Towards CSP Model Reformulation
at Multiple Levels of Abstraction

Alan M. Frisch!, Brahim Hnich2, Ian Miguel®,
Barbara M. Smith®, and Toby Walsh*

! Dept. Computer Science, University of York, UK
? Dept. Information Science, Uppsala University, Sweden
3 School of Computing and Engineering, University of Huddersfield, UK
* Cork Constraint Computation Centre, University College Cork, Ireland

Abstract. Experts at modelling constraint satisfaction problems (CSPs)
carefully choose model reformulations to reduce greatly the amount of
effort that is required to solve a problem by systematic search. It is a
considerable challenge to automate such reformulations. A problem may
be viewed and reformulated at various levels of abstraction. Equivalent
reformulations may be simple at one such level, yet very difficult at
another. Therefore we argue that it is essential for a system for the auto-
matic reformulation of CSPs to reason at multiple levels of abstraction.
Reformulations can then be made at the level of abstraction at which they
are most straightforward. We describe how the CGRASS system, which
currently reformulates individual CSP instances, could be augmented to
reformulate models at various levels of abstraction and to refine models
from one level to a less abstract level. The SONET problem, a realistic
combinatorial optimisation problem, is used to illustrate our approach.

1 Introduction

Constraint satisfaction is a successful technology for tackling a wide variety of
search problems including resource allocation, transportation and scheduling.
Constructing an effective model of a constraint satisfaction problem (CSP) is,
however, a challenging task as new users typically lack specialised expertise. One
difficulty is in identifying reformulations, which are sometimes complex, that can
dramatically reduce the effort needed to solve the problem by systematic search
(see, for example, [13]). Such reformulations include adding constraints that are
implied by other constraints in the problem, adding constraints that eliminate
symmetrical solutions to the problem, removing redundant constraints (where
redundant constraints are those which result in no extra pruning, but just add
overhead) and replacing constraints with their logical equivalents. Unfortunately,
outside a highly focused domain like planning (see, for example, [2]), there has
been little research on how to perform such reformulations automatically.

If we assume that our aim is to improve automatically an initial model pro-
posed by the user, it is natural to consider the reformulation of one CSP instance
(the user’s model) into another. We have investigated this approach [6], and in so

4+ Higher levels
Jrefine Tabstract

3 Sets/Multisets/Relations/Functions
Jrefine Tabstract

2 A CSP Class
Jrefine Tabstract
1 A CSP instance

Fig. 1. Levels of Abstraction of a Problem Involving Constraints

doing have discovered the drawback that some reformulations are very difficult
to make automatically to individual instances, involving complex manipulations
or long sequences of primitive steps. We will show that this drawback can be
overcome by reasoning at higher levels of abstraction, in addition to the instance
level. We will also gain the additional benefit of being able to reason about an
entire class of problems. Hence, any inferences made will hold for all instances of
that class, where previously a large proportion of inferences were unnecessarily
repeated between instances.

2 Reasoning at Higher Levels of Abstraction

A CSP instance is defined in terms of a finite set of variables, each with a finite
domain of possible values, and a finite set of constraints specifying the allowed
combinations of assignments of values to variables [10]. These problems naturally
occur at higher levels of abstraction. Figure 1 presents a number of levels of
abstraction at which we might consider an input problem involving constraints.
All levels above level 1 can represent a parameterised class of problems. All
reformulations made at these levels of abstraction therefore hold for all instances
of the class. The horizontal line separates the levels of abstraction at which
problems are and are not represented solely in terms of CSP variables. Clearly,
however, some set-based models at level 3 should be fairly directly translatable
using set variables. We will use refinement operations to reformulate all or part
of a model from a higher to a lower level of abstraction. It is possible to perform
abstraction to make the opposite reformulation, but we do not discuss this
operation here. We suggest that the natural language description of a problem
from which human modelling often begins is at the top of this hierarchy.

As a short example, consider the well known Golomb ruler problem (006 at
www.csplib.org). We first discuss some of the possible refinements that can be
made. Model G is at the natural language level of description. It is a compact
model useful for communication between humans.

Model Gy (level T):
- Given n. Put n ticks at integer points on a ruler of size m such that all the
inter-tick distances are unique.
- Minimise m.

Model G4 is formalised with mathematical objects, such as sets and func-
tions. Notice the close correspondence between the natural language description
and the objects in this model.

Model G4 (level 3):

- Given n, Find T C {0,....,m},|T|=n

- Minimise m

- distance({z,y}) = |z — y|

- Va,y.a',y €T : {z,y} # {=',y'} > distance({z,y}) # distance({','})
The last component is a set of constraints.

Further down the abstraction hierarchy we create model Gp based on quan-
tified constraints. At this point we use CSP variables, enabling the production
of a CSP instance once parameters are instantiated and instance data is given.
Model Gg (level 2):

- Given n variables, {x1, T2, ..., 5 }, each with domain {0, ...,n?}
- All-different({z1, ..., 2n})
- Minimise(maz;(x;))
Lastly, model G¢ is a 3-tick instance of the Golomb ruler.
Model G¢ (level 1):
- Variables: z1, 5,3 € {0,...,9}
- All-different({z1, ..., 2n })
- Minimise(maz;(z;))
- |o1 — 22| # |21 — @3]
- |@1 — 22| # |z2 — @3]
- |z1 — @3] # |w2 — @3]

One could formalise rules to refine G4 to Gp to G¢o. We now consider the
reformulations possible at each level to produce more effective models. Successful
reformulation of a naive model of the Golomb ruler has already been performed
by hand [13]. At some levels of abstraction these reformulations are very difficult,
at others very straightforward. Useful Golomb Ruler reformulations include:

— Symmetry breaking. In naive models, such as Gp and G¢, the tick variables,
Z1,%2,...,T, are symmetrical: in any (non-)solution we can permute their
assignments to obtain another (non-)solution. This symmetry is broken by
introducing inequalities between ticks: ;7 < 2 < ... < x,, which can be
reformulated to strong inequalities since the xz; are all-different. Note that,
in models Gy and G4, this flaw does not exist: we speak only of a set
of ticks. Symmetry is introduced only when we decide to represent the set
of n ticks by a set of n indexed CSP variables. As we shall see, through
careful construction of refinement operations we can systematically break
this symmetry as it is introduced in the refinement from G4 to Gp. In
model G¢, detecting this symmetry is possible by comparing normalised
models before and after two variables are exchanged. The cost of this process
increases with n, however. In model Gp this symmetry is difficult to detect.

— Variable introduction/substitution. Quaternary constraints such as those in
models Gp and G¢ are slow to propagate because of their arity. The in-
troduction of distance variables, e.g. di2 = x2 — x1, reduces the arity of

the inter-tick distance constraints to two, e.g. dia # di3. It also allows the
introduction of an all-different constraint amongst the distance variables,
promoting strong propagation. This reformulation is natural in G4,Gp,G¢,
because of the recurrence of |z; — ;| and distance({z,y}) in the set of dis-
tance constraints. In model G, however, the number of variable introduc-
tion/substitution operations grows rapidly with n [6].

— Implied constraint. The assignment of each tick variable is equivalent to a
summation of distance variables, e.g. 3 = dy2 + dz23. Since all distance vari-
ables are different, this gives stronger propagation than bounds consistency
alone. This reformulation relies on the ordering of the tick variables intro-
duced by symmetry breaking, and is therefore best suited to the quantified
constraint or instance or level, i.e. models Gg and G¢.

From this short example, it should be clear that no one level of abstraction
is the best. Indeed, it may seem that the instance level is no use at all. However,
some problems will have instance level features (such as input data) that will
mean some reformulations are only possible at this level.

3 Automation

We intend to automate reformulations of the type described in the previous
section by extending the prototype CGRASS system [6] and combining it with
the system for model refinement developed by Hnich [9].

3.1 CGRASS

CaRraAss is based on, and extends, Bundy’s proof planning technology [1]. Proof
planning is a technique used to guide the search for proof in automated theorem
proving. Common patterns in proofs are identified and encapsulated in methods.
A proof planner takes a goal to prove, and selects from a database of methods
one which matches this goal. The proof planner checks that the pre-conditions
of the method hold. If so, it executes the post-conditions. This constructs the
output goal or goals. This system can readily be adapted to the reformulation of
CSPs. Methods in CGRASS capture patterns in hand-reformulation rather than
constructing sub-goals to prove. Hence, CGRASS is forward chaining, reformu-
lating a problem from one model into another.

Proof planning offers several potential advantages over other theorem prov-
ing techniques for the task of reformulating CSPs automatically. First, strong
method preconditions limit transformations to those that are likely to produce
a simplified problem. Second, methods act at a high level, performing complex
transformations that might require complex proofs to justify at the individual
inference rule level. Finally, search control is cleanly separated from the inference
steps. We can therefore try out a variety of search strategies.

Currently, CGRASS operates at only the CSP instance level. The set of meth-
ods we have developed thus far at this level is not complete in any sense, but
the following are three of the most important types:

Symmetry Often the most useful constraints can only be derived when some or
all symmetry has been broken. Hence, CGRASS attempts to detect symmetry
as a first step. Symmetrical variables have identical domains and are such
that, if all occurrences of the pair in the constraint set are exchanged and
the constraint set is re-normalised it returns to its original state. A similar
process is used to check for symmetrical sub-terms. Symmetry is broken by
partitioning the variables (sub-terms) into equivalence classes. The elements
of each class are formed into a list and ordered lexicographically. We then
add weak inequality constraints between adjacent variables (sub-terms) in
each list, e.g. 1 < x93 < z3,....

Introduce This method binds a new variable to a non-atomic term that recurs
in the constraint set. Variable introduction is a powerful tool which, in combi-
nation with eliminate (below), can tighten the constraint graph and reduce
constraint arity. Tightening the constraint graph means that propagation on
the introduced variable’s domain has a wider reaching effect. Reducing a
constraint’s arity means that fewer variables need to be instantiated before
it can be used to prune the search space.

Eliminate This method performs Gaussian-like variable elimination. The pre-
conditions identify variables or terms which can be eliminated from a more
complex constraint, insisting that the resulting constraint has a smaller size
(in terms of number of constituent terms) than the original.

CGRASS has automatically reformulated naive models of small instances of
the Golomb ruler [6]. However, the naive model produces such a large volume
of input as larger instances are considered that CGRASS is overwhelmed. This
highlights the need for reasoning about a class of problems, if possible beginning
from a high-level description.

3.2 Automated Refinement

Hnich [9] presents an extended constraint language to support function and
relation variables, i.e. reasoning at level 3 of the hierarchy given in Figure 1. An
n-ary relation variable takes a value from the set of all possible n-ary relations
with arguments from given finite sets, S1, S2, ..., S. For instance, the domain of
relation variable R : S; X Ss is the power set of S; x Ss.

A function variable takes a value from the set of all possible functions from
a given finite source set into a given finite target set. For instance, the domain
of total function variable F': S — T, when S = {1,2} and T = {1, 2} is:

H(1,1), 2, 1D},{(1,2),(2,2)},{(1,2), (2, 1)}, {(1,1),(2,2)}}

Function variables may be total or partial, injective, bijective or surjective.

Refinement operations, as used in the previous section, allow the reformula-
tion of function and relation variables into CSP variables and constraints. There
are many ways, for example, to refine a function variable. Given a total function
variable F' : S — T, three immediate possibilities are:

1. A one-dimensional matrix of variables, TtoS,,, indexed by S. Each TtoSy,[s]
has T as its domain, where s € S.

2. A two-dimensional 0/1 matrix, F),, indexed by S x T. F,,[s,t]=1 indicates
that F(s) = t, where s € S,t € T. To preserve the functional property we
impose the constraint:

Vse S: ZFm[s,t] <1
teT

3. A one-dimensional matrix of set variables, StoT,,,, indexed by T. For each
teT, StoTpst] is {s € S|F(s) = t}.

Similarly, three possibilities for the refinement of relation variable R : A x B are:

1. A one-dimensional matrix of set variables, BtoA,,s; indexed by A. For each
a € A, BtoAnsfa]is {b € B|R(a,b)}.

2. A two-dimensional 0/1 matrix, R,,, indexed by A x B, where R[a,b]=1
indicates R(a,b), when a € A,b € B.

3. A one-dimensional matrix of set variables, AtoB,, indexed by B. For each
b€ B, AtoB,,s[b] is {a € A|R(a,b)}.

3.3 Automatic Reformulation at Multiple Levels of Abstraction

Automated reformulation via CGRASS requires the present system to be aug-
mented in two ways. First, it must be able to represent and reason with higher
level constructs such as sets and functions. This is in addition to its current
ability to reason at the CSP instance level, allowing reformulation to take place
at the level at which it is most straightforward.

Second, refinement operations, such as those proposed by Hnich [9] and illus-
trated in section 2, must be incorporated into CGRASS. Preconditions of a class
of specialised refinement methods would consider the current problem state: if
no useful reformulations can be made at the current level of abstraction, some or
all of the problem should be refined to the level below. The refinement methods
would be crafted to avoid common modelling pitfalls, such as the introduction
of symmetry (see section 5), as we move to a more concrete level of abstraction.

Some of the reformulation operations will introduce branch points. For in-
stance, in the previous section we described three possible refinements of a func-
tion variable. The augmented system will therefore produce multiple models by
following each alternative branch. Currently, we aim to make the system as com-
prehensive as possible, i.e. that a subset of the reformulated models are those
that would be produced by an expert modeller by hand. In future we will intro-
duce mechanisms to be more selective about the models produced.

4 The SONET Problem

To illustrate our approach, we consider the SONET fibre-optic communications
problem [11]. Model Sy comprises the natural language description:

Fig. 2. Demand pairs in an example instance of the SONET problem

— In a communications network, there are client nodes and known levels of
demand between pairs of nodes. However, traffic can only be routed between
pairs of distinct nodes if they are installed on the same SONET ring. A node
is installed on a SONET ring via a dedicated add-drop multiplexer (ADM).
Each node may be installed on multiple rings and demand between a pair
of nodes may be split over several rings. The maximum number of rings
available is known. Each ring has a capacity in terms of the volume of traffic
and the number of nodes that can be installed on it. The objective is to
minimise the number of ADMs used.

Consider an instance of the SONET problem with 5 nodes and 3 rings, where
each ring is able to accommodate 4 nodes and 6 units of traffic. The demands
between nodes are presented in Figure 2. An optimal solution using only 6 ADMs
(in this solution only two of the three rings are used) is presented in Figure 3.
This instance will be used to illustrate the reformulated models throughout.

1

N, 3

4 5

Fig. 3. An optimal solution to the example instance of the SONET problem

5 Reformulating the Simplified SONET Problem

For clarity, this paper focuses on a simplified version of the SONET problem, ig-
noring actual demand levels, following [12]. The full problem is handled similarly,
but all major points are covered by reformulating the simplified problem.

5.1 Sa: A Model Based on Sets, Relations and Functions
Directly from the natural language description, the following sets can be defined:

— R of rings.
— N of nodes.
— D of unordered node pairs, {n,n'} where n,n' € N, that must communicate.

We represent the assignment of nodes to rings as a relation, since a node can be
installed on multiple rings.

— rings-nodes : R X N

Given D and ¢ > 2, the uniform node capacity per ring, the problem constraints
can be expressed:

Minimise(|rings-nodes|) (1)
Vr € R : |rings-nodes(r,)| < c (2)
V{n,n'} € D : rings-nodes(_, n) N rings-nodes(-, n') # (3)

where rings-nodes(_, n) is the projection of the rings-nodes relation onto n € N,
that is {r € R|rings-nodes(r,n)}. The reformulation to produce Sy is little work
for a user, but provides a foundation for further useful reformulation.

Implied Constraints Several implied constraints can be derived straightfor-
wardly from S4. The SONET problem broadly conforms to the pattern of a
bin-packing problem. Hence, we focus on the capacity of the rings (bins) and
the number of ADMs required per node (items). It would be useful if an auto-
mated system were able to detect such common patterns to guide reformulation.

We begin with a lower bound on the number of ADMs required for each node.

i) From (3), the (separate) projection of rings-nodes onto certain pairs of ele-
ments, n,n’ € N, must result in subsets of R with a non-empty intersection.
That is, rings-nodes relates {n,n'} € D to at least one common ring.

ii) The number of occurrences of n in a pair {n,n'} € D, |{n' € N|{n,n'} € D}|,
is the cardinality of the partner set of n, each element of which must be
related to at least one common ring with n by rings-nodes.

iii) (2) is a capacity constraint. It specifies that the maximum number of nodes
that can be related with a given ring, r, by rings-nodes is at most c.

iv) Since n must be related to at least one common ring with each element of
its partner set, this reduces the effective capacity of each ring to ¢ — 1.

v) Simple division now provides a lower bound on the number of ADMs per
node n, equivalently the number of rings on which n is installed:

|{n' € N|{n,n'} € D}|
c—1

VneN : [-‘ < |rings-nodes(-,n)| (4)

The total number of ADMs is the cardinality of rings-nodes, which is to be
minimised from (1). Hence, it is natural to try and establish a lower bound.

i) From above we have a minimum number of ADMs required per node.
ii) From (4), the minimum for each node n depends only on the composition of
D, which is static. Hence the lower bound is a simple summation:

Z P{n’ € N|{n,n'} € D}|"

c—1

< Z |rings-nodes(_,n)| (5)

neN neN

We use (5) to establish a lower bound on the number of ‘open’ rings, i.e.
those rings with at least one node installed.

i) From above we have a minimum total number of ADMs.

ii) Each ADM is installed on a ring via rings-nodes.

iii) (2) gives the capacity, ¢, of each ring.
)

iv) Simple division gives the bound:

S nen [I{n’eNl{n,"'}ED}l-‘

c—1

- < |{r € R|rings-nodes(r,_) # 0} (6)

Finally, we restrict the assignment of nodes onto rings.

i) To satisfy (3), the intersection of the projection of rings-nodes onto each of
a pair of nodes, {n,n'} € D, must be non-empty.

ii) Consider a tuple, (r € R,n € N), of rings-nodes. If rings-nodes does not
also relate some n' € N with 7, where {n,n'} € D, then this tuple does not
satisfy any instance of (3).

iii) From (1) we are minimising the size of rings-nodes. Hence:

VneN, reRirings-nodes(r, n)—fn'€eN{n,n'} € D Arings-nodes(r,n") }} >0(7)

In the following subsections, we refine S4 to five different CSP models.

5.2 Sp: A Matrix Model

The rings-nodes relation can be refined into a two dimensional matrix of 0/1 vari-
ables, rings-nodes,,, where rings-nodesy,[r,n] denotes the element at the inter-
section of the rth column and nth row. To perform this refinement, all references
to rings-nodes must be replaced with rings-nodes,,. Node capacity constraints
are on the cardinality of subsets of IV and the objective minimises the cardinality
of rings-nodes. Each column r of rings-nodes,, corresponds to the characteris-
tic function for the set of nodes installed on ring r (i.e. rings-nodes(r, _)), and
similarly for each row n, so reformulating (1) and (2) is straightforward:

Minimise(z Z rings-nodesy,[r,n]) (8)
rERnEN
VreR: Z rings-nodesy[r,n] < ¢ 9)

neN

10

The demand constraints require the intersection of subsets of N to be non-
empty. When using characteristic functions, (3) is easily represented via scalar
products, which are the cardinality of the intersection:

V{n,n'} € D : scalar-product(rings-nodesy,[-, n], rings-nodesy,[-,n']) # 0 (10)

where rings-nodes,,[_,n] denotes the nth row of the rings-nodes,, matrix. Sg
is a basic version of that used in [11]. Indeed, matrix models in general are a
common pattern in constraint programming [3].

In our example instance, rings-nodes,, is instantiated to a 3 x 5 matrix of
0/1 variables. The total number of ‘1’ entries is minimised and the rows have a
maximum sum of 4 (node capacity). Scalar product constraints ensure that all
node (row) pairs that must communicate have at least one ‘1’ entry in common.

As noted above, each row (column) of rings-nodes,, is equivalent to the char-
acteristic function for the projection of rings-nodes onto an element of N (R).
A bound on the cardinality of such a projection is easily enforced using a sum-
mation on a row or column. Hence (4) and (5) and (7) are refined to:

{n' € N|{n,n'} € D}|-‘
c—1

Z P{n’ € N|{n,n'} € D}|"

c—1

< Z rings-nodesy,[r,n] (11)

VnEN:[
r€R

< Z Z rings-nodesy,[r,n] (12)

neN neENreR

Vn € N,r € R: rings-nodesy[r,n] = 1— Z rings-nodesy[r,n'] > 0 (13)
n’€N|{n,n'}eD

Constraint (6) is on the cardinality of a subset of R. For each r € R, membership
of this subset is predicated on a non-empty projection of rings-nodes onto r.
This translates to a non-zero sum of a column of rings-nodes,,. Hence, we must
constrain the number of columns of rings-nodes,, that meet this criterion. One
way to specify (6) is then to introduce a set variable, open-ringss, as follows:

VreR: Z rings-nodesy,[r,n] # 0 <> T € open-rings; (14)
neN
'eN|{n,n'}eD
e [I{n € I;{:lln e }I-‘ .
. < |open-ringss| (15)

Alternatively, a one-dimensional matrix, open-rings,, (essentially the character-
istic function for the set variable) indexed by R, could be used:

VreR: Z rings-nodesy,[r,n] # 0 < open-rings,[r] =1 (16)
neN
S nen \{"'ENl{falnl}ED}\
- [- ‘ -I < Z open-ringsm[r] (17)

TER

11

Breaking Symmetry A potential pitfall of refinement to a matrix model is
symmetry on the rows and/or columns of the matrix. If the elements of R (N)
are indistinguishable, the columns (rows) of any (non-)solution may be permuted
to generate another (non-)solution. To determine whether elements of R and N
are indistinguishable, we examine S 4 prior to refinement. The elements of R are
not distinguished by any of the constraints or relations. However, the elements
of N could be distinguished by D, which is instance-specific.

If we can identify similar cases where the target objects of refinements may
contain symmetry, we can build the means to detect and break the symmetry
into the refinement methods. This avoids the (potentially expensive) problem
of symmetry detection at a lower level following refinement. Several alternative
symmetry breaking methods exist, providing further branching points in the
space of reformulations. When symmetry depends on instance-specific informa-
tion, preconditions must be placed on the methods used to break symmetry. As
a higher level model is refined into a CSP instance, the preconditions are tested
and symmetry is broken among the objects that are symmetrical in this instance.

For example, the symmetry among the rings can be eliminated using Sym-
metry Breaking During Search (SBDS) [8]. SBDS takes in a description of the
action of each symmetry on decisions made during search (i.e. to assign or not
to assign a value to a variable). Once a decision has been explored, if the search
backtracks to explore its alternative, SBDS ensures that further decisions sym-
metric to those already explored will not be explored in future. In our example,
we must describe the effect on the assignment of a value to a variable of a trans-
position of a pair of rings. To automate this process, our refinement methods
must generate the descriptions of each symmetry (e.g. interchangeable columns).

Alternatively [4], a lot of row/column matrix symmetry can be broken effec-
tively using lexicographic ordering constraints. We treat a whole row (column)
as a binary number and ensure that indistinguishable rows (columns) are or-
dered. With respect to our example, we impose the constraint that all columns
are lexicographically ordered as follows, since the rings are indistinguishable:

Vr < 7' € R : rings-nodesy[r,] >1oy Tings-nodesy[r',] (18)

where rings-nodesy,[r,] is the rth column of rings-nodesy,, r < r' denotes that r
is less than and adjacent to r' in a fixed arbitrary total ordering of R, and >},
denotes lexicographically greater than or equal to, enforceable by the algorithm
of [5]. The refinement of (6) can now be simplified. Given the decreasing order
imposed in (18) and a lower bound of «, by the transitivity of >, it is sufficient
to insist that the first a columns of rings-nodes,, have non-zero sums.

When using lexicographic ordering constraints it is important to choose vari-
able and value ordering heuristics which complement rather than compete with
the constraints. It is also important, when lexicographically ordering both rows
and columns of a matrix, to ensure that the orderings do not conflict [4].

Generally, disjoint subsets of a set of objects may be symmetrical (partial
symmetry). If so, we create equivalence classes of indistinguishable objects and
break the symmetry among their elements. We might use SBDS, or order each

12

class arbitrarily and lexicographically order adjacent elements. In our example,
{n1,n2} is an equivalence class, since D does not distinguish the two nodes.
Hence, symmetry can be broken between the corresponding rows of rings-nodes, .

A similar type of constraint, in that it restricts the set of solutions to those
of a certain form, may also be added. If a solution exists, then there is a solution
in which the contents of pairs of rings, the combined sum of whose installed
nodes is less than ¢, are merged. Generally, rings can be merged in several ways.
However, the following is simple and restricts search:

V{r,r"} CR: Z rings-nodesy,[r,n] > 0 A Z rings-nodesy,[r',n] > 0 —
neN neN
Z rings-nodesy,[r,n] + rings-nodesy[r',n] > ¢ (19)
neN

5.3 Sc: A Matrix and Set Variable (Rings) Model

We can also refine S4 using set variables to represent the rings-nodes relation.
This uses either a one-dimensional matrix of set variables nodesOnRing,,s in-
dexed by R, or ringsWithNode,,s indexed by N. The matrix nodesOnRingms|r]
contains the set of nodes installed on r and rings WithNode,,s[n] contains the
set of rings on which n is installed. This section discusses the model based on
nodesOnRing,s and the next discusses the model based on rings WithNode,, ;.

The objective and node capacity constraints on each ring are easily stated:

Minimise(z |nodesOnRingms[r]|) (20)
TER
Vr € R : |nodesOnRingn,s[r]| < c (21)

The demand constraints are more difficult to specify, since each constrains the
set variable representing an unspecified ring to contain a particular pair of nodes.
Therefore, we state the demand constraints on rings-nodes,, (section 5.2). Chan-
nelling constraints keep the two representations consistent:

Vr € R: n € nodesOnRingms[r] <> rings-nodesy,[r,n] =1 (22)

Implied constraints (4-7) are also most easily stated on rings-nodes,,. Ring set
variables allow us to simplify the content merging constraint (19):

V{r,r'} C R : |nodesOnRingms[r]| > 0 A |nodesOnRingns[r']| > 0 —
|nodesOnRing,s[r]| + |nodesOnRingms[r']| > ¢ (23)

For our example, in addition to the 3 x 5 matrix, three set variables (one per
ring) are created. Each has a maximum of ¢ elements drawn from N.

13

5.4 Sp: A Matrix and Set Variable (Nodes) Model

The dual model to So comprises a one-dimensional matrix of set variables,
rings WithNode,, s, where rings WithNode,, s[n] contains the set of rings to which
n is assigned. The demand constraints are easily stated:

V{n,n'} € D : |rings WithNode,s[n] N rings WithNoden,s[n']| > 1 (24)

However, the node capacity constraints and objective are difficult to state. Once
again, it is easiest to use the rings-nodes,, matrix and channel:

Vn € N : r € ringsWithNode,,s[n] < rings-nodesy,[r,n] =1 (25)
Implied constraints (4) and (5) are easily stated on the node set variables:

[{n' € N|{n,n'} € D}|
c—1

Vn € N : [-‘ < |rings WithNode, s[n]| (26)

5 P{n’ € Nl{n,n'} € D}W < S |ringsWithNodey[n]] (27)

c—1
neN neN

Implied constraints (6) and (7) and the content merging constraint (19) are
easier to state on rings-nodesy, as per Sg.

With respect to our example, in addition to the 3 x 5 matrix, five set variables
(one per node) are created, each drawing its elements from R.

5.5 Sg: A Dual Set Variable Model

Sk comprises a dual model containing both node and ring set variables. The
problem constraints combine S¢ (20 and 21) and Sp (24). We must channel
between the two matrices of set variables to maintain consistency:

Vn € N,r € R:n € nodesOnRingns[r] <> r € ringsWithNodeys[n] (28)

Implied constraints (4) and (5) are stated as per Sp (26, 27). Implied constraint
(6) can be stated using open-rings; (15) or open-rings,, (17) as follows:

Vr € R : |nodesOnRingms[r]| # 0 <> r € open-rings, (29)
Vr € R : |nodesOnRing,,s[r]| # 0 <> open-rings,,[r] =1 (30)

However, if we break symmetry between the rings, it is sufficient to specify that
the first « ring set variables are non-empty, as per section 5.2. The content
merging constraint (19) is stated as per S¢ (23).

Without rings-nodesy,, it is more difficult to refine implied constraint (7):

Vn € N:n € nodesOnRingms[r] — In' € nodesOnRingms[r)A{n,n'}eD (31)

14

5.6 Sy: A Matrix and Dual Set Variable Model

Finally, S comprises a dual model containing rings-nodes,, and both node and
ring set variables. We must channel to maintain consistency:

Vn € N,r € R : rings-nodesy,[r,n] = 1 <> n € nodesOnRing,s[r] (32)
Vn € N,r € R:n € nodesOnRingy,s[r] <> r € ringsWithNode,,s[n] (33)

The problem constraints, implied constraints (4-6) and the content merging con-

straint (19) are stated as per Sg. Implied constraint (7) is easier to state on
rings-nodesy,, as per Sp (13). This model is close to that used in [12].

5.7 Simplified SONET: Summary of Reformulation

Table 1 summarises our models of the simplified SONET problem. Encourag-
ingly, two CSP class level models, Sp and SF, closely resemble models created
by experts in Operations Research [11] and Constraint Programming [12].

| Model | Level | Characteristics |
Sv | T Natural Language
Sa 3 Sets, Relations and Functions
SB 2 Matrix
Sc Matrix + Ring Set Variables
Sp Matrix 4+ Node Set Variables
Se Ring Set + Node Set Variables
Sr Matrix + Ring Set + Node Set Variables

Table 1. Reformulated Simplified SONET models.

6 Conclusion

We have considered the reformulation of constraint satisfaction problems. We
argued that, for effective reformulation, it is crucial to view a problem at multiple
levels of abstraction, some more abstract than a CSP. We identified refinement
as the process of progressively moving to more concrete levels of abstraction and
showed that mechanisms for dealing with some common modelling problems,
such as symmetry, can be embedded into refinement rules. Furthermore, we
examined the addition of implied constraints, and their reformulation among
alternative models, to reduce search. Proposed improvements to the CGRASS
system [6] should allow reformulations outlined here to be made automatically.

The SONET problem [11] was used to illustrate how such a system would
work. We produced multiple models of the simplified version of this problem by
hand, refining a natural language description into a high level model and working

15

through the alternative reformulations. The next step is to formalise fully the
reformulations we use and automate their selection and application. The models
produced should then be evaluated experimentally to determine which parts of
each are the most beneficial/detrimental to search. Through this process, and
similar analyses of other problems, we can start to establish patterns in both
good and bad models. This is an important step since a more complex input
problem might lead to many candidate models by this method, some of which
are far better than others. By developing means to evaluate models statically,
we can be more selective about the models produced during reformulation itself.

Acknowledgements This work is partially supported by grants 221-99-369 of VR, (Sweden)
and GR/N16129 of UK EPSRC. The last author is supported by Science Foundation Ireland. We

thank our anonymous referees.

References

1. A. Bundy. A Science of Reasoning. J-L. Lassez and G, Plotkin, editors, Computa-

tional Logic: Essays in Honor of Alan Robinson, pages 178-198, 1991.
2. M.D. Ernst, T.D. Millstein, and D.S. Weld. Automatic SAT-compilation of planning

problems. Proc. 15th International Joint Conference on Al pages 1169-1176, 1997.
3. P. Flener, A.M. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, T. Walsh. Matrix Mod-

elling: Exploiting Common Patterns in Constraint Programming Proc. International

Workshop on Reformulating Constraint Satisfaction Problems, 2002.
4. P. Flener, A. M. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, J. Pearson, and T. Walsh.

Breaking Row and Column Symmetries in Matrix Models. Proc. 8th International
Conference on Principles and Practice of Constraint Programming LNCS 2470,

2002.
5. A.M. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, T. Walsh. Global Constraints for

Lexicographic Orderings. Proc. 8th International Conference on Principles and

Practice of Constraint Programming LNCS 2470, 2002.

6. A.M. Frisch, I. Miguel, and T. Walsh. CGRrAss: A System for Transforming Con-
straint Satisfaction Problems. Proc. Joint Workshop of the ERCIM/CologNet area
on Constraint Solving and Constraint Logic Programming, pages 23—-26, 2002.

7. 1. P. Gent. Heuristic Solution of Open Bin Packing Problems. Journal of Heuristics,
3-4, pages 299-304, 1998.

8. I. P. Gent and B. M. Smith. Symmetry Breaking During Search in Constraint

Programming. Proc. European Conference on Al pages 599—603, 2000.
9. B. Hnich. Function Variables for Constraint Programming. PhD Thesis, University

of Uppsala (to appear) 2002.
10. A.K. Mackworth. Constraint Satisfaction Problems. FEncyclopedia of AI, pages

285-293, 1992.
11. H.D. Sherali and J.C. Smith. Improving Discrete Model Representations via Sym-

metry Considerations. Proc. International Symposium on Mathematical Program-

mang, 2000.
12. B. M. Smith Solve your Problem Faster by Changing the Model. Invited Talk at

ERCIM/CologNet Workshop on Constraint Solving and Constraint Logic Program-

ming, 2002.
13. B. M. Smith, K. Stergiou, and T. Walsh. Modelling the Golomb Ruler Problem.

Proc. IJCAI-99 Workshop on Non-Binary Constraints. International Joint Confer-
ence on AI, 1999.

