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Abstract

We identify a new and important global (or non-
binary) constraint which ensures that the values
taken by two vectors of variables, when viewed
as multisets, are ordered. This constraint is use-
ful for a number of different applications including
breaking symmetry and fuzzy constraint satisfac-
tion. We propose and implement a linear time al-
gorithm for enforcing generalised arc-consistency
on such a multiset ordering constraint. Experimen-
tal results show considerable promise.

1 Introduction
Global (or non-binary) constraints are one of the factors cen-
tral to the success of constraint programming[Régin, 1994;
1996; Beldiceanu, 2000]. Global constraints specify patterns
that occur in many problems, and call efficient and effective
constraint propagation algorithms. In this paper, we identify
a new and important global constraint. This constraint en-
sures that the values taken by two vectors of variables, when
viewed as multisets, are ordered. Such a constraint is use-
ful in a number of domains. For example, in the progressive
party problem (prob013 in csplib.org), we wish to assign a
host for each guest and period. We can model this with a vec-
tor of variables for each period. Each variable is assigned the
host for a particular guest. This model has unnecessary sym-
metry as the periods can be freely permuted. We can break
this symmetry by considering the multiset of values associ-
ated with each vector and ordering these multisets.The aim of
this paper is to study such multiset ordering constraints and to
develop efficient and effective techniques for enforcing them.

2 Formal Background
A constraint satisfaction problem (CSP) consists of a set of
variables, each with a finite domain of values, and a set of
constraints that specify allowed values for subsets of vari-
ables. A solution is an assignment of values to the variables
satisfying the constraints. To find such solutions, we explore
partial assignments enforcing a local consistency like gener-
alized arc-consistency (GAC). A constraint is GAC iff, when

∗Support received by EPSRC under GR/R30792 and by the Sci-
ence Foundation Ireland. We thank Chris Beck and Chris Jefferson.

a variable in the constraint is assigned a valuev, compatible
values exist for all the other variables in the constraint. Such
compatible values are referred as the support forv. GAC
reduces to node-consistency (NC) for unary constraints. Fi-
nally, a constraint is bounds consistent (BC) iff, when a vari-
able in the constraint is assigned its maximum or minimum
value, there exist compatible values for all the other variables
in the constraint. If a constraintc is NC, BC, or GAC then we
write NC(c), BC(c), or GAC(c) respectively.

A multiset is an unordered list in which repetition is al-
lowed. A multisetM is ordered smaller than anotherN ,
written M ≺m N iff either M is empty andN is not, or
the largest value inM is smaller than the largest value inN ,
or the largest values are the same and, if we eliminate one
occurrence of the largest value from bothM andN , the re-
sulting two multisets are ordered. Note thatM ¹m N iff
M = N or M ≺m N . We will often view the values taken
by a vector of variables as a multiset. Given two vectors of
variables,~x and~y, we write a multiset ordering constraint as
~x ≤m ~y. This constraint is satisfied iff the values for the
variables in the vectors, when treated as multisets, satisfy the
multiset ordering. Similarly, we write a strict multiset order-
ing constraint as~x <m ~y. Throughout the paper, we assume
that vectors of variables have finite integer domains, and the
variables are disjoint and not repeated.

Vectors of variables are indexed from 0. The minimum
element in the domain ofxi is min(xi), and the maximum
is max(xi). The functionfloor(~x) assigns all variables in~x
to their minimum values, whilstceil(~x) assigns all to their
maximums. The vector~xv=d is identical to~x exceptv now
has the domain{d}. An occurrence vectorocc(~x) associ-
ated with~x is indexed in decreasing order from the maximum
max(~x) to the minimummin(~x) value from the domains in
~x. Theith element ofocc(~x) is the number of occurrences of
max(~x) − i in ~x. When comparing two occurrence vectors,
we assume they start and end with the occurrence of the same
value, adding leading/ trailing zeroes as necessary. Finally,
~x ≤lex ~y iff ~x is lexicographically less than or equal to~y.

3 Motivating applications

3.1 Matrix symmetry
Many constraints programs contain matrices of decision vari-
ables (so called “matrix models”), and the rows and/or



columns of these matrices are symmetric and can be permuted
[Fleneret al., 2002]. Such symmetries are very difficult to
deal with as there are a super-exponential number of permu-
tations of the rows or columns to consider. There are several
ways to break symmetry in a CSP, such as SBDS[Gent and
Smith, 2000] or SBDD[Fahleet al., 2001]. One of the most
effective, and the one which we will concentrate on as a major
application for a multiset ordering constraint, is adding extra
symmetry-breaking constraints to an initial model. Existing
techniques for dealing with such symmetries typically elimi-
nate only some of the symmetry. Additional techniques, like
those proposed here, are therefore of considerable value.

The progressive party problem mentioned earlier has a 2d
matrix of decision variables with matrix symmetry. The rows
of the matrix are the guests, the columns are the periods. Each
variable gives the host assigned to a given guest in a given pe-
riod. As periods are indistinguishable, the columns of the ma-
trix are symmetric. One way to break such column symmetry
is to lex order the columns[Frischet al., 2002]. Similarly,
as guests can be indistinguishable, (some of) the rows may
be symmetric and can be lex ordered. Alternatively, we can
treat each row and/or column as a multiset and break such
symmetry by multiset ordering the rows and/or columns.

Unlike lex ordering, multiset ordering the rows of a matrix
may not eliminate all row symmetry. For example, consider
the symmetric matrices:(

0 0
0 1

) (
0 0
1 0

)

Both satisfy the constraint that the first row is multiset less
than the second. It is therefore a little surprising to dis-
cover that multiset ordering (which does not break all row
symmetry) is not dominated by lex ordering (which does)
but is incomparable. For example,〈0, 2〉 ≤lex 〈1, 1〉 but
〈1, 1〉 ≤m 〈0, 2〉.

When we have both row and column symmetry, we can
multiset order both rows and columns. Like lex ordering both
rows and columns, this may not eliminate all row and column
symmetry. Consider the symmetric matrices:(

0 1 1
1 0 1

) (
1 0 1
0 1 1

)

Both have multiset ordered rows and columns. Unsurpris-
ingly, multiset ordering rows and columns is incomparable
to lex ordering rows and columns. Consider the symmetric
matrices: (

0 0 1
0 1 0
1 1 0

) (
0 1 0
0 0 1
1 0 1

)

The first has lex ordered rows and columns, but the columns
are not multiset ordered. The second has rows and columns
that are multiset ordered but the columns are not lex ordered.

An alternative way to deal with row and column symmetry
is to multiset order in one dimension and apply the symme-
try breaking method of our choice in the other dimension.
This is one of the best features of using multiset ordering to
break symmetry. It is compatible with any other method in
the other dimension. For instance, we can multiset order the
rows and lex order the columns. Preliminary results in[Kizil-
tan and Smith, 2002] suggest that such a combined method
is very promising. This combined method does not eliminate

all symmetry (but it is unlikely that any polynomial set of
constraints does). Consider the symmetric matrices:(

0 1 1
1 0 1
1 2 0

) (
0 1 1
1 0 1
2 1 0

)

Both have rows that are multiset ordered, and rows and
columns that are lex ordered. Multiset ordering the rows and
lex ordering the columns is again incomparable to lex order-
ing rows and columns. Consider the symmetric matrices:


0 0 1
0 1 0
1 0 0
1 2 0
0 2 2







0 0 1
0 1 0
0 2 2
1 0 0
1 0 2




The first matrix has rows that are multiset ordered and
columns that are lex ordered. However, its rows are not lex
ordered. The second matrix has rows and columns that are
lex ordered but does not have rows that are multiset ordered.
Whilst the two orderings are theoretically incomparable, our
experimental results (see later) show that multiset ordering
the rows and lex ordering the columns is often the most ef-
fective symmetry breaking constraint currently known.

3.2 Fuzzy constraints
Another application for multiset ordering is to fuzzy CSPs. A
fuzzy constraint associates a degree of satisfaction to an as-
signment tuple for the variables it constrains. To combine de-
grees of satisfaction, we can use a combination operator like
the minimum function. Unfortunately, the minimum function
may cause adrowning effectwhen one poorly satisfied con-
straint ‘drowns’ many highly satisfied constraints. One solu-
tion is to collect a vector of degrees of satisfaction, sort these
values in ascending order and compare them lexicographi-
cally. This leximin combination operator identifies the as-
signment that violates the fewest constraints[Fargier, 1994].
This induces an ordering identical to the multiset ordering ex-
cept that the lower elements of the satisfaction scale are the
more significant. It is simple to modify a multiset ordering
constraint to consider the values in a reverse order. To solve
such leximin fuzzy CSPs, we can then use branch and bound,
adding an ordering constraint when we find a solution to en-
sure that future solutions are greater in the leximin ordering.

4 GAC algorithm for multiset ordering
The last section motivated why we want multiset ordering
constraints. We need, however, to be able to propagate such
constraints efficiently. We therefore developed an efficient
GAC algorithm for such constraints.

4.1 Background
The algorithm exploits two theoretical results. The first re-
duces the problem to testing support for upper bounds of~x
and lower bounds of~y on suitable ground vectors. The sec-
ond reduces these tests to lex ordering suitable occurrence
vectors. Identical results hold for the strict multiset ordering
constraint but for reasons of space we omit them here.
Lemma 1 Given two disjoint and non-repeating vectors of
variables,~x and~y, with non-empty domains,GAC(~x ≤m ~y)
iff ∀xi ∈ ~x,∀yj ∈ ~y:

floor(~xxi=max(xi)) ≤m ceil(~y)

floor(~x) ≤m ceil(~yyj=min(yj))



Proof: (⇒) As the constraint is GAC, all values have sup-
port. In particular,xi = max(xi) has support. The best
support comes if all the other variables in~x take their mini-
mums, and all the variables in~y take their maximums. Hence,
floor(~xxi=max(xi)) ≤m ceil(~y). Similarly, foryi.

(⇐) The first constraint ensures thatmax(xi) is supported.
The values which supportmax(xi) also support all smaller
values. Hence, all the values in the domain ofxi are sup-
ported. By an analogous argument, all the values in the do-
main ofyi are supported. Hence the constraint is GAC. QED.

The next lemma reduces these tests for support to lex or-
dering suitable occurrence vectors.
Lemma 2 Given two multisets of values,M andN , M ≤m

N iff occ(M) ≤lex occ(N).
Proof: See[Kiziltan and Walsh, 2002].

4.2 A worked example
Based on these lemmas, we have designed an efficient algo-
rithm for enforcing GAC on a multiset ordering constraint.
The algorithm goes through thexi andyj checking for sup-
port in the appropriate occurrence vectors. Incremental com-
putation of the lex ordering test avoids repetition of work.
Consider the multiset ordering constraint~x ≤m ~y where:

~x = 〈{5}, {4, 5}, {3, 4, 5}, {2, 4}, {1}, {1}〉
~y = 〈{4, 5}, {4}, {1, 2, 3, 4}, {2, 3}, {1}, {0}〉

We construct occurrence vectors forfloor(~x) andceil(~y), in-
dexed from 5 to 0:

occ(floor(~x)) = 〈1, 1, 1, 1, 2, 0〉
occ(ceil(~y)) = 〈1, 2, 1, 0, 1, 1〉

Recall that indexi in occ(ceil(~y)) denotes the number of
occurrences of the valuei in ceil(~y). For example, index 4 is
2 as the value 4 occurs twice.

We first check ifocc(floor(~x)) >lex occ(ceil(~y)). If so, we
can fail immediately because no value for any variable can
have support. Here,occ(floor(~x)) ≤lex occ(ceil(~y)). In fact,
we record (in a pointer,α) that the two occurrence vectors
are lex ordered by index 4 ofocc(floor(~x)), which is strictly
smaller than index 4 ofocc(ceil(~y)). This means that we will
fail to find support in theyj if any of thexi is assigned a new
value greater than 4. We now go through thexi checking for
support for their maximum values, and then theyi checking
for support for their minimum values.

Consider x0. As it has a singleton domain, and
occ(floor(~x)) ≤lex occ(ceil(~y)), its only value must
have support so we skip it. Now considerx1. Do
its values have support? Changingocc(floor(~x)) to
occ(〈min(x0),max(x1), . . . , min(xn−1)〉) decreases the
number of occurrences ofmin(x1) = 4 by 1, and increases
the number of occurrences ofmax(x1) = 5 by 1. As
min(x1) ≥ α = 4, this upsets the lex ordering of the two oc-
currence vectors. We therefore prune all values in the domain
of x1 larger thanα. This leaves a single supported value, 4.

Now consider x2. Changing occ(floor(~x)) to
occ(〈min(x0), . . . , max(x2), . . . , min(xn−1)〉) decreases
the number of occurrences ofmin(x2) = 3 by 1, and
increases the number of occurrences ofmax(x2) = 5
by 1. As with x1, any value ofx2 larger thanα = 4
upsets the lex ordering. We therefore prune5 from the

domain ofx2. Now considerx3. Changingocc(floor(~x)) to
occ(〈min(x0), . . . , max(x3), . . . , min(xn−1)〉) decreases
the number of occurrences ofmin(x3) = 2 by 1, and
increases the number of occurrences ofmax(x3) = 4 by 1.
The occurrence vectors beneathα would now be lex ordered
the wrong way. We therefore also prune the valueα = 4,
leaving a single supported value 2 in the domain ofx3. As
x4 andx5 have singleton domains, their values have support.

Similarly, we check the minimums of theyj for support.
However, rather than prune values above (and in some cases
equal to)α, there is now a dual pointerβ and we prune values
in the domains ofyj up to (and in some cases equal to)β. The
pointerβ is the largest index such that the occurrence vectors
beneath it are lex ordered the wrong way. Any value less than
β cannot hope to change the lex ordering as the value atβ
will still order the vectors the wrong way. Such values can
therefore be pruned. Once we have considered each of theyj ,
we have the following generalized arc-consistent vectors:

~x = 〈{5}, {4}, {3, 4}, {2}, {1}, {1}〉
~y = 〈{5}, {4}, {3, 4}, {2, 3}, {1}, {0}〉

4.3 Algorithm details
The algorithm uses two pointersα andβ, and two flagsγ
andδ to avoid traversing the occurrence vectors each time we
look for support. The pointerα is set to to the most significant
index above which all occurrences are pair-wise equal and at
α they are strictly ordered. If the vectors are equal thenα is
set to−∞. The pointerβ is set to the most significant index
belowα such that the occurrence vectors are lex ordered the
wrong way. If no such index exists, we setβ to −∞. The
flag γ is set to true if all the indices betweenα and β are
pair-wise equal and the flagδ is set to true if the sub-vectors
belowβ are lex ordered the wrong way. For example, given
the occurrence vectors in section 4.2,α is set to 4,β to 2, and
the flagsγ andδ are set to true.

We summarise the major steps the algorithm performs:
A. Build occ(floor(~x)) andocc(ceil(~y))
B. Setα, β, γ, δ according to their definitions

C. For eachxi: If its maximum disturbs the lex ordering
on the occurrence vectors, tighten its upper-bound toα
when the occurrence vectors are lex ordered belowα,
otherwise toα− 1.

D. For eachyi: If its minimum disturbs the lex ordering on
the occurrence vectors, then tighten its lower-bound to
β when the occurrence vectors are lex ordered belowα,
otherwise toβ + 1.

When we prune a value, we do not need to check re-
cursively for previous support. Pruning changes neither the
lower bounds of~x nor the upper bounds of~y. These values
continue to provide support. The exception is when a domain
is a singleton, and pruning causes a domain wipe-out.

We now give pseudo-code for an algorithm that maintains
GAC on a multiset ordering constraint between vectors~x and
~y which are of lengthn andm respectively. As the algorithm
reasons about occurrences vectors, the original vectors need
not be identical in length (though they often are).

The algorithm is called whenever lower bounds ofxi or
upper bounds ofyj change. LinesA1 to A3 build the oc-
currence vectors~ox and ~oy. Line B1 calls the procedure to



set the pointersα andβ, and the flagsγ andδ. Lines C1-
13 check support for the maximums of thexi’s while lines
D1-14check support for the minimums of theyi’s.

Procedure GACMSO()
A1. l := min({min(xi)|i ∈ [0, n)} ∪ {min(yj)|j ∈ [0, m)})
A2. u := max({max(xi)|i ∈ [0, n)} ∪ {max(yj)|j ∈ [0, m)})
A3. ~ox = occ(floor(~x)), ~oy = occ(ceil(~y))

B1. SetPointers-and-Flags(l, u)
C1. FOR i = 0 TO n− 1 DO % check support for x’s

C2. IF (min(xi) 6= max(xi)) THEN
C3. a := min(xi); b := max(xi);

C4. IF (a ≥ α) THEN NC(xi = a);

C5. IF (α > a > β ∧ b ≥ α) THEN NC(xi ≤ α);

C6. IF (a = β ∧ b ≥ α) THEN
C7. IF (oxα + 1 = oyα) THEN
C8. IF (γ ∧ oxβ − 1 = oyβ ∧ δ) THEN NC(xi < α);

C9. ELSE NC(xi ≤ α);

C10. IF (a < β ∧ b ≥ α) THEN
C11. IF (oxα + 1 = oyα)THEN
C12. IF (γ) THEN NC(xi < α);

C13. ELSE NC(xi ≤ α);

D1. FOR j = 0 TO m− 1 DO % check support for y’s

D2. IF (min(yj) 6= max(yj)) THEN
D3. a := min(yj); b := max(yj)

D4. IF (b > α) THEN NC(yj = b);

D5. IF (b = α ∧ oxα + 1 = oyα) THEN
D6. IF (a ≤ β ∧ γ) THEN
D7. IF (oxβ = oyβ + 1) THEN
D8. IF (δ) THEN NC(yj > β);

D9. ELSE NC(yj ≥ β);

D10. ELSE NC(yj > β);

Procedure SetPointers-and-Flags(l, u)
B1. γ := false; δ := false; α := u;

B2. WHILE (α ≥ l ∧ oxα = oyα) DO α := α− 1;

B3. IF (α ≥ l ∧ oxα > oyα) THEN FAIL ;

B4. IF (α = l− 1) THEN α := −∞; β := −∞;

B5. ELSE
B6. β := α− 1; γ :=true;

B7. WHILE (β ≥ l ∧ oxβ ≤ oyβ ) DO
B8. IF (oxβ < oyβ ) THEN γ := false;

B9. β := β − 1;

B10. IF (β = l− 1) THEN β := −∞; γ := false;

B11. IF (β 6= −∞∧ β > l) THEN
B12. i := β − 1;

B13. WHILE (i ≥ l ∧ oxi = oyi) DO i := i− 1;

B14. IF (i ≥ l ∧ oxi > oyi) THEN δ := true;

For eachxi, we only check for support ifxi is not singleton
(line C2). There are six cases where we prune the domain of
xi: (1) at lineC4, asmin(xi) ≥ α, any value in the domain
of xi greater thanmin(xi) lacks support because it will dis-
turb the lex ordering; (2) at lineC5, asα > min(xi) > β,
andmax(xi) ≥ α, all the values in the domain ofxi greater
thanα disturb the lex ordering, and lack support; (3) at line
C6, C7, andC8, all values greater than or equal toα lack
support. If we assignα to xi, then the vectors will be equal
at indexα andβ, the values betweenα andβ are also all
pair-wise equal (sinceγ is true), and the vectors belowβ are
ordered the wrong way (sinceδ is true). Thus, the valueα
also lacks support and is pruned; (4) at lineC9, all values
greater thanα lack support; (5) at lineC10, C11, andC12,
all values greater than or equal toα lack support. If we assign
α to xi, the vectors will be lex ordered the wrong way as the

difference between the number of occurrences atα is exactly
one, andγ is true. Thus, the valueα also lacks support and is
pruned; (6) at lineC13all values greater thanα lack support.

For eachyj , we only check for support ifyj is not singleton
(line D2). There are four cases where we prune the domain
of yj : (1) at lineD4, asmax(yj) > α, any value smaller than
max(yj) disturbs the lex ordering and lacks support; (2) at
linesD5 to D8, the situation is dual to the third case for the
xi, and any value less than or equal toβ lacks support; (3) at
line D9, any value less thanβ lacks support; (4) at lineD10,
again, any value less than or equal toβ lacks support.

4.4 Theoretical properties
In a longer technical report, we prove the following results
about the algorithm’s complexity and correctness.

Theorem 1 GACMSO runs in timeO(n + m + d) whered
is u− l.

If d ¿ n,m (and for multisets, we expect this as the num-
ber of values is typically less than the cardinalities to permit
repetition), then the algorithm isO(n + m).

Theorem 2 For disjoint and non-repeating vectors,
GACMSO either establishes failure if~x ≤m ~y is not
satisfiable, or prunes values from~x and ~y to ensure
GAC(~x ≤m ~y).

The algorithm can easily be modified to support strict mul-
tiset ordering. The only differences are that we fail if~ox = ~oy
and thatβ is set tol − 1 not−∞. The algorithm then en-
forces a strict inequality on the occurrence sub-vectors above
β. Another variant of the algorithm is whend À n,m. In
such a situation, it could be costly to construct the occurrence
vectors. We can instead sort the minimums of thexi and
the maximums of theyj , and computeα, β, γ and δ as if
we had the occurrences by scanning these sorted lists. This
information is all we need to compute support for eachxi

andyj in turn. The complexity of this modified algorithm is
O(n log n + m log m) as the cost of sorting dominates.

If we have multiple rows of a matrix that are multiset or-
dered, we can decompose this into multiset ordering con-
straint on all pairs of rows, or (further still) onto ordering
constraints just on neighbouring pairs of rows. The following
result shows that such decompositions hinder constraint prop-
agation. Nevertheless, it will usually be most cost effective to
post just theO(n) ordering constraints between neighbouring
pairs rather than theO(n2) constraints between all pairs.

Theorem 3 GAC(∀i < j . ~xi ≤m ~xj) is strictly stronger
thanGAC(~xi ≤m ~xj) for all i < j, and this itself is strictly
stronger thanGAC(~xi ≤m ~xi+1) for all i.

5 Alternative approaches
5.1 Arithmetic constraint
Barbara Smith (personal communication) has proposed en-
forcing ~x <m ~y on vectors of lengthn via the arithmetic
constraintnx0 + . . . nxn−1 < ny0 + . . . nyn−1 . This is similar
to the transformation of a leximin fuzzy CSP into an equiva-
lent MAX CSP[Schiexet al., 1995]. BC on such a constraint



is equivalent to GAC on the original multiset ordering con-
straint. However, such an arithmetic constraint is only feasi-
ble for smalln. Further, most existing solvers will not enforce
BC on such an arithmetic constraint, but will delay it until all
but one of the variables are instantiated.

5.2 Decomposition
Multiset ordering is equivalent to the lex ordering the asso-
ciated occurrence vectors. As we have efficient algorithms
for constructing occurrence vectors (via the global cardinal-
ity constraint[Régin, 1996]) and for lex ordering[Frischet
al., 2002], this might be an alternative approach. However,
as the following theorem shows, such a decomposition hin-
ders constraint propagation. Also, the two global cardinality
constraints in such a decomposition are more expensive to en-
force than the algorithm presented here. We writegcc(~x, ~ox)
for the global cardinality constraint that channels from a vec-
tor of variables~x to the associated occurrence vector~ox.

Theorem 4 GAC(~x <m ~y) is strictly stronger than simulta-
neously enforcingGAC(gcc(~x, ~ox)), GAC(gcc(~y, ~oy)), and
GAC( ~ox <lex ~oy).
Proof: Clearly it is as strong. To show strict-
ness, consider~x = 〈{1, 2}, {1, 2}, {2}, {2}〉 and ~y =
〈{1, 2}, {1, 2}, {0, 1, 2}, {0, 1}〉. The multiset ordering con-
straint is not GAC since 0 iny2 has no support but the decom-
position is unable to determine this. QED.

Another approach is to use the sorted constraint in the
Eclipse solver. This ensures that the values taken by one vec-
tor of variables are identical but in sorted order to the values
taken by a second vector of variables. To post a multiset or-
dering constraint on two vectors, we can channel each into a
sorted vector and lex order these. The above example demon-
strates that such a decomposition again hinders propagation.
The sorting constraint is also more expensive to enforce.

6 Experimental results
We designed some experiments to test three goals. First, is
multiset ordering an effective method for dealing with row
and/or column symmetry? Second, how does multiset order-
ing compare to lex ordering? Which one breaks more sym-
metry? Is a combined method, which multiset orders one di-
mension and lex orders the other one of the matrix, superior?
Third, does our GAC algorithm do more inference in prac-
tice than the decomposition? Similarly, is the algorithm more
efficient in practice than its decomposition?

The symmetry breaking constraints we used are strict lex
ordering on the columns (<lexC), on the rows (<lexR); mul-
tiset ordering on the rows (≤mR), (strict) multiset ordering
on the columns (≤mC and<mC); and combinations of these
constraints. Such constraints are posted between adjacent
rows/columns. The results of the experiments are shown in
tables where a “-” means no result is obtained in 1 hour (3600
secs). The experiments are done using ILOG Solver 5.2 on a
1000MHz pentium III with 256 Mb RAM using Windows XP.

6.1 Progressive Party Problem
There are a set of host boats, each with a capacity, and a set of
guest boats, each with a crew size. We wish to assign a host

Fails Choice points Time (secs.)
No Symmetry Breaking 180,738 180,860 75.9

<lexC 180,738 180,860 81.5
<lexR 2,720 2,842 2.7

<lexRC 2,720 2,842 2.7
≤mC 137,185 137,306 71.2
≤mR 10,853 10,977 8.6
≤mRC - - -

<lexC≤mR 10,853 10,977 8.6
≤mC <lexR 2,016 2,137 2.6

Table 1: 5-13-29 progressive party problem using row-by-
row labelling.

for each guest and period, such that a guest crew never visits
the same host twice, no two guest crews meet more than once,
and the spare capacity of each host boat, after accommodating
its own crew, is not exceeded (prob013 in csplib.org).

A matrix model of this problem[Smith et al., 1995] is a
2-d matrix ofguests × periods where each variable is as-
signed a host representing that a host is accommodating a
particular guest in a given time period. The rows are the
guests, the columns are the periods. This model has col-
umn and partial row symmetry: any two periods, and any
two guests with the same crew size are indistinguishable. We
consider the 13-hosts and 29 guests problem with 5 and 6
time periods, referred as 5-13-29 and 6-13-29. These prob-
lems havep!14!2!4!5!7! row and column symmetries where
p is the number of time periods. The actual data can be
found in csplib.org. Due to the problem constraints, no pair
of rows/columns can be equal, hence we can safely pose strict
lex ordering. However, any two distinct rows/columns might
be equal when viewed as multisets.

As in [Smith et al., 1995], the guest boats are ordered in
descending order of their size. We order the host boats in
descending order of spare capacity to choose a value in a
succeed-first manner. Results obtained by row-by-row, and
column-by-column labelling strategies are given in Tables 1
and 2. With row-by-row labelling, we cannot solve 6-13-29
with or without symmetry breaking. For the 5-13-29 problem,
<lexR breaks a lot more row symmetry than≤mR. However,
the reverse is true for the columns. Here,<lexC does not
break any symmetry but≤mC does. Multiset ordering one
dimension of a matrix therefore does not necessarily break
less symmetry than lex ordering the same dimension. Such
phenomena occur through interactions with the search strat-
egy: a search strategy might already lex order, so multiset
ordering constraints break additional symmetry. The smallest
search tree and also the least solving time is obtained by≤mC
<lexR. This supports our conjecture that lex ordering one di-
mension combined with multiset ordering the other can break
more symmetry than lex/multiset ordering both dimensions.

With column-by-column labelling, we are able to solve the
6-13-29 problem. Neither of<lexR, <lexC, <lexRC break
any symmetry. The smallest search tree is obtained by≤mC.
This supports our conjecture that multiset ordering one di-
mension can break more symmetry than lex ordering the same
or both dimensions. If the search strategy already orders both
dimensions lexicographically, imposing a constraint like mul-
tiset ordering in one dimension breaks additional symmetry.



Fails Choice points Time (secs.)
No Symmetry Breaking 20,722 20,871 12.3

<lexC 20,722 20,871 12.4
<lexR 20,722 20,871 12.5

<lexRC 20,722 20,871 12.4
≤mC 7,053 7,202 4.6
≤mR - - -
≤mRC - - -

<lexC≤mR - - -
≤mC <lexR 7,053 7,202 4.6

Table 2: 6-13-29 progressive party problem using column-
by-column labelling.

6.2 Sports Scheduling with Odd Teams

This is a modified version of prob026 in csplib.org. We have
n teams (n is odd), playing overn weeks. Each week is
divided into (n − 1)/2 periods, and each period is divided
into 2 slots, home and away. We wish to find a schedule
so that every team plays at most once a week, every team
plays twice in the same period over the tournament and every
team plays every other team. We slightly modify the model
in [Van Hentenrycket al., 1999], whereteamsis a 3-d matrix
of periods × weeks × slots. Each element ofteamsis the
team playing in a given period, week and slot. We treat this
matrix as 2-d where the rows are the periods and columns are
the weeks, and each entry is a list of variables giving the slots.

As the periods and the weeks are indistinguishable, this
problem hasn!(n − 1/2)! row and column symmetries. We
pose strict ordering constraints on the rows and columns of
teams as the periods and weeks cannot be equal. Due to the
constraints on the periods, posing multiset ordering on the
rows is not effective.

Results obtained by column-by-column labelling of the
teams are given in Table 3. For one column, we first label
the first slots; for the other, we first label the second slots.
With this strategy,<lexR does not break any symmetry, so
we omit it in the table. Posing multiset ordering by our algo-
rithm is much more effective and efficient than bygcc and lex
ordering constraints. This holds for many other search strate-
gies. In Table 3, we note that<mC gives a smaller search tree
than<lexC. However, for other search strategies the reverse
is true. This supports the theoretical result that lex ordering
and multiset ordering are incomparable.

7 Conclusions
We have identified a new and important global (non-binary)
constraint. This constraint ensures that the values taken by
two vectors of variables, when viewed as multisets, are or-
dered. We have developed an efficient linear time algorithm
for enforcing generalised arc-consistency on such a multiset
ordering constraint. We have proposed a number of appli-
cations for this new constraint including breaking symmetry
in matrix models, and fuzzy constraint satisfaction. We have
shown that alternative methods for posting a multiset ordering
constraint like an arithmetic constraint or decomposition are
inferior. Finally, we have implemented this generalized arc-
consistency algorithm in ILOG Solver. Experimental results
on a number of problem domains show considerable promise.

n Model Failures Choice points Time (sec.)
5 No symmetry breaking 3 12 1.1

gcc+ <lexC 2 11 1.4
<mC 1 10 1.4

<lexC 3 12 1.5
7 No symmetry breaking 6,871 6,890 1.9

gcc+ <lexC 74 92 1.3
<mC 69 87 1.1

<lexC 771 788 1.3
9 No symmetry breaking - - -

gcc+ <lexC 2,616,149 2,616,177 857.2
<mC 760,973 761,003 130.5

<lexC - - -

Table 3: Sports scheduling problem.
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