑
4≤i≤6

xi |

∑
i≤6

xi ≤ 6 ∧ ∀i ≤ 6 xi ∈ {0, 1}

}
,

and take x∗
= (1, 1, 1, 1, 1, 1) as the optimal solution,with corresponding POSR solution z∗.WehaveGP = ⟨(1, 2), (1, 3), (4, 5),

(4, 6)⟩ ∼= S3 × S3. Consider G = GP , having two orbits {1, 2, 3} and {4, 5, 6}. Then z∗
= (3, 3) and R(z∗) is:

x1 + x2 + x3 + x4 + x5 + x6 ≤ 6
x1 + x2 + x3 = 3
x4 + x5 + x6 = 3.

The formulation group GR certainly contains all of the permutations of GP = G (as per Lemma 4.1), and also the permutation
(1, 4)(2, 5)(3, 6), which is not in GP , and makes GR ∼= (S3 × S3) ⋊ C2. So in this case GP is a proper subgroup of GR.

Having a nontrivial symmetry group in R(z∗) does not necessarily make the problem harder to solve, as it can be used
to further simplify the problem or solving it more efficiently. In addition (i) linking constraints (22) may make the model
much easier to solve, and (ii) the easier structure of R(z∗) may allow for more effective symmetry breaking techniques. Still,
it must be taken into account when devising an effective orbital shrinking decomposition.

Note also that R(z∗) is a pure feasibility problem, so a CP solver may be a better choice than a MINLP solver. In addition,
the method intuitively allows symmetry to exploited twice: once in the (symmetry-free) master, where POSR effectively
enumerates equivalence classes of solutions of P , and once in each slave, where more traditional symmetry breaking
techniques, such as orbital branching or isomorphism pruning can be used.

4.3. Dealing with continuous variables

The above decomposition strategy is well suited for pure integer problems, but is not very convenient when continuous
variables are present in themodel because in themixed-integer case one should enumerate, in themaster, all possible values
also for the continuous variables, which makes the method impractical. However, the method can be modified to deal with
continuous variables more effectively. In particular, we can:

• zero out the objective coefficients of the zω variables in POSR;
• reintroduce the objective coefficients of the continuous variables in R(z∗);
• remove the linking constraints (22) associated to orbits of continuous variables.

The advantage of the above modification is that only the partial assignments over the aggregated integer variables need
to be checked, at the expense of turning the feasibility check into an optimization problem itself. Such extendedmethod has
been used in [29] to solve a very challenging instance of 3-dimensional quadratic assignment problem. Interestingly, the role
of MIP and CP was swapped in [29]: a CP solver was used to enumerate all feasible solutions of the master problem, while a
MIP solver was used to solve the optimization slaves.

5. Application to shift scheduling

A shift scheduling problem assigns a feasible working shift to a set of employees, in order to satisfy the demands for a
given set of activities at each period in a given time horizon. The set of feasible shifts that can be assigned to employees
is often defined by a complex set of work regulation agreements and other rules. Assigning a shift to an employee means
specify an activity for each period, which may be a working activity or a rest activity (e.g., lunch). The objective is usually
to minimize the cost of the schedule, which is usually a linear combination of working costs plus some penalties for
undercovering/overcovering the demands of the activities in each time period.

In particular, suppose we are given a planning horizon divided into a set of periods T , a set of activities A, a subsetW ⊂ A
of working activities, and a set of employees E. For each period t ∈ T and for each working activity a ∈ W , we are given
a demand dat , an assignment cost cat , an undercovering cost c−

at and an overcovering cost c+

at . Introducing the set of integer

M. Fischetti et al. / Discrete Applied Mathematics 222 (2017) 109–123 117

variables yat , which count the number of employees assigned to activity a at period t , and integer variables s−at , s
+

at that count
the appropriate under/over covering, we can formulate the problem as:

min
∑
a∈W

∑
t∈T

catyat +

∑
a∈W

∑
t∈t

c+

at s
+

at +

∑
a∈W

∑
t∈T

c−

at s
−

at (24)

∀a ∈ W , t ∈ T yat − s+at + s−at = dat (25)

∀a ∈ W , t ∈ T
∑
e∈E

xeat = yat (26)

∀e ∈ E ⟨x defines a feasible shift ⟩ (27)

∀a ∈ W , t ∈ T yat , s+at , s
−

at ∈ Z+ (28)

∀e ∈ E, a ∈ W , t ∈ T xeat ∈ {0, 1} (29)

where xeat are binary variables, each of which is equal to 1 if employee e is assigned to activity a in period t . Model (24)–(29)
is symmetric because employees are assumed to be identical, so with |E| employees we have a symmetry group of order
|E|!. As for orbits, each orbit contains all the variables for all employees associated with a given entity (for example, for each
activity a and time period t we have an orbit containing the variables x∗at).

A convenient way to define the set of feasible shifts that can be assigned to a given employee is to use a regular or a
context-free language, i.e., the set of feasible shifts can be viewed as the words accepted by a finite automaton or, more
generally, by a push-down automaton. It has been shown in [4,34] that it is possible to derive a polyhedron that describes a
given regular/context-free language. Such representations are compact (in an appropriate extended space, i.e., introducing
additional variables) and thus lead directly to a MIP formulation of the problem. In particular, the extended formulation for
a regular language is essentially a network flow formulation based on the expanded graph associated with the accepting
automaton [4,33]. The extended formulation for the context-free language, on the other hand, is based on an and–or graph
built by the standard CYK parser [16] for the corresponding grammar [34,39].

Note that it is not necessary to describe completely the set of feasible shifts by a regular/context-free language. The formal
language may capture only some of the constraints defining a feasible shift, with the remaining ones described as linear
inequalities. This may simplify the corresponding automaton considerably (for example, regular languages are notoriously
bad at handling counting arguments). However, describing the set of feasible shifts with formal languages alone has some
important implications. First of all, it has been proven for both the regular and context-free languages that the derived
polyhedron is integral [34], and thus, if the are no other constraints, it is possible to optimize a linear function over the set of
feasible shifts by solving just a linear program. Even more importantly, these results have been extended also to polyhedra
describing sets of feasible shifts [5]. It is then possible to consider an aggregated (implicit) model and reconstruct an optimal
solution of the original one with a polynomial post-processing phase. From the OSR point of view, this means that POSR is
in this case an exact reformulation. Consider for example the regular polytope in its extended form: the optimal solution is
always a flow of integral value, say k, and basic network flow theory guarantees that it can be decomposed into k paths of
unitary flow (and since each path in the expanded graph corresponds to a word in the language, this is a feasible solution
for the original explicit problem). Similar reasoning applies to the grammar polytope (although it is not a flow model), as
successfully shown in [5]. It is interesting to note that this gives the current state-of-the-art for solving multi-activity shift
scheduling problems.

Unfortunately, it is not always reasonable to describe the set of feasible shifts completely with a formal language. While
it is true that formal languages can be extended without changing the complexity of the corresponding MIP encoding (this
is particularly true for context-free languages [39]), still some cardinality constraints may be very awkward to express, as
shown in the following example taken from [43].

Example 5.1.
Let us consider a time horizon of 18 h, divided into 18 periods. A feasible shift is a word of length 18 build from the

alphabetΣ = {a, b, r} (where a denotes the only working activity, r is a rest period, while b is a break period) that follows
the pattern rest–work–break–work–break–work–break–work–rest. Suppose that the breaks are constrained to be one period
long, and the number of working periodsmust be between 6 and 8. Then, a very simple grammar encoding the set of feasible
shifts, ignoring the cardinality constraint, is:

S → RFR F → PBP P → WBW

R → Rr|r W → Wa|a B → b.

In this particular case, since the number of breaks in the shift is fixed (3), it is very easy to extend the grammar to deal with
the cardinality constraint by restricting the production rule F → PBP to be applied only with substring of length between 9
and 11. This can be handled very well by the CYK parser, and thus the cardinality constraint can be added essentially at no
cost.

118 M. Fischetti et al. / Discrete Applied Mathematics 222 (2017) 109–123

However, let us consider a slightly more complicated case. The pattern of a feasible shift is the same, but now the length
of breaks is not fixed to one. In particular, the number of break periods is constrained to be between 4 and 6. The best we can
do keeping approximately the same grammar as before is the following (we use the notation of [5] to indicate restrictions
on production rules):

S → RFR F[10,14] → PBP P[3,10] → WBW

R → Rr|r W → Wa|a B → Bb|b.

It is easy to see that the restrictions cannot be tightened any further, otherwise we may lose feasible shifts. However, the
grammar also accepts the substring rrabababbbbbbbaarr , which violates both cardinality constraints.

The nature of the issues of the previous example is not exclusively theoretical: as the set of feasible shifts is finite,
there always exists a regular/context-free language that describes that set. However, the corresponding automaton may
be unreasonably large in practice. Note also that a very small change in the set of rules defining a feasible shift (like having
a fixed or flexible amount of breaks, as in the example) can make the difference between being able to encode everything
with a formal language or not.

In the following, we assume in the that the formal language captures the constraints that define the set of feasible shifts
only partially, and thus we need to apply the decomposition framework of Section 4 in order to turn OSR into an exact
procedure.

5.1. MIP model

The MIP model that we use is a simple modification of the general model (24)–(29). The main difference is that we
partition the set of feasible shifts Ω into k subsets Ωk, each of which is described by a potentially different deterministic
finite automaton (DFA) and by cardinality constraints. This partition can simplify a lot the structure of the DFAs, and in
general makes the implicit model more accurate, since the cardinality constraints are aggregated only within employees of
the same ‘‘kind’’.

For each shift type Ωk, the aggregated MIP model, i.e., the orbital shrinking relaxation that acts as our master problem,
decides how many employees are assigned a shift inΩk, and then computes an aggregated integer flow of the same value.

5.2. CP checker

Thedecision to partition the set of feasible shifts into k subsetsΩk has an important consequence on the structure of the CP
checker: the model actually decomposes into k separate CP models, one for each type of shift. Given an index k, suppose the
master (MIP) model assigns w̄k employees, with their aggregated shifts described by ȳat ; then the corresponding CP model
can easily be formulated by using several global constraints [40]. Global constraints are used within a CP solver to represent
general purpose and common substructures, for which efficient and effective constraint propagators are known. In our case,
it turned out that, using standard global constraints from the literature and implementing some specific propagators for the
model at hand (see [43] for details), the CPmodel was always extremely fast in proving whether the aggregated solution can
be turned into a solution of the original model.

5.3. Computational results

We tested our method on the multi-activity instances used in [4,5,38]. This testbed is derived from a real-world store,
and contains instances with 1 to 10 working activities (each class has 10 instances).

We implemented our method in C++, using IBM ILOG CPLEX 12.2 [6] as black box MIP solver, and Gecode 3.7.3 [9] as CP
solver. All tests have been performed on a PC with an Intel Core i5 CPU running at 2.66 GHz, with 8GB of RAM (only one core
was used by each process). Every method was given a time limit of 1 h per instance. Concerning the set of feasible shiftsΩ ,
we simply partitioned it into full-time and part-time shifts.

From the implementation point of view, our hybrid method is made of the following phases:

• First, the aggregated model is solved with CPLEX, using the default settings. The outcome of this (usually fast) first
phase is a dual bound potentially stronger than the LP bound, and the set of aggregated solutions collected by the MIP
solver during the solution process (not necessarily feasible for the original model).

• We apply an ad-hoc MIP repair/improve heuristic [43] to each aggregated solution which is within 20%2 of the
aggregated model optimal solution. The outcome of this phase is always a feasible solution for the original model,
thus a primal bound. Note that if the gap between the two is already below the 1% threshold, we are done.

• We solve the aggregatedmodel again, this time implementing the hybridMIP/CP approach described in Section 4. This
means that we disable dual reductions (otherwise the decomposition would not be correct) and use CPLEX callbacks
framework to implement the decomposition.

2 This threshold is used to avoid calling the repair/improve heuristic too many times.

M. Fischetti et al. / Discrete Applied Mathematics 222 (2017) 109–123 119

Table 1
Average computing times between the different methods to solve to near-optimality
(gap ≤ 1%) the instances with up to 10 activities.

Act. # Solved (10) Time (s)

cpx-reg hybrid grammar cpx-reg hybrid grammar

1 10 10 10 41.3 9.1 283.7
2 9 10 9 707.9 194.5 379.9
3 4 5 9 2957.3 1996.4 205.4
4 3 6 10 2970.2 1827.9 300.5
5 0 8 10 3600.0 1438.4 146.2
6 1 4 10 3530.6 2340.6 213.8
7 1 6 10 3438.7 2399.0 230.9
8 0 5 10 3600.0 2201.5 257.1
9 0 4 10 3600.0 2444.0 289.1

10 0 2 10 3600.0 3275.6 516.7

Table 2
MIP repair/improve heuristics standalone results.

Act. Time (s) Gap (%)

1 6.2 1.5
2 46.5 6.5
3 24.7 20.3
4 30.3 7.1
5 34.5 5.9
6 33.5 10.5
7 63.2 7.1
8 69.3 7.7
9 89.8 6.7

10 65.9 8.0

Table 1 reports a comparison between the proposed method and others in the literature, for a number of activities from
1 to 10. cpx-reg refers to the explicit model based on the regular constraint in [4], while grammar refers to the implicit
model based on the grammar constraint in [5]. Note that for grammar we are reporting the results from [5], which were
obtained on a different machine and, more importantly, with an older version of CPLEX, so the numbers are meant to give
just a reference. All methods were run to solve the instances to near-optimality, stopping when the final integrality gap
dropped below 1%.

According to Table 1, hybrid outperforms significantly the explicit model cpx-reg, which scales very poorly because
of symmetry issues and slow LPs. When compared to grammar, hybrid is very competitive only for up to 2 activities, while
after that threshold grammar clearly takes the lead. This is somehow expected: the set of feasible shifts in these instances
can indeed be described without too much effort with an extended grammar, and it is no surprise that the pure implicit
MIP model outperforms our decomposition approach. However, hybrid is likely to be the best approach if the extended
grammar is not a viable option.

Finally, Table 2 shows the gap just before the beginning of the last phase (but after the aggregatedmodel has been solved
and its solutions have been used to feed the MIP repair/improve heuristic). On almost all categories the average final gap is
below 10%, with an average running time of 1 min. This heuristic alone significantly outperforms cpx-reg for a number of
activities greater than 3. It is also clear from the table that solving the OSR relaxations with a black box MIP solver is usually
very fast. Interestingly, solving these MIPs turns out to be often faster than solving the LP relaxations of the original models,
while providing better or equal dual bounds.

6. Application to the multiple knapsack problem

In the present section, we specialize the general framework of Section 4 to themultiple knapsack problem (MKP) [35,44].
This a natural generalization of the traditional knapsack problem [26], where multiple knapsacks are available. Given a set
of n items with weights wj and profits pj, and m knapsacks with capacity Ci, MKP reads

max
m∑
i=1

n∑
j=1

pjxij (30)

∀i ∈ {1, . . . ,m}

n∑
j=1

wjxij ≤ Ci (31)

∀j ∈ {1, . . . , n}
m∑
i=1

xij ≤ 1 (32)

120 M. Fischetti et al. / Discrete Applied Mathematics 222 (2017) 109–123

x ∈ {0, 1}m×n (33)

where binary variable xij is set to 1 if and only if item j is loaded into knapsack i. We assume that allm knapsacks are identical
and have the same capacity C , and we allow some items to also be identical, although this is not strictly required.

When applied to problem MKP, the orbital shrinking reformulation Q reads

max
K∑

k=1

pkyk (34)

K∑
k=1

wkyk ≤ mC (35)

∀k ∈ {1, . . . , K } 0 ≤ yk ≤ |Vk| (36)

y ∈ ZK
+
. (37)

Intuitively, in Q we have a general integer variable yk for each set of identical items and a single knapsack with capacitymC .
Given a solution y∗, the corresponding R(y∗) is thus a one dimensional bin packing instance, whose task is to check whether
the selected items can indeed be packed intom bins of capacity C .

To solve the bin-packing problem above, we propose two different approaches. The first approach is to deploy a standard
compact CP model based on the global binpacking constraint [45] and exploiting the CDBF [12] branching scheme for search
and symmetry breaking. Given an aggregated solution y∗, we construct a vector s with the sizes of the items picked by y∗,
and sort it in non-decreasing order. Then we introduce a vector of variables b, one for each item: the value of bj is the index
of the bin where item j is placed. Finally, we introduce a variable li for each bin, whose value is the load of bin i. The domain
of variables li is {0, . . . , C}. With this choice of variables, the model reads:

binpacking(b, l, s) (38)
bj−1 ≤ bj if sj−1 = sj (39)

where (39) are symmetry breaking constraints.
The second approach is to consider an extended model, akin to the well known Gilmore and Gomory column generation

approach for the cutting stock problem [13]. Given the objects in y∗, we generate all feasible packings p of a single bin of
capacity C . Let P denote the set of all feasible packings and, given packing p, let apk denote the number of items of type k
picked. The corresponding model is∑

p∈P

apkxp = y∗

k ∀k (40)∑
p∈P

xp = m (41)

xp ∈ Z+ (42)

where integer variables xp count howmany bins are filled according to packing p. In the following, wewill denote this model
with BPcg. Model BPcg is completely symmetry free, but it needs an exponential number of columns in the worst case.

6.1. Computational experiments

We implemented our codes in C++, using the same hardware and software of Section 5.
In order to generate hard MKP instances, we followed the systematic study in [36]. More details about our instance

generation procedure can be found in [42]. In order to have a reasonable test set, we considered instances with a number
of items n ∈ {30, 40, 50} and number of knapsacks m ∈ {3, 4, 5, 6}. For each pair of (n,m) values, we generated 10 random
instances following the procedure mentioned above, for a total of 120 instances. All the instances are available from the
authors upon request. For each set of instances, we report aggregate results comparing the shifted geometric means of the
number of branch-and-cut nodes and the computation times of the different methods. Note that we did not use specialized
solvers, such as ad-hoc codes for knapsack or bin packing problems, because the overall scheme is very general and using
the same (standard) optimization packages in all the methods allows for a clearer comparison of the different approaches.

As a first step, we compared 2 different pure MIP formulations. One is the natural formulation (30)–(33), denoted as
cpxorig. The other is obtained by aggregating the binary variables corresponding to identical items. The model, denoted as
cpx, reads

max
m∑
i=1

K∑
k=1

pjzik (43)

M. Fischetti et al. / Discrete Applied Mathematics 222 (2017) 109–123 121

Table 3
Comparison between cpxorig and cpx.

n m # Solved Time (s) Nodes

cpxorig cpx cpxorig cpx cpxorig cpx

30 3 10 10 1.16 0.26 3,857 1,280
30 4 9 10 12.28 3.42 65,374 16,961
30 5 6 8 291.75 79.82 2,765,978 1,045,128
30 6 7 7 108.83 48.05 248,222 164,825

40 3 9 10 19.48 2.72 103,372 9,117
40 4 8 8 351.07 35.56 3,476,180 421,551
40 5 2 3 2,905.70 1,460.95 25,349,383 23,897,899
40 6 3 5 308.29 234.19 626,717 805,007

50 3 6 9 70.73 12.44 259,099 32,310
50 4 2 7 1,574.34 254.58 8,181,128 4,434,707
50 5 0 2 3,600.00 700.69 26,017,660 4,200,977
50 6 3 3 308.29 307.98 586,400 1,025,907

Table 4
Comparison between hybrid methods.

n m # Solved Time (s) Nodes

BPstd BPcgCP BPcgMIP BPstd BPcgCP BPcgMIP BPstd BPcgCP BPcgMIP

30 3 10 10 10 0.07 0.05 0.05 245 270 270
30 4 10 10 10 0.18 0.12 0.08 157 160 160
30 5 10 10 10 1.28 0.26 0.14 90 88 88
30 6 10 10 10 1.24 0.25 0.13 42 40 40

40 3 10 10 10 0.64 0.42 0.17 502 540 540
40 4 10 10 10 0.54 0.20 0.17 225 224 224
40 5 9 10 10 8.63 1.20 0.62 202 225 225
40 6 8 10 10 17.96 1.65 0.46 48 60 60

50 3 10 10 10 1.59 0.93 0.44 837 914 914
50 4 10 10 10 4.06 1.11 0.60 337 335 335
50 5 6 8 10 137.52 23.97 3.58 172 245 335
50 6 7 7 10 17.15 12.73 2.85 17 16 140

∀i ∈ {1, . . . ,m}

K∑
k=1

wjzik ≤ C (44)

∀k ∈ {1, . . . , K }

m∑
i=1

zik ≤ Uk (45)

z ∈ Zm×K
+

(46)

where Uk is the number of items of type k. Note that cpx would be obtained automatically from formulation cpxorig
by applying the orbital shrinking procedure if the capacities of the knapsacks were different. While one could argue that
cpxorig is a modeling mistake, the current state-of-the-art in preprocessing is not able to derive cpx automatically, while
orbital shrinking would. A comparison of the two formulations is shown in Table 3. As expected, cpx clearly outperforms
cpxorig, solving 82 instances (out of 120) instead of 65. However, cpx performance is rapidly dropping as the number of
items and knapsacks increases.

Then, we compared three variants of the hybrid MIP/CP procedure described in Section 6, that differs on the models used
for the feasibility check. The first variant, denoted by BPstd, is based on the compact model (38)–(39). The second and the
third variants are both based on the extended model (40)–(42), but differs on the solver used: a CP solver for BPcgCP and
a MIP solver for BPcgMIP. All variants use model (34)–(37) as a master problem, which is fed to CPLEX and solved with
dual reductions disabled, to ensure correctness of the method. CPLEX callbacks are used to implement the decomposition.
A comparison of the three methods is given in Table 4. Note that the number of nodes reported for hybrid methods refers
to the master only — the nodes processed to solve the feasibility checks are not added to the count, since they are not easily
comparable, in particularwhen a CP solver is used. Of course the computation times refer to thewhole solving process (slaves
included). According to the table, even the simplest model BPstd clearly outperforms cpx, solving 110 instances (28 more)
and with speedups up to two orders of magnitude. However, as the number of knapsacks increases, symmetry can still be
an issue for this compact model, even though symmetry breaking is enforced by constraints (39) and by CDBF. Replacing
the compact model with the extendedmodel, while keeping the same solver, shows some definite improvement, increasing
the number of solved instances from 110 to 115 and further reducing the running times. Note that for the instances in our

122 M. Fischetti et al. / Discrete Applied Mathematics 222 (2017) 109–123

Table 5
Average gap closed by orbital shrinking and corresponding time.

n m Gap closed Time (s)

30 3 45.3% 0.007
30 4 46.6% 0.004
30 5 42.8% 0.004
30 6 54.4% 0.002

40 3 48.4% 0.013
40 4 67.2% 0.007
40 5 55.3% 0.005
40 6 58.6% 0.003

50 3 52.7% 0.031
50 4 64.5% 0.030
50 5 61.1% 0.006
50 6 76.7% 0.003

testbed, the number of feasible packings was always manageable (at most a few thousands) and could always be generated
by Gecode in a fraction of a second. Still, on some instances, the CP solver was not very effective in solving the feasibility
model. The issue is well known in the column generation community: branching on variables xp yields highly unbalanced
trees, because fixing a variable xp to a positive integer value triggers a lot of propagations, while fixing it to zero has hardly
any effect. In our particular case, replacing the CP solver with aMIP solver did the trick. Indeed, just solving the LP relaxation
was sufficient in most cases to detect infeasibility. BPcgMIP is able to solve all 120 instances, in less than four seconds (on
average) in the worst case. The reduction in the number of nodes is particularly significant: while cpx requires millions of
nodes for some classes, BPcgMIP is always solving the instances in fewer than 1000 nodes.

Finally, Table 5 shows the average gap closed by the OSR relaxation with respect to the initial integrality gap, and the
corresponding running times (obtained by solving the orbital shrinking relaxation with a black box MIP solver, without the
machinery developed in this section). According to the table, orbital shrinking yields amuch tighter relaxation than standard
linear programming, while still being very cheap to compute.

7. Conclusions

We discussed a new methodology for deriving a relaxation of symmetric discrete optimization problems, based on
variable aggregation within orbits.

The approach, called orbital shrinking, sometimes leads to an exact and symmetry-free reformulation of a given problem.
In other cases, orbital shrinking produces just a relaxation of the original problem, so it needs to be embedded in a more
general solution scheme. We have described a master–slave framework akin to Benders’ decomposition, where orbital
shrinking acts as the master problem and generates a sequence of aggregated solutions to be checked for feasibility by a
suitable slave subproblem— possibly based on Constraint Programming. Computational results on two specific applications
prove the effectiveness of the scheme.

Future work should be devoted to the study of sufficient conditions under which orbital shrinking produces an exact
reformulation. Practical applications of orbital shrinking decomposition to other symmetric problems are also worth
investigating.

Acknowledgments

The first and third authors were supported by the University of Padova (Progetto di Ateneo ‘‘Exploiting randomness in
Mixed Integer Linear Programming’’), and by MiUR, Italy (PRIN project ‘‘Mixed-Integer Nonlinear Optimization: Approaches
and Applications’’). The second author was partially supported by grants Digiteo Chair 2009-14D ‘‘ RMNCCO’’ and Digiteo
2009-55D ‘‘ ARM’’.

References

[1] P. Belotti, J. Lee, L. Liberti, F. Margot, A. Wächter, Branching and bounds tightening techniques for non-convex MINLP, Optim. Methods Softw. 24 (4)
(2009) 597–634.

[2] R. Bödi, K. Herr, M. Joswig, Algorithms for highly symmetric linear and integer programs, Math. Program. 137 (2013) 65–90.
[3] D. Cohen, P. Jeavons, C. Jefferson, K. Petrie, B. Smith, Symmetry definitions for constraint satisfaction problems, in: P. van Beek (Ed.), Constraint

Programming, in: LNCS, vol. 3709, Springer, 2005, pp. 17–31.
[4] M.-C. Côté, B. Gendron, C.-G. Quimper, L.-M. Rousseau, Formal languages for integer programming modeling of shift scheduling problems, Constraints

16 (1) (2011) 54–76.
[5] M.-C. Côté, B. Gendron, L.-M. Rousseau, Grammar-based integer programming models for multiactivity shift scheduling, Manage. Sci. 57 (1) (2011)

151–163.
[6] CPLEX, CPLEX 12.4 User’s Manual, IBM ILOG, 2012.
[7] M. Fischetti, L. Liberti, Orbital shrinking, in: Proceedings of ISCO, 2012, pp. 48–58.

http://refhub.elsevier.com/S0166-218X(17)30048-3/sb1
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb1
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb1
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb2
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb3
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb3
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb3
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb4
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb4
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb4
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb5
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb5
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb5
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb6
Toby Walsh

Toby Walsh
 The last author has received funding from the European Research Council (ERC) under the EU Horizon
�

Toby Walsh
 2020 research and innovation programme under AMPLIFY 670077.

M. Fischetti et al. / Discrete Applied Mathematics 222 (2017) 109–123 123

[8] K. Gatermann, P. Parrilo, Symmetry groups, semidefinite programs and sums of squares, J. Pure Appl. Algebra 192 (2004) 95–128.
[9] Gecode Team, Gecode: Generic constraint development environment, 2012. Available at http://www.gecode.org.

[10] I. Gent, B. Smith, Symmetry breaking in constraint programming, in: W. Horn (Ed.), Proceedings of the 14th European Conference on Artificial
Intelligence, in: ECAI, vol. 14, IOS Press, Amsterdam, 2000, pp. 599–603.

[11] I.P. Gent, K.E. Petrie, J.-F. Puget, Symmetry in constraint programming, in: F. Rossi, P. van Beek, T. Walsh (Eds.), Handbook of Constraint Programming,
Elsevier, 2006, pp. 329–376.

[12] I.P. Gent, T. Walsh, From approximate to optimal solutions: Constructing pruning and propagation rules, in: IJCAI, Morgan Kaufmann, 1997,
pp. 1396–1401.

[13] P.C. Gilmore, R.E. Gomory, A linear programming approach to the cutting-stock problem, Oper. Res. 9 (1961) 849–859.
[14] K. Herr, T. Rehn, A. Schürmann, Exploiting symmetry in integer convex optimization using core points, Oper. Res. Lett. 41 (2013) 298–304.
[15] J.N. Hooker, G. Ottosson, Logic-based benders decomposition, Math. Program. 96 (1) (2003) 33–60.
[16] J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages and Computation, Addison Wesley, 1979.
[17] H. Katebi, K.A. Sakallah, I.L. Markov, Symmetry and satisfiability: An update, in: Theory and Applications of Satisfiability Testing - SAT 2010, 13th

International Conference, SAT 2010, Edinburgh, UK, July 11–14, 2010. Proceedings, vol. 6175, 2010, pp. 113–127.
[18] T. Koch, T. Achterberg, E. Andersen, O. Bastert, T. Berthold, R. Bixby, E. Danna, G. Gamrath, A. Gleixner, S. Heinz, A. Lodi, H. Mittelmann, T. Ralphs, D.

Salvagnin, D. Steffy, K. Wolter, Miplib 2010, Math. Program. Comput. 3 (2) (2011) 103–163.
[19] L. Liberti, Automatic generation of symmetry-breaking constraints, in: B. Yang, D.-Z. Du, C. Wang (Eds.), Combinatorial Optimization, Constraints and

Applications, COCOA08, in: LNCS, vol. 5165, Springer, Berlin, 2008, pp. 328–338.
[20] L. Liberti, Reformulations in mathematical programming: Automatic symmetry detection and exploitation, Math. Program. A 131 (2012) 273–304.
[21] L. Liberti, J. Ostrowski, Stabilizer-based symmetry breaking constraints for mathematical programs, J. Global Optim. 60 (2) (2014) 183–194.
[22] J. Linderoth, F. Margot, G. Thain, Improving bounds on the football pool problem by integer programming and high-throughput computing, INFORMS

J. Comput. 21 (3) (2009) 445–457.
[23] F. Margot, Pruning by isomorphism in branch-and-cut, Math. Program. 94 (2002) 71–90.
[24] F. Margot, Exploiting orbits in symmetric ILP, Math. Program. B 98 (2003) 3–21.
[25] F.Margot, Symmetry in integer linear programming, in: M. Jünger, T. Liebling, D. Naddef, G. Nemhauser,W. Pulleyblank, G. Reinelt, G. Rinaldi, L.Wolsey

(Eds.), 50 Years of Integer Programming 1958-2008, Springer Berlin Heidelberg, 2010, pp. 647–686.
[26] S. Martello, P. Toth, Knapsack Problems: Algorithms and Computer Implementations, Wiley, 1990.
[27] B. McKay, nauty User’s Guide (Version 2.4), Computer Science Dept., Australian National University, 2007.
[28] B.D. McKay, Practical graph isomorphism, 1981.
[29] H.D. Mittelmann, D. Salvagnin, On solving a hard quadratic 3-dimensional assignment problem, Math. Program. Comput. 7 (2015) 219–234.
[30] J. Ostrowski, J. Linderoth, F. Rossi, S. Smriglio, Constraint orbital branching, in: A. Lodi, A. Panconesi, G. Rinaldi (Eds.), IPCO, in: LNCS, vol. 5035, Springer,

2008, pp. 225–239.
[31] J. Ostrowski, J. Linderoth, F. Rossi, S. Smriglio, Orbital branching, Math. Program. 126 (2011) 147–178.
[32] J. Ostrowski, J. Linderoth, F. Rossi, S. Smriglio, Solving large Steiner triple covering problems, Oper. Res. Lett. 39 (2) (2011) 127–131.
[33] G. Pesant, A regular language membership constraint for finite sequences of variables, in: Principles and Practice of Constraint Programming - CP

2004, 10th International Conference, CP 2004, Toronto, Canada, September 27 - October 1, 2004, Proceedings, in: Lecture Notes in Computer Science,
vol. 3258, Springer, 2004, pp. 482–495.

[34] G. Pesant, C.-G. Quimper, L.-M. Rousseau, M. Sellmann, The polytope of context-free grammar constraints, Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems (2009) 223–232.

[35] D. Pisinger, An exact algorithm for large multiple knapsack problems, European J. Oper. Res. 114 (3) (1999) 528–541.
[36] D. Pisinger, Where are the hard knapsack problems? Comput. Oper. Res. 32 (2005) 2271–2284.
[37] J.-F. Puget, Automatic detection of variable and value symmetries, in: P. van Beek (Ed.), Constraint Programming, in: LNCS, vol. 3709, Springer, New

York, 2005, pp. 475–489.
[38] C.-G. Quimper, L.-M. Rousseau, A large neighbourhood search approach to themulti-activity shift scheduling problem, J. Heuristics 16 (2010) 373–392.
[39] C.-G. Quimper, T. Walsh, Decomposing global grammar constraints, in: 13th International Conference on Principles and Practices of Const Raint

Programming (CP-2007), Springer-Verlag, 2007, pp. 590–604.
[40] F. Rossi, P. van Beek, T. Walsh (Eds.), The Handbook of Constraint Programming, Elsevier, 2006.
[41] J.J. Rotman, Advanced Modern Algebra, Prentice Hall, 2002.
[42] D. Salvagnin, Orbital shrinking: A new tool for hybrid MIP/CP methods, in: CPAIOR, 2013, pp. 204–215.
[43] D. Salvagnin, T. Walsh, A hybrid MIP/CP approach for multi-activity shift scheduling, in: CP, 2012, pp. 633–646.
[44] A. Scholl, R. Klein, C. Jürgens, Bison: A fast hybrid procedure for exactly solving the one-dimensional bin packing problem, Comput. Oper. Res. 24 (7)

(1997) 627–645.
[45] P. Shaw, A constraint for bin packing, in: M. Wallace (Ed.), CP, in: Lecture Notes in Computer Science, vol. 3258, Springer, ISBN: 3-540-23241-9, 2004,

pp. 648–662.
[46] B. Smith, Symmetry breaking constraints in constraint programming, in: V. Kaibel, L. Liberti, A. Schürmann, R. Sotirov (Eds.), Exploiting Symmetry in

Optimization, in: Oberwolfach Reports, vol. 7, European Mathematical Society, Zürich, 2010, p. 2258.
[47] B. Sturmfels, Algorithms in Invariant Theory, 2nd ed., Springer, Wien, 2008.

http://refhub.elsevier.com/S0166-218X(17)30048-3/sb7
http://www.gecode.org
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb8
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb8
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb8
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb9
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb9
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb9
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb10
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb10
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb10
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb11
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb12
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb13
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb14
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb15
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb15
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb15
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb16
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb16
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb16
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb17
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb17
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb17
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb18
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb19
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb20
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb20
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb20
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb21
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb22
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb23
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb23
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb23
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb24
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb25
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb26
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb27
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb28
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb28
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb28
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb29
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb30
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb31
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb31
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb31
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb31
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb31
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb32
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb32
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb32
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb33
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb34
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb35
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb35
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb35
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb36
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb37
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb37
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb37
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb38
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb39
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb40
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb41
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb42
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb42
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb42
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb43
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb43
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb43
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb44
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb44
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb44
http://refhub.elsevier.com/S0166-218X(17)30048-3/sb45

	Orbital shrinking: Theory and applications
	Introduction
	Some notation and terminology

	Orbital shrinking relaxation
	Remarks

	The role of the barycenter
	Orbital shrinking decomposition
	The slave feasibility problem
	Symmetry of the slave problem
	Dealing with continuous variables

	Application to shift scheduling
	MIP model
	CP checker
	Computational results

	Application to the multiple knapsack problem
	Computational experiments

	Conclusions
	Acknowledgments
	References

