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Abstract a variable in the constraint is assigned a valueompatible

values exist for all the other variables in the constraint. Such
compatible values are referred as the supportiforGAC

reduces to node-consistency (NC) for unary constraints. Fi-
nally, a constraint is bounds consistent (BC) iff, when a vari-
. D ) . able in the constraint is assigned its maximum or minimum
ful for a number of different applications including value, there exist compatible values for all the other variables

breaking symmetry and fuzzy constraint satisfac- i, the'constraint. If a constraintis NC, BC, or GAC then we
tion. We propose and implement a linear time al- write NC(c), BC(¢), or GAC() respectively.

gorithm for enforcing generalised arc-consistency A multiset is an unordered list in which repetition is al-

on such a multiset orQenng constraint. Experimen- lowed. A multisetM is ordered smaller than anothaf,
tal results show considerable promise. written M <, N iff either M is empty andN is not, or
the largest value i/ is smaller than the largest value v,

1 Introduction or the largest values are the same and, if we eliminate one
occurrence of the largest value from bath and V, the re-
sulting two multisets are ordered. Note thet <, N iff

We identify a new and important global (or non-
binary) constraint which ensures that the values
taken by two vectors of variables, when viewed
as multisets, are ordered. This constraint is use-

Global (or non-binary) constraints are one of the factors cen

tral to the success of constraint programmiRggin, 1994; M = NorM <. N. We will often view the valles taken

1996; Beldiceanu, 2000Global constraints specify patterns b tor of variabl liset. Gi W ; f
that occur in many problems, and call efficient and effective®? & l;/lec oro dviama es.tas a mlIJt. 'S‘ta o Iven two vtec_ otrs 0
constraint propagation algorithms. In this paper, we identi variables,r andy, we write a muliset orgering constraint as

a new and important global constraint. This constraint en:’ <m ¢. This constraint is satisfied iff the values for the

sures that the values taken by two vectors of variables, whe}r1ables in the vectors, when treated as multisets, satisfy the
viewed as multisets. are ordered. Such a constraint ’is usgjultlset ordering. Similarly, we write a strict multiset order-

ful in a number of domains. For example, in the progressiv%ng constraint as' <, 4. Throughout the paper, we assume

party problem (prob013 in csplib.org), we wish to assign ahat vectors of variables have finite integer domains, and the

host for each guest and period. We can model this with a vec\f"’""”‘bIes are dISj.OInt and not repeated. -
Vectors of variables are indexed from 0. The minimum

tor of variables for each period. Each variable is assigned theI 1 the d o OF i ; dth X
host for a particular guest. This model has unnecessary synfl€Ment in the domain of; is min(z;), and the maximum
(x;). The functionfloor(Z) assigns all variables i

metry as the periods can be freely permuted. We can bredtﬁ ’3}“5‘:’ ) I hilebail( 2 : I 1o thei
this symmetry by considering the multiset of values associl® their minimum values, whilsteil(z) assigns all to their
aximums. The vectar,—_, is identical tox exceptv now

ated with each vector and ordering these multisets. The aim : .
g as the domaif{d}. An occurrence vectovcc(Z) associ-

this paper is to study such multiset ordering constraints and t PR d ; .
pap y g ated withZ is indexed in decreasing order from the maximum

develop efficient and effective techniques for enforcing thems . - e o
maz(Z) to the minimummin () value from the domains in

Z. Theith element obee () is the number of occurrences of
2 Formal Background maz(Z) —iin Z. When(comparing two occurrence vectors,

A constraint satisfaction problem (CSP) consists of a set ofve assume they start and end with the occurrence of the same
variables, each with a finite domain of values, and a set ofalue, adding leading/ trailing zeroes as necessary. Finally,
constraints that specify allowed values for subsets of variz <, 77iff Zis lexicographically less than or equaljo

ables. A solution is an assignment of values to the variables
satisfying the constraints. To find such solutions, we explor% Motivating applications
partial assignments enforcing a local consistency like gener-

alized arc-consistency (GAC). A constraint is GAC iff, when 3.1 Matrix symmetry

*Support received by EPSRC under GR/R30792 and by the SciMany constraints programs contain matrices of decision vari-
ence Foundation Ireland. We thank Chris Beck and Chris Jeffersorables (so called “matrix models”), and the rows and/or



columns of these matrices are symmetric and can be permutedl symmetry (but it is unlikely that any polynomial set of
[Fleneret al, 2004. Such symmetries are very difficult to constraints does). Consider the symmetric matrices:

deal with as there are a super-exponential number of permu- 0 1 1 0 1 1
tations of the rows or columns to consider. There are several Ly < S

ways to break symmetry in a CSP, such as SBB8nt and  Both have rows that aré multiset ordéred, and rows and
Smith, 2000 or SBDD[Fahleet al,, 2001. One of the most  columns that are lex ordered. Multiset ordering the rows and
effective, and the one which we will concentrate on as a majofex ordering the columns is again incomparable to lex order-
application for a multiset ordering constraint, is adding extraing rows and columns. Consider the symmetric matrices:

symmetry-breaking constraints to an initial model. Existing 0 0 1 0 0 1
techniques for dealing with such symmetries typically elimi- 0 1 0 0 1 0
nate only some of the symmetry. Additional techniques, like i g g (1’ 3 3
those proposed here, are therefore of considerable value. 0 2 2 1 0 2

The progressive party problem mentioned earlier has a 2dhe first matrix has rows that are multiset ordered and
matrix of decision variables with matrix symmetry. The rows columns that are lex ordered. However, its rows are not lex
of the matrix are the guests, the columns are the periods. Eacitdered. The second matrix has rows and columns that are
variable gives the host assigned to a given guest in a given péex ordered but does not have rows that are multiset ordered.
riod. As periods are indistinguishable, the columns of the maWhilst the two orderings are theoretically incomparable, our
trix are symmetric. One way to break such column symmetnexperimental results (see later) show that multiset ordering
is to lex order the columnfFrischet al, 2004. Similarly, the rows and lex ordering the columns is often the most ef-
as guests can be indistinguishable, (some of) the rows magctive symmetry breaking constraint currently known.
be symmetric and can be lex ordered. Alternatively, we ca .
treat each row and/or column as a multiset and break suéﬁ‘z Fuzzy constraints
symmetry by multiset ordering the rows and/or columns. ~ Another appli(_:ation for_multiset ordering is to fuzz_y CSPs. A

Unlike lex ordering, multiset ordering the rows of a matrix fuzzy constraint associates a degree of satisfaction to an as-
may not eliminate all row symmetry. For example, considersignment tuple for the variables it constrains. To combine de-

the symmetric matrices: grees of satisfaction, we can use a combination operator like
_— 0 0 the minimum function. Unfortunately, the minimum function
( 0 1 ) ( 1 0 ) may cause arowning effecivhen one poorly satisfied con-

Both satisfy the constraint that the first row is multiset Iesszgﬁ'inst tgrcog;/lr;itr:323&2'rggf%:a:g'segfc:aqisé;g'crtﬁh igft?r?(laus-e
than the second. It is therefore a little surprising to dis- 9 '

cover that multiset ordering (which does not break all rowValues in ascending order and compare them lexicographi-

; : . : cally. This leximin combination operator identifies the as-
symmetry) is not dominated by lex ordering (which does)_. : :
but is incomparable. For examplé), 2) <w. (1,1) but signment that violates the fewest constraiiftargier, 1994

(1,1) <, (0,2). This induces an ordering identical to the multiset ordering ex-

cept that the lower elements of the satisfaction scale are the

multiset order ot 2ows and solume, Like lox ordaring bot MOTE Significant. It is Simple to modify a multset ordering
: 9 constraint to consider the values in a reverse order. To solve

rows and column_s, this may not eI_|m|nat§ all .row and COIUmnsuch leximin fuzzy CSPs, we can then use branch and bound,
symmetry. Consider the symmetric matrices:

adding an ordering constraint when we find a solution to en-
0o 1 1 1 0 1 . . L .
( 10 1 ) ( 0o 1 1 ) sure that future solutions are greater in the leximin ordering.

Both have multiset ordered rows and columns. Unsurprisq4  GAC algorithm for multiset ordering
ingly, multiset ordering rows and columns is mcomparable_l_h last tion motivated why we want multiset orderin
to lex ordering rows and columns. Consider the symmetric. ¢ _2St Section motivated why we want multiset ordering

e constraints. We need, however, to be able to propagate such
matrices: . = >

constraints efficiently. We therefore developed an efficient
0 0 1 0O 1 0 . .
( 0 1 0 ) < 0 0 1 > GAC algorithm for such constraints.
1 1 0 1 0 1
The first has lex ordered rows and columns, but the columné-1 Bac.kground . _ .
are not multiset ordered. The second has rows and columnghe algorithm exploits two theoretical results. The first re-
that are multiset ordered but the columns are not lex orderediuces the problem to testing support for upper boundg of
An alternative way to deal with row and column symmetry and lower bounds of on suitable ground vectors. The sec-

is to multiset order in one dimension and apply the symmeond reduces these tests to lex ordering suitable occurrence
try breaking method of our choice in the other dimension.vectors. Identical results hold for the strict multiset ordering
This is one of the best features of using multiset ordering tesonstraint but for reasons of space we omit them here.
break symmetry. It is compatible with any other method inkeémma 1 Given two disjoint and non-repeating vectors of
the other dimension. For instance, we can multiset order th aréabIeSﬁcsndy, with non-empty domain& AC(z <, ¢)
rows and lex order the columns. Preliminary resultiizil- "™ V% € %, VY5 € ¥
tan and Smith, 20Q2suggest that such a combined method floor(Zs, —ma(a,))
is very promising. This combined method does not eliminate floor(x)

m  ceil(y)
m Cel(Fy, —minty;))

ININ



Proof: (=) As the constraint is GAC, all values have sup- domain ofz,. Now consider:;. Changingocc(floor(Z)) to
port. In particular,x; = max(x;) has support. The best occ({(min(xg),...,max(xs),...,min(x,—1))) decreases
support comes if all the other variablesifrtake their mini-  the number of occurrences ofin(zs) = 2 by 1, and
mums, and all the variables jftake their maximums. Hence, increases the number of occurrencesrafz(zs) = 4 by 1.
floor(7,, —maz(z,)) <m ceil(y). Similarly, for y;. The occurrence vectors beneathvould now be lex ordered

(<) The first constraint ensures that.z(z; ) is supported.  the wrong way. We therefore also prune the value- 4,
The values which supportax(z;) also support all smaller leaving a single supported value 2 in the domaincef As
values. Hence, all the values in the domairzpfare sup- x4 andz; have singleton domains, their values have support.
ported. By an analogous argument, all the values in the do- Similarly, we check the minimums of thg; for support.
main ofy; are supported. Hence the constraint is GAC. QED.However, rather than prune values above (and in some cases

The next lemma reduces these tests for support to lex o€dual to)x, there is now a dual pointgrand we prune values
i ; in the domains ofy; up to (and in some cases equalfo)The

dering suitable occurrence vectors. interdis the | J tind h that th ¢
Lemma 2 Given two multisets of valued/ and N, M <,, Bo'” erﬁ . el argeg 'nde)r(] b OCC“”?”C? vecr(])rs
N iff oce(M) <pop 0cc(N) eneath it are lex ordered the wrong way. Any value less than
Proof: S [K.—I.Tf” d Walsh 2000 {8 cannot hope to change the lex ordering as the valyg at

roof: SeelKiziltan and Walsh, will still order the vectors the wrong way. Such values can
therefore be pruned. Once we have considered each gf the

4.2 Aworked example . . we have the following generalized arc-consistent vectors:
Based on these lemmas, we have designed an efficient algo- -

rithm for enforcing GAC on a multiset ordering constraint. ‘ B <{5}’{i}’{2’1}’{2}:’3{1}’{1}3

The algorithm goes through the andy; checking for sup- v <{5}’_{ 3 (3. 4) {233 {1}, {0D)

port in the appropriate occurrence vectors. Incremental conf-3  Algorithm details

putation of the lex ordering test avoids repetition of work. The algorithm uses two pointers and 3, and two flagsy

Consider the multiset ordering constraiht<,,, ¥ where: andsé to avoid traversing the occurrence vectors each time we
& = ({5),{4,5},{3,4,5},{2,4}, {1}, {1}) look for support. The pointet is set to to the most significant
7 = ({4,5),{4},{1,2,3,4},{2,3}, {1}, {O}) index above which all occurrences are pair-wise equal and at

« they are strictly ordered. If the vectors are equal thda

set to—oo. The pointers is set to the most significant index
below « such that the occurrence vectors are lex ordered the
(1,1,1,1,2,0) wrong way. If no such index exists, we setto —co. The
(1,2,1,0,1,1) flag v is set to true if all the indices betweenand 3 are

Recall that index in oce(ceil(7)) denotes the number of pair-wise equal and the flagis set to true if the sub-vectors

occurrences of the valuen ceil(7). For example, index 4 is ?helowﬂ are lex ord:ared. the V\{ron%\/zyay. It:?rzxatmgle, géven
2 as the value 4 0eeurs twice. e occurrence vectors in section s setto 4,3 to 2, an

We first check ifoce(floor(Z)) e oce(ceil()). If so,we  he flagsy ando are set to true. . _
can fail immediately because no value for any variable can & Summarise the major steps the algorithm performs:
have support. Herecc(floor(Z)) <ie. occ(ceil()). Infact,  A. Build occ(floor(z)) andoce(ceil(y))
we record (in a pointery) that the two occurrence vectors B, Setaq, 3, v, § according to their definitions
are lex ordered by index 4 etc(floor(Z)), which is strictly
smaller than index 4 afcc(ceil(7)). This means that we will
fail to find support in they; if any of thex; is assigned a new
value greater than 4. We now go through thechecking for
support for their maximum values, and then thechecking

We construct occurrence vectors flwor(Z) andceil(y), in-
dexed from 5 to 0:

occ(floor(Z))
occ(ceil(y))

C. For eachz;: If its maximum disturbs the lex ordering
on the occurrence vectors, tighten its upper-bound to
when the occurrence vectors are lex ordered below
otherwise tax — 1.

occ(floor(Z))  <jew occ(ceil(iy)), its only value must  when the occurrence vectors are lex ordered below
have support so we skip it. Now consider. Do otherwise to3 + 1.

its values have support? Changing:c(floor(Z)) to When we prune a value, we do not need to check re-
occ({min(xg), max(x1),...,min(x,—1))) decreases the cursively for previous support. Pruning changes neither the
number of occurrences ofin(xz;) = 4 by 1, and increases lower bounds oft nor the upper bounds @f These values
the number of occurrences ohaxz(zy) = 5 by 1. As  continue to provide support. The exception is when a domain

min(z1) > « = 4, this upsets the lex ordering of the two oc- is a singleton, and pruning causes a domain wipe-out.
currence vectors. We therefore prune all values in the domain We now give pseudo-code for an algorithm that maintains
of z; larger thanx. This leaves a single supported value, 4. GAC on a multiset ordering constraint between vectbasnd

Now consider x. Changing occ(floor(Z)) to ¢ which are of lengtln andm respectively. As the algorithm
oce({min(xo), ..., max(zs2),...,min(x,—1))) decreases reasons about occurrences vectors, the original vectors need
the number of occurrences ofin(z2) = 3 by 1, and notbe identical in length (though they often are).
increases the number of occurrencesmofiz(zs) = 5 The algorithm is called whenever lower boundsagfor

by 1. As with 2y, any value ofzy larger thana = 4 upper bounds ofj; change. LinesAl to A3 build the oc-
upsets the lex ordering. We therefore prundrom the  currence vectorsx andoy. Line B1 calls the procedure to



set the pointersx and 3, and the flagsy andd. LinesC1l-  difference between the number of occurrences iatexactly
13 check support for the maximums of the's while lines  one, andy is true. Thus, the value also lacks support and is

D1-14check support for the minimums of thg's. pruned; (6) at lineC13 all values greater tham lack support.
Procedure GACMSO() For eachy;, we only check for support if; is not singleton

AL 1 := min({min(z;)|i € [0,n)} U {min(y;)|j € [0,m)}) (line D2). There are four cases where we prune the domain

A2, u:= maz({maz(z;)|i € [0,n)} U {maz(y;)|j € [0,m)}) of y;: (1) atlineD4, asmax(y,) > «, any value smaller than

A3. o1 = occ(floor(F)), oy = occ(ceil(F)) max(y;) disturbs the lex ordering and lacks support; (2) at

B1. SetPointers-and-Flags(, u) lines D5 to D8, the situation is dual to the third case for the

Cl. FOR{=0TOn —1DO % check support for x's x;, and any value less than or equaltacks support; (3) at

C2. IF (min(z;) # maz(x;)) THEN

C3.  a:=min(z;); b := maz(z;);

C4. IF (a> ) THEN NC(z; = a);

C5. IF(a>a>pAb>a)THEN NC(z; < a);
C6. IF(a=pBAb>a)THEN

line D9, any value less thafi lacks support; (4) at lin®10,
again, any value less than or equapttacks support.

4.4 Theoretical properties

C7.  IF (oma + 1 = oya) THEN In a longer technical report, we prove the following results
cs. IF (y Aozg — 1 = oys AS) THEN NC(z; < a); about the algorithm’s complexity and correctness.

C9.  ELSENC(w; < a); o

C10. IF(a < BAb> a)THEN Theorem 1 GACMSO runs in timeO(n + m + d) whered

C1l.  IF oz + 1 = oya)THEN isu—1.

C12. IF THEN NC(x; ; . .

c13. ELS(EV)NC(M < a(;f < If d < n,m (and for multisets, we expect this as the num-
D1. FORj = 0TOm — 1DO % check support for y's ber of values is typically less than the cardinalities to permit
D2. IF (min(y;) # maz(y;)) THEN repetition), then the algorithm 9(n + m).

D3.  a:=min(y;);b:= maz(y;)

D4, IF (b > a) THEN NC(y; = b); Theorem 2 For disjoint and non-repeating vectors,

D5, IF (b= a Aoz +1 = oys) THEN GACMSO either establishes failurti it <m ¥ is not
D6.  IF(a < B A ~) THEN satisfiable, or prunes values from¥ and ¢ to ensure
D7.  IF (oxp = oys + 1) THEN GAC(Z <, 7).

D8. IF () THEN NC(y; > B);

_ _ The algorithm can easily be modified to support strict mul-
gi'o_ EELI;,SEENJ\[CC;;Q’>Z£;) ' tiset ordering. The only differences are that we failif= o
’ and thatg is set tol — 1 not —co. The algorithm then en-

P d SetPointers-and-Flags .. .
focedure SetPointers-and-Flags( ) forces a strict inequality on the occurrence sub-vectors above

Bl. ~:=falsg § :=false a := u;

B2, WHILE (a > [ A oe = oya)DOa 1= a — 1: f. Another variant of the algorithm is wheh>> n,m. In

B3. IF (@ > | A oza > oye) THEN FAIL ; such a situation, it could be costly to construct the occurrence
B4, IF (a = — 1) THEN o := —o00; 8 := —o0; vectors. We can instead sort the minimums of iheand

B5. ELSE the maximums of they;, and computey, 3, v andé as if

B6. B:=a—1;v :=true we had the occurrences by scanning these sorted lists. This
B7. WHILE (8 > 1A oxzp < oyg) DO information is all we need to compute support for eagh

B8. IF (oxp < oyp) THEN v :=false andy; in turn. The complexity of this modified algorithm is

BY.  B:=p-1 O(nlogn + mlogm) as the cost of sorting dominates.

B10. IF (8 =1— 1)THEN g := —o0; v := false

BLL IF (3 % —c0 A > ) THEN If we have multiple rows of a m_atrix tha? are multi_set or-
B12 i A1 dere_d, we can (_jecompose this into mulpset ordering con-
B13. WHILE (i > I A ox; = oy:) DO = i — 1: straint on all pairs of rows, or (further still) onto ordering
B14. IF (i > I A oxi > oys) THEN 6 := true; constraints just on neighbouring pairs of rows. The following
. , result shows that such decompositions hinder constraint prop-
_For eache;, we only check for support if; is not singleton  54aion. Nevertheless, it will usually be most cost effective to
(line C2). There are six cases where we prune the domain ofsst just theD(n) ordering constraints between neighbouring

a;: (1) atlineC4, asmin(z;) > «, any value in the domain  hairs rather than the (n?) constraints between all pairs.
of x; greater thannin(z;) lacks support because it will dis-

turb the lex ordering; (2) at in€5, asa > min(z;) > 3,  1heorem 3 GAC(Vi < j . & <, ;) Is strictly stronger
andmaz(z;) > «, all the values in the domain of, greater  thanGAC(Z; <,, 7;) forall i < j, and this itself is strictly
thana disturb the lex ordering, and lack support; (3) at line Stronger thanGAC(Z; <., ;1) for all i.

C6, C7, andC8, all values greater than or equal dolack

support. If we assigm to z;, then the vectors will be equal 5 Alternative approaches

at indexa and 3, the values betweea and 3 are also all . . .
pair-wise equal (since is true), and the vectors belovare ~ ©-1 Arithmetic constraint

ordered the wrong way (sinceis true). Thus, the value Barbara Smith (personal communication) has proposed en-
also lacks support and is pruned; (4) at 1i@®, all values forcing ¥ <,, ¥ on vectors of lengt via the arithmetic
greater thary lack support; (5) at lin€€10, C11, andC12, constraini®™ +...n*»~1 < n¥ 4 .. n¥—1 Thisis similar

all values greater than or equalddack support. If we assign to the transformation of a leximin fuzzy CSP into an equiva-
« to z;, the vectors will be lex ordered the wrong way as thelent MAX CSP[Schiexet al,, 1999. BC on such a constraint



is equivalent to GAC on the original multiset ordering con- , Fails | Choice points| Time (secs.)
straint. However, such an arithmetic constraint is only feasi- ~ |-\o-Symmetry Bé‘f?“'gg QAL Rk =3
ble for smalln. Further, most existing solvers will not enforce 2R 2.720 2.842 27
BC on such an arithmetic constraint, but will delay it until all <1c2RC 2,720 2,842 2.7

. : - <.C || 137,185 137,306 71.2
but one of the variables are instantiated. 210853 0577 T

. <nRC B . -
5.2 Decomposition <1exC<mR || 10,853 10,977 36
Multiset ordering is equivalent to the lex ordering the asso- SmC <ieaR 2,016 2137 26

ciated occurrence vectors. As we have efficient algorithms
for constructing occurrence vectors (via the global cardinalTable 1: 5-13-29 progressive party problem using row-by-
ity constraint[Régin, 1998) and for lex orderindFrischet  row labelling.
al., 2004, this might be an alternative approach. However,
as the following theorem shows, such a decomposition hin-
ders constraint propagation. Also, the two global cardinalityfor each guest and period, such that a guest crew never visits
constraints in such a decomposition are more expensive to ete same host twice, no two guest crews meet more than once,
force than the algorithm presented here. We wyite(Z, o%) and the spare capacity of each host boat, after accommodating
for the global cardinality constraint that channels from a vecits own crew, is not exceeded (prob013 in csplib.org).
tor of variablest to the associated occurrence veaibr A matrix model of this probleniSmithet al, 1999 is a
2-d matrix of guests x periods where each variable is as-
: S S signed a host representing that a host is accommodating a
gi)gs(%ezforcwg;AC(gcc(x,om)), GAC(gee(y, o), and particular guest in a given time period. The rows are the
lex Oy) A .
o _ guests, the columns are the periods. This model has col-
Proof:  Clearly it is as strong. ~ To show strict- ymn and partial row symmetry: any two periods, and any
ness, consider = ({1,2},{1,2},{2} {2}) and ¥ =  two guests with the same crew size are indistinguishable. We
({1,2},{1,2},{0,1,2},{0,1}). The multiset ordering con- consider the 13-hosts and 29 guests problem with 5 and 6
straint is not GAC since 0 ip, has no support but the decom- time periods, referred as 5-13-29 and 6-13-29. These prob-
position is unable to determine this. QED. ~lems havep!14!2!4!5!7! row and column symmetries where
Another approach is to use the sorted constraint in th, js the number of time periods. The actual data can be
Eclipse solver. This ensures that the values taken by one vefound in Csp“b_org_ Due to the prob|em constraints, no pair
tor of variables are identical but in sorted order to the Value%f rows/columns can be equaL hence we can Safe|y pose strict
taken by a second vector of variables. To post a multiset oftex ordering. However, any two distinct rows/columns might
dering constraint on two vectors, we can channel each into e equal when viewed as multisets.
sorted vector and lex order the.s_e. The aboye example dem_on-AS in [Smith et al, 1999, the guest boats are ordered in
strates that such a decomposition again hinders propagatiofescending order of their size. We order the host boats in
The sorting constraint is also more expensive to enforce.  gescending order of spare capacity to choose a value in a
) succeed-first manner. Results obtained by row-by-row, and
6 Experimental results column-by-column labelling strategies are given in Tables 1
We designed some experiments to test three goals. First, &d 2. With row-by-row labelling, we cannot solve 6-13-29
multiset ordering an effective method for dealing with row With or without symmetry breaking. For the 5-13-29 problem,
and/or column symmetry? Second, how does multiset order<ic.R breaks a lot more row symmetry than,R. However,
ing compare to lex ordering? Which one breaks more symthe reverse is true for the columns. Here,,C does not
metry? Is a combined method, which multiset orders one dibreak any symmetry but,,,C does. Multiset ordering one
mension and lex orders the other one of the matrix, superiordimension of a matrix therefore does not necessarily break
Third, does our GAC algorithm do more inference in prac-less symmetry than lex ordering the same dimension. Such
tice than the decomposition? Similarly, is the algorithm morephenomena occur through interactions with the search strat-

Theorem 4 GAC(Z <,, ¥) is strictly stronger than simulta-

efficient in practice than its decomposition? egy: a search strategy might already lex order, so multiset
The symmetry breaking constraints we used are strict leRrdering constraints break additional symmetry. The smallest
ordering on the columns<(...C), on the rows €;.,R): mul-  search tree and also the least solving time is obtained, hg

tiset ordering on the rows<(,,R), (strict) multiset ordering <iczR. This supports our conjecture that lex ordering one di-
on the columns<,,C and<,,,C); and combinations of these mension combined with multiset ordering the other can break
constraints. Such constraints are posted between adjacefore symmetry than lex/multiset ordering both dimensions.
rows/columns. The results of the experiments are shown in With column-by-column labelling, we are able to solve the
tables where a “-” means no result is obtained in 1 hour (360®-13-29 problem. Neither of;..R, <. C, <;.RC break
secs). The experiments are done using ILOG Solver 5.2 on any symmetry. The smallest search tree is obtained hi.
1000MHz pentium Il with 256 Mb RAM using Windows XP. This supports our conjecture that multiset ordering one di-
. mension can break more symmetry than lex ordering the same
6.1 Progressive Party Problem or both dimensions. If the search strategy already orders both
There are a set of host boats, each with a capacity, and a setdifnensions lexicographically, imposing a constraint like mul-
guest boats, each with a crew size. We wish to assign a hosiset ordering in one dimension breaks additional symmetry.



Fails | Choice points| Time (secs.) n Model Failures | Choice points | Time (sec.)

No Symmetry Breaking|| 20,722 20,871 12.3 5 | No symmetry breaking 3 12 11
<12C || 20,722 20,871 12.4 geet <ieaC 2 11 1.4
<iezR || 20,722 20,871 125 <mC 1 10 1.4
<1coRC || 20,722 20,871 124 <1eaC 3 12 15
<..C 7,053 7.202 6 7 No symmetry breaking 6,871 6,890 1.9

< R B N . geet <iexC 74 92 1.3

<. RC - - - <mC 69 87 1.1
<Lezc_ng - s _ 9 | No symmetr bf‘é;{(lcr:l i L 18
SmC <reaR 7,053 7,202 4.6 Y gccl <1wcgl 2,616,149 2,616,177 857.2
<mC 760,973 761,003 130.5

<1exC - - -

Table 2: 6-13-29 progressive party problem using column-

by-column labelling.
y J Table 3: Sports scheduling problem.
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