Transforming and Refining
Abstract Constraint Specifications

Alan M. Frisch!, Brahim Hnich?, Ian Miguel',
Barbara M. Smith?®, and Toby Walsh?

! Dept. of Computer Science, University of York, UK
2 Cork Constraint Computation Centre, University College Cork, Ireland
3 School of Computing and Engineering, University of Huddersfield, UK

Abstract. Experts at modelling constraint satisfaction problems care-
fully choose model transformations to reduce greatly the amount of effort
that is required to solve a problem by systematic search. It is a consid-
erable challenge to automate such transformations. A problem may be
viewed and transformed at various levels of abstraction. It is often easier
to transform an abstract specification rather than a concrete model. We
illustrate this point by means of the SONET problem, a realistic com-
binatorial optimisation problem, which is transformed and subsequently
refined into a number of constraint models.

1 Introduction

Constraint satisfaction is a successful technology for tackling a wide variety of
search problems including resource allocation, transportation and scheduling. To
use constraint technology to solve a problem, the solutions to a problem must
first be characterised, or modelled, by a set of constraints that they must satisfy.
Constructing an effective model of a constraint satisfaction problem (CSP) is,
however, a challenging task as new users typically lack specialised expertise. One
difficulty is in identifying transformations, which are sometimes complex, that
can dramatically reduce the effort needed to solve the problem by systematic
search (see, for example, [24]). Such transformations include adding constraints
that are implied by other constraints in the problem, adding constraints that
eliminate symmetrical solutions to the problem, removing redundant constraints
(where redundant constraints are those which result in no extra pruning, but just
add overhead) and replacing constraints with their logical equivalents. Unfortu-
nately, outside a highly-focused domain like planning (see, for example, [8]), there
has been little research on how to perform such transformations automatically.

This paper presents our vision of how such transformations can be performed
and is part of our ongoing work towards formalising and automating the mod-
elling process. In particular, we present our vision of transformation through
a case study of transforming the Simplified SONET problem. We present the
transformations in a somewhat systematic way; in our previous work system-
atic manual modelling has proved to be an important first step towards the
automation of modelling.

Let us outline our vision of transformation. A fundamental observation is that
some transformations operate on a particular model of a problem whereas others
are model independent. We refer to these two kinds of transformations as model
transformations and problem transformations. Though a problem transformation
could also be performed on a particular model, the advantage of transforming
the problem is that the benefits provided by the problem transformation will be
inherited by all models.

To formalise problem transformations, problems themselves must be pre-
sented in a formal language. Such a language must allow problems to be speci-
fied at a level of abstraction above that at which modelling decisions are made.
For the Simplified SONET example studied in this paper, we use a language
that is like an ordinary constraint language except that in addition to the usual
atomic variables (variables whose domains comprise atomic elements) and set
variables, it allows relation variables (variables whose domains comprise finite
relations). The idea of developing constraint languages that support non-atomic
variables is gaining momentum. Set variable have been around for several years
and are incorporated into constraint toolkits such as ILOG Solver and Eclipse.
ESRA [11] supports relation variables and F supports function variables [16].
ESSENCE [13] takes this this approach to its ultimate conclusion, supporting a
wide-variety of variable types—such as sets, multisets, relations, functions, par-
titions and tuples—as well as arbitrarily-nested variable types, such as set of sets
and set of set of tuples. Frisch et al. [13] propose ESSENCE as an appropriate
language for expressing abstract problem specifications.

After presenting the abstract problem specification of the Simplified SONET
problem, our case study proceeds by transforming it by adding implied and other
constraints. Then, from this augmented specification, we generate models of the
kind that are supported by existing constraint toolkits such as ILOG Solver
and Eclipse. We call these concrete models and call the process of generating
them refinement. We reserve the term transformation to refer to operations that
change a model or specification but, unlike refinement, do not alter the level of
abstraction. Since transformations can and should take place at various levels of
abstraction, a study of transformation inevitably involves refinement.

Refining the Simplified SONET specification involves replacing a relation
variable—which is not supported by existing toolkits—with a structured collec-
tion of atomic variables and set variables. We present three general methods for
modelling a relation variable and then use these three methods to systematically
generate five concrete models. If the target language into which we are refining
does not support set variables, these could be refined into atomic variables; doing
so is not addressed in this paper.

Before turning to the case study, we examine, and learn from, a previous
constraint-transformation system.

2 Why Transform Abstract Specifications?

In addition to the reasons discussed in the previous section, our architecture
for transformation and refinement has been motivated by experience with the
CGRrass (Constraint Generation And Symmetry-breaking [14]) system. CGRASS
transforms constraint models of problem instances in order to make them easier
to solve. This section describes CGRASS and then explains why, on its own, it
is insufficient to perform all desired transformations. It is these deficiencies that
motivate the approach to transformation advocated by this paper.

The input to CGRASS is a problem instance expressed in a language that does
not allow schematic constraints. To see what this means consider the straightfor-
ward model of the Golomb Ruler problem where the the goal is to find values for

n integer variables, x1, ..., T,, so that the “distance” between any two distinct
pairs of them is distinct. We can specify this by a constraint schema as
Vi, j, k1 €{1,...,n} (1)

(AFEDNEAEDNGCFEEYV £ = |2 — 25| # |2 — 2

For a problem instance, n would be replaced by a constant specified by the in-
stance data. A schema is a linguistic shorthand for generating a set of constraints.
For the instance where n is 3, this schema generates 3 constraints:

|z — 22| # |21 — 23]
|1 — @2| # |22 — 23]
|x1 —$3| 75 |{E2 —CE3|.

CGRraAss works in a forward-chaining manner, selectively applying the heuris-
tically most-promising rule at each iteration to improve a model gradually. A
history mechanism prevents cycles of transformations. After each transforma-
tion the model is put into a normal form based on that used by the HartMath
(www.hartmath.org) computer algebra system; this makes it easier to test which
transformations can be applied next. CGRASS can perform a range of transfor-
mations, including adding implied constraints, introducing auxiliary variables
and introducing symmetry-breaking constraints. The last of these is performed
by testing whether the model is unchanged when two candidate expressions
are exchanged throughout and normalisation is performed. This is an expensive
method of symmetry detection, and therefore influenced our decision to focus on
refinement-based modelling, where much symmetry can be detected easily as it
is introduced. Nonetheless, when applied to a naive formulation of the Golomb
ruler problem, CGRASS is able to produce a far more efficient model that is close
to that produced by human experts.

Though CGRASS has successfully transformed some problem instances into
much more efficient ones, it has some drawbacks. Since it transforms individual
problem instances, much effort is repeated as each instance of a problem class is
transformed. Therefore, it is desirable to perform transformations on problems,
where possible, rather than instances.

Though the job that CGRASS performs is simplified because it does not have
to reason with quantifiers, some transformations are difficult to perform because

they involve recognising a pattern within the non-schematic specification. For
example, one useful transformation is to replace a clique of not-equals constraints
with an all-different constraint.

Furthermore, instance specifications that do not use schemas can grow ex-
tremely large. For example, in the Golomb Ruler Problem the number of inequal-
ities generated by schema (1) is £2(n*). Thus some types of transformations will
need to be performed §2(n?) times. The performance improvement realised by
the transformed instance specification can be greatly diminished by the time it
takes to perform all the transformations.

Our conclusion from the CGRASS work is that, where possible, it is better
to transform schematic specifications than non-schematic specifications, and,
where possible, it is better to transform problem specifications than instance
specifications. There may be cases where it is necessary to transform instances—
schematic or non-schematic—such as when a transformation is only sanctioned
by the particular instance data. We therefore do not see the problem transfor-
mations advocated by this paper as fully replacing the need or desirability of all
CGRraASs-style transformations.

3 Specifying the SONET Problem

To illustrate our approach, we consider the SONET fibre-optic communications
problem [21].

In a communications network, there are client nodes and known levels
of demand between pairs of nodes. However, traffic can only be routed
between pairs of distinct nodes if they are installed on the same SONET
ring. A node is installed on a SONET ring via a dedicated add-drop
multiplexer (ADM). Each node may be installed on multiple rings and
demand between a pair of nodes may be split over several rings. The
maximum number of rings available is known. Each ring has a capacity
in terms of the volume of traffic and the number of nodes that can be
installed on it. The objective is to minimise the number of ADMs used.

Consider an instance of the SONET problem with 5 nodes and 3 rings, where
each ring is able to accommodate 4 nodes and 6 units of traffic. The demands
between nodes are presented in Figure 1. An optimal solution using only 6 ADMs
(in this solution only two of the three rings are used) is presented in Figure 2.
This instance will be used to illustrate the transformed models throughout.

For clarity, this paper focuses on a simplified version of the SONET problem,
ignoring actual demand levels, following [22]. The full problem is handled simi-
larly, but all major points are covered by transforming the simplified problem.

3.1 Sa: An Abstract Problem Specification

An instance of the SONET problem is identified by four parameters: nnodes,
the number of nodes; nrings, the number of rings; ¢, the uniform node capacity

Fig. 1. Demand pairs in an example instance of the SONET problem

1

4 5

Fig. 2. An optimal solution to the example instance of the SONET problem

per ring; and D, the demand. In particular, D is a set of unordered node pairs,
{n,n’'} where n and n’ are nodes that must that must communicate. The decision
variable must represent an assignment of nodes to rings; since a node can be
assigning to multiple rings, we treat this as a relation, which we call rings-nodes,
between rings and nodes.

Figure 3 gives S4, an ESSENCE specification of the simplified SONET prob-
lem. Here the nodes and rings are represented by ranges of natural numbers.
The objective is to minimise the number of ADMs, which is the number of node
attachments and is represented by the cardinality of the rings-nodes relation.
The capacity constraint is imposed by (3) and the communication constraint is
imposed by (4). Note that rings-nodes(-,n) is the projection of the rings-nodes
relation onto n € N, that is {r|rings-nodes(r,n)}.

given nrings: nat, nnodes: nat, capacity: nat

letting N ve 1..nnodes, R be 1..nrings

given D: set of set (size 2) of N

find rings-nodes: R X N

minimising |rings-nodes| (2)

such that VreR |rings-nodes(r,)} <c (3)
V{n,n'} € D rings-nodes(_, n) N rings-nodes(_,n’) #) 4)

Fig. 3. Specification of the simplfied SONET problem.

4 Transforming the Abstract Problem Specification

This section presents transformations on the abstract specification of the SONET
problem, S4. First, three implied constraints are derived and added to the spec-
ification. Then a fourth constraint, which is not implied, is added.

The first implied constraint imposes a lower bound on the number of ADMs
required for each node.

i) From (4), the (separate) projection of rings-nodes onto certain pairs of ele-
ments, n,n’ € N, must result in subsets of R with a non-empty intersection.
That is, rings-nodes relates {n,n'} € D to at least one common ring.

ii) The number of occurrences of n in a pair {n,n’} € D, [{n'|{n,n'} € D}|, is
the cardinality of the partner set of n, each element of which must be related
to at least one common ring with n by rings-nodes.

iii) (3) is a capacity constraint. It specifies that the maximum number of nodes
that can be related with a given ring, r, by rings-nodes is at most c.

iv) Since n must be related to at least one common ring with each element of
its partner set, this reduces the effective capacity of each ring to ¢ — 1.

v) Simple division now provides a lower bound on the number of ADMs per
node n, equivalently the number of rings on which n is installed:

[{n'[{n,n'} € D}|
c—1

Yn € N : [—‘ < |rings-nodes(-,n)| (5)

Henceforth, we refer to [W} as ADMMin.(n). Observe that all

the terms contained in ADMMin.(n) are parameters; hence, for any given
problem instance, this is a constant.

The second implied constraint imposes a lower bound on the number of ‘open’
rings, i.e. those rings with at least one node installed.

i) From (5), it is simple to derive a minimum total number of ADMs.

ii) Each ADM is installed on a ring via rings-nodes.

iii) (3) gives the capacity, c, of each ring.
)

iv) Simple division gives the bound:

{ZneN ADMMin.(n)
c

-‘ < |{r € R|rings-nodes(r,_) # 0}| (6)

Yoven ADMMin,(n)

c

Henceforth, we refer to [as RingMin.. Again, all the

terms in this expression are parameters; hence for any given problem instance,
this is a constant.

The third implied constraint imposes the constraint that a node should be
installed on a ring only if it needs to communicate with one of the other nodes
on the ring.

i) To satisfy (4), the intersection of the projection of rings-nodes onto each of
a pair of nodes, {n,n’} € D, must be non-empty.

ii) Consider a tuple, (r € R,n € N), of rings-nodes. If rings-nodes does not
also relate some n’ € N with r, where {n,n’} € D, then this tuple does not
satisfy any instance of (4).

iii) From (2) we are minimising the size of rings-nodes. Hence:

VneN, reR (7)
rings-nodes(r,n)—{n'eNl{n,n'} € D Arings-nodes(r,n’)}| >0

We now consider another constraint, which is obtained by observing that if
a solution exists, then there is a solution in which for any two non-empty rings
the sum of the number of nodes installed on them exceeds c¢. This is the case
since if two non-empty rings contain no more than ¢ nodes then their nodes can
be merged onto a single ring. Thus, as with symmetry-breaking constraints, we
can impose a constraint that restricts search to those solutions in which no two
rings can be merged.

V{r,r'} C R: (rings-nodes(r,) # 0) A (rings-nodes(r’,.) # 0) —
|rings-nodes(r, -)| 4 |rings-nodes(r’,)| > ¢ (8)

5 Refining the SONET Problem

Given abstract model S 4, based upon the rings-nodes relation variable, a process
of refinement is necessary to generate models suitable for input to a constraint
toolkit. Hnich [16] shows how to refine specifications in an extended constraint
language (F) supporting function variables, producing a set of alternative mod-
els. At present, there is no mechanism for choosing among the refined models,
however. Alternatively, ESRA [11] is an extended constraint language support-
ing relation variables. Specifications in ESRA are refined to a single constraint
model. As noted in the introduction, the ESSENCE language [13] supports a num-
ber of abstract variable types. Unlike (F) and ESRA, ESSENCE supports arbi-
trary nesting of operators and types (e.g. sets of sets of partitions). ESSENCE
specifications are refined by the CONJURE system into a set of alternative con-
straint models.

We focus now on the refinement of S4 in particular. The decision variable
in S4 is of type relation. There are three possibilities for refining an arbitrary
relation variable R : A X B:

i) A one-dimensional matrix of set variables, BtoA,,s indexed by A. For each
a € A, BtoAns[a] is {b € B|R(a,b)}.

ii) A two-dimensional 0/1 matrix, R,,, indexed by A x B, where R,,[a,b]=1
indicates R(a,b), when a € A,b € B.

iii) A one-dimensional matrix of set variables, AtoB,,s indexed by B. For each
be B, AtoBps[b] is {a € A|R(a,b)}.

In the following subsections, we use these rules to refine S4 to five different
CSP models.

5.1 Sp: A Matrix Model

The rings-nodes relation can be refined into a two dimensional matrix of 0/1 vari-
ables, rings-nodes,,, where rings-nodes,,[r,n| denotes the element at the inter-
section of the rth column and nth row. To perform this refinement, all references
to rings-nodes must be replaced with rings-nodes,,. Node capacity constraints
are on the cardinality of subsets of IV and the objective minimises the cardinality
of rings-nodes. Each column r of rings-nodes,, corresponds to the characteris-
tic function for the set of nodes installed on ring r (i.e. rings-nodes(r, _)), and
similarly for each row n, so refining (2) and (3) is straightforward:

Minimise(z Z rings-nodesy, [r,n]) 9)
reRneN
VreR: Z rings-nodesy,[r,n] < ¢ (10)
neN

The demand constraint requires the intersection of subsets of N to be non-
empty. When using characteristic functions, (4) is easily represented via scalar
products, which are the cardinality of the intersection:

V{n,n'} € D : scalar-prod(rings-nodes,, |-, n], rings-nodesy,[-,n']) # 0 (11)

where rings-nodesy,[-,n] denotes the nth row of the rings-nodes,, matrix. Sp
is a basic version of that used in [21]. Indeed, matrix models in general are a
common pattern in constraint programming [9].

In our example instance, rings-nodes,, is instantiated to a 3 x 5 matrix of
0/1 variables. The total number of ‘1’ entries is minimised and the rows have a
maximum sum of 4 (node capacity). Scalar product constraints ensure that all
node (row) pairs that must communicate have at least one ‘1’ entry in common.

As noted above, each row (column) of rings-nodes,, is equivalent to the char-
acteristic function for the projection of rings-nodes onto an element of N (R).
A bound on the cardinality of such a projection is easily enforced using a sum-
mation on a row or column. Hence (5) and (7) are refined to:

Vn € N : ADMMin.(n) < Z rings-nodesy, [r, n] (12)
reR

Vn € N,r € R : rings-nodesy, [r,n] = 1— Zrings—nodesm [r,n']>0 (13)
n’|{n,n'}eD

Constraint (6) is on the cardinality of a subset of R. For each r € R, member-
ship of this subset is predicated on a non-empty projection of rings-nodes onto r.
This translates to a non-zero sum of a column of rings-nodes,,. Hence, we must
constrain the number of columns of rings-nodes,, that meet this criterion. One
way to specify (6) is then to introduce a set variable, open-ringss, as follows:

Vr e R: Z rings-nodesy,[r,n] # 0 < r € open-ringss (14)
neN

RingMin,, < |open-ringss| (15)

Alternatively, a one-dimensional matrix, open-rings,, (essentially the character-
istic function for the set variable) indexed by R, could be used:

VreR: Z rings-nodesy,[r,n] # 0 < open-ringsy,[r] =1 (16)
neN
RingMin, < Z 0peNn-ringsm [r] (17)
reER

Finally, (8) is refined into model Sp straightforwardly, as follows:

V{r,r"} CR (18)
Y nen Tings-nodesy,[r,n] > 0A Y\ rings-nodesy,[r’,n] > 0
— Y onen Tings-nodesy,[r, n] 4 rings-nodes,, [r',n] > ¢

Breaking Symmetry A potential pitfall of refinement to a matrix model is
symmetry on the rows and/or columns of the matrix. If the elements of R (or V)
are indistinguishable, the columns (rows) of any (non-)solution may be permuted
to generate another (non-)solution. To determine whether elements of R and N
are indistinguishable, we examine S4 prior to refinement. The elements of R are
not distinguished by any of the constraints or relations. However, the elements
of N could be distinguished by D, which is instance-specific.

If we can identify similar cases where the target objects of refinements may
contain symmetry, we can build into the refinement methods the means to de-
tect and break the symmetry. This avoids the (potentially expensive) problem
of symmetry detection at a lower level following refinement. Several alternative
symmetry breaking methods exist, providing further branching points in the
space of transformations. When symmetry depends on instance-specific infor-
mation, preconditions must be placed on the methods used to break symmetry.
As a problem is instantiated into a CSP instance, the preconditions are tested
and symmetry is broken among the objects that are symmetrical in this instance.

For example, the symmetry among the rings can be eliminated using Sym-
metry Breaking During Search (SBDS) [15]. SBDS takes in a description of the
action of each symmetry on decisions made during search (i.e. to assign or not
to assign a value to a variable). Once a decision has been explored, if the search
backtracks to explore its alternative, SBDS ensures that further decisions sym-
metric to those already explored will not be explored in future. In our example,
we must describe the effect on the assignment of a value to a variable of a trans-
position of a pair of rings. To automate this process, our refinement methods
must generate the descriptions of each symmetry (e.g. interchangeable columns).

Alternatively, the model can be transformed by adding symmetry-breaking
constraints that prune some symmetrical assignments from the search space.
The symmetry created by interchangeable rows and or columns in a matrix can
be dealt with effectively by imposing lexicographic ordering constraints [10].
To do this, we treat a whole row (column) as a binary number and constrain

10

interchangeable rows (columns) to be in lexicographic order. With respect to our
example, since the rings are indistinguishable, we impose the constraint that all
columns are lexicographically ordered as follows:

Vr <1’ € R: rings-nodes,;,[r,] >1ay Tings-nodesy,[r’,] (19)

where rings-nodesy, [r, -] is the rth column of rings-nodes,, r < r’ denotes that r
is less than and adjacent to r’ in a fixed arbitrary total ordering of R, and Zlex
denotes lexicographically greater than or equal to, enforceable by the algorithm
of [12]. The refinement of (6) can now be simplified. Given the decreasing order
imposed in (19) and a lower bound of RingMin,, by the transitivity of >, it is
sufficient to insist that the first a columns of rings-nodes,, have non-zero sums.
When using lexicographic ordering constraints it is important to choose vari-
able and value ordering heuristics which complement rather than compete with
the constraints. It is also important, when lexicographically ordering both rows
and columns of a matrix, to ensure that the orderings do not conflict [10].
Generally, disjoint subsets of a set of objects may be symmetrical (partial
symmetry). If so, we create equivalence classes of indistinguishable objects and
break the symmetry among their elements. We might use SBDS, or order each
class arbitrarily and lexicographically order adjacent elements. In our example,
{n1,n2} is an equivalence class, since D does not distinguish the two nodes.
Hence, symmetry can be broken between the corresponding rows of rings-nodes,, .

5.2 Sc: A Matrix and Set Variable (Rings) Model

We can also refine S4 using set variables to represent the rings-nodes relation.
This uses either a one-dimensional matrix of set variables nodesOnRing,,s in-
dexed by R, or ringsWithNode,,s indexed by N. The matrix nodesOnRingms|[r]
contains the set of nodes installed on r and rings WithNode,,s[n] contains the
set of rings on which n is installed. This section discusses the model based on
nodesOnRing,s and the next discusses the model based on rings WithNode,,s.
The objective and node capacity constraints on each ring are easily stated:

Minimise(z |[nodesOnRingms[r]|) (20)
r€R
Vr € R : |nodesOnRingms[r]| < ¢ (21)

The demand constraints are more difficult to specify, since each constrains the
set variable representing an unspecified ring to contain a particular pair of nodes.
Therefore, we state the demand constraints on rings-nodes,, (Section 5.1). Chan-
nelling constraints keep the two representations consistent:

Vr € R: n € nodesOnRingms[r] < rings-nodesy,[r,n] =1 (22)

Implied constraints (5-7) are also most easily stated on rings-nodes,,. Ring set
variables allow us to simplify the content merging constraint (8):

V{r,r"} C R: |nodesOnRingms[r]| > 0 A |[nodesOnRingms[r']| > 0 —
|nodesOnRingms|r]| + |[nodesOnRingns[r']| > ¢ (23)

11

For our example, in addition to the 3 x 5 matrix, three set variables (one per
ring) are created. Each has a maximum of ¢ elements drawn from N.

5.3 Sp: A Matrix and Set Variable (Nodes) Model

The dual model to S¢ comprises a one-dimensional matrix of set variables,
rings WithNode,,s, where rings WithNode,,s[n] contains the set of rings to which
n is assigned. The demand constraints are easily stated:

V{n,n'} € D : |rings WithNode,s[n] N rings WithNode,,s[n']| > 1 (24)

However, the node capacity constraints and objective are difficult to state. Once
again, it is easiest to use the rings-nodes,, matrix and channel:

Vn € N : r € ringsWithNode,,s[n] < rings-nodesy,|[r,n] =1 (25)
Implied constraint (5) is easily stated on the node set variables:

Z ADMMin.(n) < Z |rings WithNode,s[n]| (26)
neN neN

Implied constraints (6) and (7) and the content merging constraint (8) are easier
to state on rings-nodes,, as per Sp.

With respect to our example, in addition to the 3 x 5 matrix, five set variables
(one per node) are created, each drawing its elements from R.

5.4 Sg: A Dual Set Variable Model

SE comprises a dual model containing both node and ring set variables. The
problem constraints combine S¢ (20 and 21) and Sp (24). We must channel
between the two matrices of set variables to maintain consistency:

Vn € N,r € R:n € nodesOnRingys[r] < r € ringsWithNodens[n] (27)

Implied constraint (5) is stated as per Sp (26). Implied constraint (6) can be
stated using either open-ringss (14) or open-rings,, (16) as follows:

Vr € R : |nodesOnRingnys(r]| # 0 < r € open-rings; (28)

Vr € R : |nodesOnRingms[r]| # 0 < open-rings,,[r] = 1 (29)
However, if we break symmetry between the rings, it is sufficient to specify that
the first RingMin. ring set variables are non-empty, as per section 5.1. The

content merging constraint (8) is stated as per S¢ (23).
Without rings-nodesy,, it is more difficult to refine implied constraint (7):

Vn € N: n € nodesOnRingms[r] — (30)
In' :n' € nodesOnRingms[r]A{n,n’'}eD

12

5.5 Spg: A Matrix and Dual Set Variable Model

Finally, Sp comprises a dual model containing rings-nodes,, and both node and
ring set variables. We must channel to maintain consistency:

Vn € N,r € R : rings-nodesy,[r,n] =1 < n € nodesOnRingms|r] (31)

Vn € N,r € R:n € nodesOnRingms[r] < r € ringsWithNode,,s[n] (32)

The problem constraints, implied constraints (5, 6) and the content merging

constraint (8) are stated as per Sg. Implied constraint (7) is easier to state on
rings-nodes,,, as per Sp (13). This model is close to that used in [22].

5.6 Simplified SONET: Summary of Transformation

Table 1 summarises our models of the simplified SONET problem. Encourag-
ingly, two models, Sp and Sp, closely resemble models created by experts in
Operations Research [21] and Constraint Programming [22].

| Model| Characteristics |
Sa Sets and Relations
SB Matrix
Sc Matrix + Ring Set Variables
Sp Matrix + Node Set Variables
SE Ring Set + Node Set Variables
Sr |Matrix + Ring Set Variables + Node Set Variables

Table 1. Transformed Simplified SONET models.

6 Related Work in Modelling and Transformation

In addition to the ESRA, F, and ESSENCE languages mentioned throughout,
there are several other methods to aid in constraint modelling. This section
briefly surveys them.

As early as 1976, Lauriere introduced a modelling language called ALICE to
formally state a problem [18]. The ALICE language is characterised by the use
of sets, set operators, Cartesian product of sets, vectors, matrices, graphs and
paths, constants, and functions. Constraints are stated on these mathematical
objects using the classical logical connectives (A, V, —, <, and —), the logic
quantifiers (3 and V), the set operators (€, N, U), and the arithmetic operators
(+, =, %, /, =, >, <,and }.).

Tsang et al. had two projects related to ours:

— The adaptive constraint satisfaction project [1-3] aimed at systematically
mapping problems, in a dynamic manner, to algorithms and heuristics so
as to achieve an adaptive constraint satisfaction strategy, thus helping re-
searchers to bring effective algorithms to applications.

13

— The computer-aided constraint programming [4,20] project aimed at build-
ing a system that encapsulates the entire process of applying CP technology
to problems. And by allowing non-expert users to declaratively state their
problems, the users may easily experiment with different problem formula-
tions. The system would then assist them to choose an existing solver, as
well as in understanding the underlying technology.

The language NP-SPEC is a logic-based executable specification language
[7,6], which allows the user to specify problems that belong to the NP com-
plexity class. In NP-SPEC, metapredicates, called tailoring predicates, are used
to restrict the extensions of a given predicate. These metapredicates are subset,
partition, permutation, and intfunc, which can be used to capture certain classes
of output. The subset predicate has as extensions all subsets of a given set, the
partition predicate has as extensions all n subsets of a given set such that these
subsets form a partition, the permutation predicate has as extensions all permu-
tations over a given set, and the intfunc predicate has as extensions all functions
from a given set into an integer interval.

In [23], a functional specification language called REFINE is used to specify
global search problems for a program synthesizer. The REFINE language aug-
ments a functional programming language with three type constructors, namely
set, sequence, and map, as well as their operations. The set type constructor
allows the declaration of variables of set type, the sequence type constructor al-
lows the declaration of variable of sequence type, and the map type constructor
allows the declaration of variable of partial function type.

The ALICE, NP-SPEC, and REFINE languages allow variables of types other
than integer and integer sets, which allows the statement of problems at a differ-
ent level of abstraction when compared to current CP languages such as Eclipse.

7 Conclusions and Future Work

We have considered the transformation of constraint satisfaction problems and
have seen that transformations can and should be performed at various levels
of abstraction. We identified refinement as the process of progressively moving
to more concrete levels of abstraction and showed that mechanisms for dealing
with some common modelling problems, such as symmetry, can be embedded
into refinement rules.

The Simplified SONET problem [21] was used to illustrate how such a sys-
tem integrating transformation and refinement could work. We started with an
abstract problem specification in the ESSENCE language and transformed the
specification by adding implied and other constraints. Then we refined the re-
sulting specification into five alternative models and showed how the refinement
process could break the symmetries that it introduces into the model.

Our immediate goal is to formalise fully the transformations we use. Having
done so, it will be possible to produce many models of varying quality. The next
step is then to develop heuristics to guide refinement and transformation towards

14

good models. To do this, we need to identify patterns in effective models, and
in the processes that generate them.

Part of the pattern elicitation process is experimental, for instance comparing
the performance of the models of the SONET problem developed here. This
comparison is, however, not straightforward. Usually, model utility can only be
judged accurately in the context of the intended solution procedure, such as the
variable/value heuristics employed. A thorough empirical comparison, therefore,
must consider solving each model in a variety of ways. We will perform such a
comparison on alternative models of a number of problems from the literature,
including SONET.

In some cases, it is possible to show that one model is stronger than another,
irrespective of certain aspects of the solution procedure. Recently, for example,
alternative models of permutation and injection problems have been studied in
the context of a range of constraint propagation algorithms [17]. Combining
empirical and theoretical analysis will allow us to develop the means to evaluate
models statically, and therefore be more selective about the models produced
during refinement itself.

Acknowledgements Brahim Hnich and Toby Walsh are supported by Science
Foundation Ireland. Ian Miguel is supported by a UK-Royal Academy of Engi-
neering/EPSRC Post-doctoral Fellowship.

References

1. A. Abbas and E.P.K. Tsang. Toward a general language for the specification of
constraint satisfaction problems. In Proc of the Constraint Programming, Artificial
Intelligence and Operations Research (CP-AI-OR) Workshop, 2001.

2. J.E. Borrett. Formulation selection for constraint satisfaction problem: a heuris-
tic approach. PhD Thesis, Department of Computer Science, University of Essex,
Colchester, UK, 1998.

3. J.E. Borrett and E.P.K. Tsang. A context for constraint satisfaction problem for-
mulation selection. Constraints, 6(4):299-327, 2001.

4. R. Bradwell, J. Ford, P. Mills, E.P.K. Tsang, and R. Williams. An overview of the
CACP project: modelling and solving constraint satisfaction/optimisation problems
with minimal expert intervention. InProc of the Workshop on Analysis and Visual-
ization of Constraint Programs and Solvers, Constraint Programming 2000, 2000.

5. A. Bundy. A Science of Reasoning. J-L. Lassez and G, Plotkin, editors, Computa-
tional Logic: Essays in Honor of Alan Robinson, pages 178—198, 1991.

6. M. Cadoli and A. Schaerf. Compiling program specification into SAT. Proc. of
ESOP’01. LNCS 2028. Springer-Verlag, 2001.

7. M. Cadoli, L. Palopoli, A. Schaerf, and D. Vasile. NP-SPEC: An executable specifi-
cation language for solving all problems in NP. In: G. Gupta (ed), Proc. of PADL’99,
pp- 16-30. LNCS 1551. Springer-Verlag, 1999.

8. M.D. Ernst, T.D. Millstein, and D.S. Weld. Automatic SAT-compilation of planning
problems. Proc. 15th International Joint Conference on Al, pages 1169-1176, 1997.

9. P. Flener, A.M. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, T. Walsh. Matrix Mod-
elling: Exploiting Common Patterns in Constraint Programming Proc. International
Workshop on Reformulating Constraint Satisfaction Problems, 2002.

15

10. P. Flener, A. M. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, J. Pearson, and T. Walsh.
Breaking Row and Column Symmetries in Matrix Models. Proc. 8th International
Conference on Principles and Practice of Constraint Programming LNCS 2470,
2002.

11. P. Flener, J. Pearson, and M. Agren. Introducing ESRA, a relational language for
modelling combinatorial problems. In, M. Bruynooghe (ed), LOPSTR’03: Revised
Selected Papers, LNCS 3018, 2004.

12. A.M. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, T. Walsh. Global Constraints for
Lexicographic Orderings. Proc. 8th International Conference on Principles and
Practice of Constraint Programming LNCS 2470, 2002.

13. A.M. Frisch, C. Jefferson, B. Martinez-Herndndez, 1. Miguel. The Rules of Mod-
elling: Automatic Generation of Constraint Programs. APES Technical Report 85,
2004.

14. A.M. Frisch, I. Miguel, and T. Walsh. CGRrAsS: A System for Transforming Con-
straint Satisfaction Problems. Proc. Joint Workshop of the ERCIM/CologNet Area
on Constraint Solving and Constraint Logic Programming, LNCS 2627, pages 23-26,
2002.

15. I. P. Gent and B. M. Smith. Symmetry Breaking During Search in Constraint
Programming. Proc. European Conference on Al pages 599-603, 2000.

16. B. Hnich. Function Variables for Constraint Programming. PhD Thesis, University
of Uppsala, 2003.

17. B. Hnich, B.M. Smith and T. Walsh. Models of Permutation and Injection Prob-
lems. Journal of Artificial Intelligence Research, 21, 2004.

18. J-L. Lauriere. A language and a program for stating and solving combinatorial
problem. Artificial Intelligence, 10(1):29-127, 1978.

19. A.K. Mackworth. Constraint Satisfaction Problems. FEncyclopedia of Al, pages
285293, 1992.

20. P. Mills, E.P.K. Tsang, R. Williams, J. Ford, and J. Borrett. EaCL 1.5: An Easy
abstract Constraint optimisation Programming Language, Technical Report CSM-
324, University of Essex, Colchester, UK, 1999.

21. H.D. Sherali and J.C. Smith. Improving Discrete Model Representations via Sym-
metry Considerations. Management Science 47, pages 1396-1407, 2001.

22. B. M. Smith Search Strategies for Optimization: Modelling the SONET Prob-
lem. Proc. 2nd International Workshop on Modelling and Reformulating Constraint
Satisfaction Problems, pages 143—-157, 2003.

23. D.R. Smith. The structure and design of global search algorithms. TR
KES.U.87.12, Kestrel Institute, 1988.

24. B. M. Smith, K. Stergiou, and T. Walsh. Modelling the Golomb Ruler Problem.
Proc. IJCAI-99 Workshop on Non-Binary Constraints. International Joint Confer-
ence on Al 1999.

