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Abstract model contains multiple matrices of variables. Channegllin

. ) constraints are then used to link the different matrices to-
We argue that constraint programs with one or more gether CCLW99; Smi00; WalolL
matrices of decision variables provide numerous There are a number of benefits of matrix models.
benefits, as they share many patterns for which gen- ] ]
eral methods can be devised’ such as for Symmetry Symmetncal variables: We can call upon some standard

breaking. On a wide range of real-life application methods to deal with rows and/or columns that are sym-
domains, we demonstrate the generality and utility metrical. For example, we can use lexicographic order-
of such matrix modelling. ing constraints to partially break row and column sym-

metry [FFH01]. Such techniques can also easily be
extended to deal with partial symmetries.

1 Introduction o . :

. . . _Indistinguishable values: The same techniques for dealing
Many companies have scheduling, assignment, supply chain, - yith symmetrical variables can be applied to deal with
and other problems that could be solved with a constraint pro indistinguishable values. A variabl§ that takes a sin-

gramming (CP) toolkit. Although the solution of these prob-  ja value or a set of values from a domainoindistin-
lems is of vital commercial importance, CP toolkits are not guishable values can be replaced by a vector wéri-
widely used because there is insufficient expertise availab ables. each with the 0/1 domain. A value of 1 in position

to model problems as constraint programs. How then can ; of the vector indicates that valdés in the set of val-
we take the writing of efficient constraint programs out of ues assigned t&. The effect of this transformation is
research laboratories and specialised consultanciesnsnd that the value symmetry in the domain &f has been
everyday programming practice? How can we release the replaced by symmetry among the variables in the vec-
proven power of constraint programming to a wide user base, oy, For example, in the social golfers problem (see Sec-

and thereby help improve industrial c_ompt_etitiveness? tion 5), players, which are the values in the model, are

As in other areas of software engineering, maayterns indistinguishable. Converting this value symmetry into
occur frequently in constraint programs. To date, thes@hav  yariaple symmetry adds an extra dimension to the matrix
only been given informally by practitioners, at the level of model, which can be handled by our multi-dimensional
off-the-cuff remarks in reports. To tackle the modelling-bo symmetry method.

tleneck, we need to identify, formalise, and document these . . .

patterns. We identify some patterns common to constrain¥ariable indexing: We can give much more compact and ef-

programs taken from a wide range of domains. The basis for ~ ficient models when we can index into matrix models

these patterns comes from identifying the central role ey using variables. This is exploited in our matrix model of

in many constraint programs by matrices of decisions vari-  the progressive party problem (see Section 7).

ables, and the common types of constraints posted on themimproved propagation: Matrix models can allow global
constraints to be posted or linear models to be defined

2 Matrix models that can be passed to a simplex solver. For example,

A matrix modehas (one or more) matrices of decision vari- I the warehouse location problem (see Section 7), a 2-d

ables. For example, a natural model of a sports scheduling Matrix model gives an integer linear program for the cost
problem has a 2-d matrix of decision variables, each of which function that is efficiently handled by a simplex solver.
is assigned a value corresponding to the game played in Base of statement:Many messy side constraints can be ef-

given week and perioftHMPR99. In this case, the matrix ficiently and effectively represented by channelling into
is obvious in the solution to the problem: we neetble of a matrix model. For example, the steel mill slab design
fixtures. However, as we demonstrate in the following ex- problem (see Section 6) is a bin packing problem with

amples, many problems that are less obviously defined in  a side constraint restricting the number of “colours” of
terms of matrices can be efficiently represented and effec-  orders placed on any slab. This side constraint is easily
tively solved using a matrix model. Sometimes, the matrix implemented by channelling into a 2-d matrix model.



Matrix:
—> blocks—
X5 0000011111
0011100011
J 0101101100
objects 1 0 1 0 1 1 0 1 0 O
J 1101010001
1110001010
Constraints:
(row sum) ViY, Xy =r
(columnsum) Vi, X;; =k
(scalar product) Vj #k Y, X5 % X = A
Benefit:
partial row and column symmetry breaking

Figure 1: Matrix model for the BIBD generation problem

In the next five sections, we catalogue a wide range o
problems that can be formulated using matrix models. In eac
case, we identify which of the benefits above applies. Despit
the diversity of application domains, a number of common,

(8,14,7,4,3) that was impossible to solve in a reasonable
time with any algorithm or encoding could easily be solved
with the matrix model ir238 seconds.

Many other combinatorial problems can be naturally mod-
elled using matrix models; e.g., problems concerning block
codes, quasigroup existence (prob003 in CSPLib), magic
squares (prob019 in CSPLib), and projective planes (pr6b02
in CSPLib).

4 Configuration problems

Many configuration problems can be naturally formulated as
matrix models. For example, tiigack Configuration Prob-
lem (discussed ifVH99)) is to plug cards into racks so that
the total power demand and number of connectors required
by the cards do not exceed those available for a rack of the
chosen type. The maximum number of racks that can be de-
ployed isn.

This can be represented with a matrix model. First, we use
a 0/1 2-d matriXi¥ indexed by the rack types afidn, such
thatW;; is 1 if there is a*" occurrence of rack type Since
at mostn racks can be deployed and every rack must be of
Bome rack type, each rack type may occur at mositmes
th a solution. In this model, we thus do not represent racks
explicitly. We instead represent different occurrencesath
rack type. Second, we use a 3-d 0/1 mafixzndexed by the

patterns are very apparent. For example, symmetry can oftefack types,1..n, and the cards, so thdt,y, is 1 if card is

be broken using the same methods. The matrix models Wgjugged into the't occurrence of rack type(see Figure 2).
give are not necessarily the best in each case. This is not the

point. Rather, the focus is on the generality and utilityto$t
modelling method.

3 Combinatorial problems

Many combinatorial problems can be naturally modelled as
constraint satisfaction problems using matrix models.exer
ample,Balanced Incomplete Block Desigr{BIBD) genera-
tion is a standard combinatorial problem from design theory,
It has applications in experimental design and cryptogyaph
and is prob028 in CSPLib (www.csplib.org).

As presented in Figure 1, a BIBD is an arrangement of
distinct objects intdh blocks such that each block contains
exactlyk distinct objects, each object occurs in exaethyif-
ferent blocks, and every two distinct objects occur togeithe
exactly A blocks. A BIBD instance is thus explained by its
parametergv, b, r, k, A). One way of modelling a BIBD is in
terms of its incidence matriX', which is av by b 0/1 matrix
with exactlyr ones per rowk ones per column, and with a
scalar product of between any pair of distinct rows.

This matrix model has row and column symmetry since
we can permute any row or column freely without affecting
any of the constraints. We can partially break this symme
try by lexicographically ordering both the rows and columns
[FFHTO1].

The benefit of the matrix modelling for this problem is

to be able to partially break a large number of symmetries,

Matrices:
— rack types—
Wi 1100 0
L1000 0
n 0 0 0 0 O
J 000 0 O
cards 0 1 0 0 O
Rjr /000 0 00
1 00 0 0 00O
J 000 0 0 00
lm 0 0 0 0 0 O
J 0 0 0 0 O
— rack types—
Constraints:
(matrix sum) Wiy <n
(slice sum) Vk ) i Rigr =1
(row sum) Vij ZL R;ji;, < Connector;

(weighted row sum) Vij Y~ R;j; * Powery < Power;
(channelling) Vijk Rijp =1 = W;; =1

Benefits:
partial 3-d symmetry breaking
improved propagation

In a recent study on BIBD, a binary CSP model encoded i

indistinguishable values

SAT is proposed to solve several BIBD instances using SATZ
WSAT, and CLS[Pre0d. All instances in[Pre0] could be
solved much faster with our model. For instance, the inganc

Figure 2: Matrix model for the rack configuration problem




The 2-d matrixIV has symmetry since different occur- together as groupin week;. We call this Model A.
rences of each rack type are indistinguishable. We can break A solution to the(2, 3,3) instance of the Social Golfers
this symmetry by ordering the different occurrences of eactProblem is shown in Figure 3. The figure also shows the gen-
rack type. The 3-d matri® also has symmetry since we can eral constraints for all instances of the problem class.
permute any occurrences of the same type, or any cards with
the same number of connectors and power demand (i.e., With  patrix:

the same card type). We can break some of this symmetry by A —— groups—»

a lexicographic ordering of part of the matfigFH"01]. ’i (1,2,3) {4,5,6} {7.8,9}
The problem can be modelled in a different way by rep-|  \yeeks {1:4: 7} {2: 5:8} {3:6:9}

resenting the racks explicitly. Since at mestacks are to 1 o o

be used, we create variables, each representing a potential
rack. A 1-d matrix indexed by..n thus gives the rack type Constraints:
for each potential rack. If such a rack is not used in the so1  (socjalisation) (i, j) # (i',5") |Aij 0 Ay <1
lution, then a dummy rack type is assigned to that rack. Ady  (group size) ~ Vij |4;j] = s
ditionally, we use a 2-d matrix indicating how many cards of ’ :
a given card type are plugged into a rack. This model does$ pgenefit:
not have the card symmetry that the model above has because partial 3-d symmetry breaking
card types instead of individual cards are representeddn th
2-d matrix.
Since each card is to be plugged into exactly one rack, the Figure 3: Matrix model for the social golfers problem
assignment of racks to cards can also be modelled as a 1-d
matrix indexed by cards ranging over racks. This 1-d matrix In this model there are three kinds of symmetry. The weeks
has partial column symmetry since cards of the same car(l.e., the rows of the matrix) are indistinguishable, theugrs
type are indistinguishable. We can easily break this symmefi.e., the columns of the matrix) are indistinguishablel tre
try by a lexicographic ordering of the corresponding colsmn players (i.e., the elements of the value sets) are indistihg
On the other hand, values assigned to cards, hamely racksble. Notice that if we employed a model in which each group
also are indistinguishable. In this model, we cannot easilyvere represented by a list (rather than a set)diftinct play-
break this symmetry. By introducing a 2-d 0/1 matrix, whoseers, then there would also be symmetry among the positions
second dimension corresponds to the racks, we convertindign this list.
tinguishable values into indistinguishable variables dicl Our model, called Model B, is a modification of Model A
symmetry can be broken easily. Another advantage of thisn which each set is replaced by a 0/1 vector of lengths
2-d matrix model is the ease with which the problem con-representing the characteristic function of the set. For ex
straints can be stated. The weighted sum constraint for eacdmple, the set of golfer§l, 5,9, 13} is represented by the
rack, which states that the total power of the cards assignegector [1000100010001000]. Thus Model B has a
to arack does not exceed its power capacity, in the 2-d matrig-d matrix, which we callB. As in Model A, the indices of
model corresponds to a weighted-occurrences constraint ahe first dimension are indistinguishable, as are those®f th
the racks in the 1-d model, which would be inefficient to statesecond dimension. The indices of the third dimension of B,
in the absence of a weighted-occurrences global constraint which represent the players, are also indistinguishatiesT
However, better propagation is achieved in the 3-d modethe value symmetry in Model A that results from indistin-
than in the 2-d model, resulting in a much more efficient prob-guishable players has been replaced in Model B by variable
lem formulation. For instance, an instance that was solwed i symmetry in the third dimension. This is an advantageous
7.5 hours using the 2-d model could easily be solved usingeplacement as we have effective ways to deal with variable

the 3-d model int5 second$KHO1]. symmetry. In particular, Model B partially breaks the symme
try in all three dimensions by imposing a triple-lexicognap
5 SCheduIing problems ordering constraint.

Into Model A we have introduced some simple partial sym-
The Social Golfers Problemis a class of problem instances metry breaking. In particular, player symmetry is partiall
parameterised byw, g, s). The decision problem is to de- broken by fixing the assignments for the first week. In par-
termine if it is possible foy * s golfers to play ing groups, ticular, for all1 < j < g we setX;; to the set of golfers
each of size, in each ofw weeks in such away thatanytwo {(j —1)xs+1,(j — 1) *xs +2,...,j = s)}. Furthermore,
golfers play in the same group at most once. Observe that thiwe add the constraints that for every week except the first, th
problem has three sets of indistinguishable objects: thefse first group must contain golfer 1 and the second group must
golfers, the set of groups, and the set of weeks. contain golfer 2. This partially breaks the symmetry caused

A straightforward way of modelling this problem has beenby the indistinguishable groups.

employed by Stephano Novello in his Eclipse program (avail- A simple experiment shows that Model B eliminates sig-
able at www.icparc.ic.ac.uk/eclipse/examples/golixpl.  nificantly more symmetrical solutions than does Model A. On
The model employs a 2-d matrix of sets, where each row instance3, 4,4), Model A finds a total of 1,327,104 solutions
is a different week and each column is a different group.and takes 4,137 seconds to do so, whereas Model B finds only
Each element;; of the matrix is a set of golfers that play 576 solutions and takes 79 seconds to do so.



6 Design problems a 1-d matrix that simply assigns orders to slabs. On a 16-
order subset of real industrial data, a model employing lex-
icographic ordering finds an optimal solution in 94,0004ail

- : e and 18 seconds, whereas a model without lexicographic or-
Slab Design Problemis a difficult problem that reduces e ing requires nearly 600,000 fails and 50 seconds. In-addi
to variable-sized bin-packing with colour side-consttain o, '3 1.4 representation necessitates the use of spetiali
[FMWO1. We are given a number of orders, each with a par~yeighted occurrence’ constraints, not commonly found in
ticular weight and colour, and a fixed number of slab Siz€Syonstraint toolkits. to express the slab capacity cormssai

We want to assign orders to slabs and sizes to slabs so that, .4 01 }natrix is used to model the colour con-
the total weight of orders assigned to a slab does not eXceesqraints Channelling constraints are used to connectahis
the slab capacity, and so that each slab contains at most )

colours p is usually 2). Potentially redundant variables arethe order matrix. In this case, the benefit of matrix modegllin
Y 2). y is in the ease with which the colour constraints can be stated

;Jirsneac: ;%Ifft’igﬁ g'?ﬂ?ﬁoﬁﬁt }?\e}vtetgessnuur;nebtehra?ftrswzbialgtggt g?_\'Nithout this second matrix, we have large-arity constsaint
. 9 n the first matrix that can only be efficiently implemented

der welght does not exceed the maximum slab size, the WOIS\, means of a complex daemon.
case assigns each order to an individual slab. Hence, we nee

as many slab variables as orders. As some slabs may remain
unused, the zero element is added to the domain of each slabanother example of a design problem that can naturally be

variable to represent when a slab is not used. formulated as a matrix model is tffemplate Design Prob-
lem (prob002 in CSPLib). It arises from printing products

Many design problems can be efficiently and effectively for-
mulated as matrix models. For example, tB&el Mill

Matrices: (e.g., cartons for cat food) of same brand with several varia
s slabs—s tions (e.g., flavours for cat food) from thin board. Such &ari
s, 4 3330000 0 tions have different colour and/or text displayed on theut, b
are identical in shape and size so they can be printed on the
s orders—s same mother sheet of board. Each mother sheet is printed
O; 0000001 11 from a template that hasslots on each of which the design
L 000111000 of the variations is imprinted. The problem is to decide how
slabs O 1 0 0 0 0 0 0 O many pressings of each template are needed, and how many
1101000000 copies of which variation to include on each template such
that the minimum number of pressings for each variation is
s colours—s met, every slot in each template is occupied by a variation,
Cij 000 11 and the total number of templates being produced is min-
1L 00110 imised.
slabs 0 1 0 0 0 One way of tackling this problem is to fix the number of
L1100 0 templates and then to minimise the total number of press-
ings. This can be modelled using a 1-d matixn giving
Constraints: the number of pressings of each template, and a 2-d niBtrix
specifying how many copies of which variation are included
(row weighted sum) Vj 3=, Weight; x O < s; on which template (see Figure 5).
(column sum) Vi Z]. 0;;=1 The 1-d matrix has column symmetry since all templates
(row sum) Viy,Cij <p are indistinguishable. This symmetry can easily be broken b
(channelling) Vij O = 1= Ceoloursj = 1 ordering the number of pressings. The 2-d matrix has par-
tial row and column symmetry because variations with equal
Benefits: demands and templates with equal number of pressings are
partial row and column symmetry breaking indistinguishable. We can break some of this symmetry by
ease of statement a lexicographic ordering on the corresponding rows and the
indistinguishable values columns.

The benefit of the matrix modelling for the template design
. . . . problem is first the ease in which the problem constraints can
Figure 4. Matrix model for the steel mill slab design problem pe stated. Every template is related to more than one vari-

ation, and every variation can be related to more than one

A 2-d 0/1 matrix is used to represent which orders are astemplate. The matrix model thus provides a very natural way
signed to which slabs (see Figure 4). This matrix has paref representing the problem. Second, assume that every vari
tial row symmetry since slabs of the same size are indisation is to be assigned to exactly one template, in which case
tinguishable and partial column symmetry since orders ofa 1-d matrix giving the template assigned to every variation
the same size and colour are also indistinguishable. As imould suffice. This model would suffer from value symmetry
the rack configuration problem, we can break this symmebecause templates are indistinguishable. However, some of
try by a lexicographic ordering on the corresponding rowsthis symmetry can easily be broken in the 2-d matrix formu-
and columns. Breaking this symmetry is more difficult in lation by translating value symmetry into variable symmetr



The 2-d matrix model of the problem was previously stud-experimented with the small instance providef\iti99] and
ied in [PS91, though the symmetry between the templatesthe CP model is as efficient as the ILP model. We expect that
with equal number of pressings was not tackled. We testethe ILP model will be much more efficient than the CP model
our model with the instances provided[iRS9%, and found on the instances where proving optimality is harder.
better optimal solutions than the results of the CP forniothat

in [PS91. For instance, the cat food problem was solved with Matrices:
2 templates with the objective value beihty, 143, and with __y warehouses—s
3 templates with the objective value beidg7, 778 as op- Open; 1 1 1 0 1
posed tot18, 000 and408, 000 respectively found iiPS91.
— warehouses—
Matrices: Supply;; 0 0 0 0 1
— templates— 01 00 0
Run; 51,000 107,000 250,000 J 1.0 00 0
stores 0 0 1 O 0
—> templates— J 01 00 0
Ty 0 0 1 1000 0
5 0 0
J 3 1 0 Constraints:
variations 0 0 2
1 0 0 2 (row sum) Vjy; Supply;; =1
1 7 0 (channelling) Vij Supply;; < Open;
0 1 4 (column sum) Vi Zj Supply;; < Capacity;
Constraints: Benefit:
improved propagation
(row weighted sum) V; >, Run;  T;; > Demand,
(column sum) Vi Z]. Tij=s ) . .
Figure 6: Matrix model for the warehouse location problem
Benefits:
partial row and column symmetry breaking
indistinguishable values Another assignment problem is tHerogressive Party
ease of statement Problem that arises in the context of organising the social
programme for a yachting rally (prob013 in CSPLib). There

) _ ) are a set of host boats, each with a capacity, and a set of guest
Figure 5: Matrix model for the template design problem  poats, each with a crew size. The problem is to assign guests
to hosts over a number of time periods, such that a guest crew
. never visits the same host twice and no two guest crews meet
7 Assignment Problems more than once.
Many assignment problems can be formulated as matrix mod- A 2-d matrix is used to represent the assignment of guests
els. For example, th&/arehouse Location Problem{VH99] to hosts in time periods (see Figure 7). All-different con-
arises when a company considers opening warehouses atraints on the rows of this matrix ensure that no guest ever
some candidate locations in order to supply its existingesto  revisits a host. A set of 1-d 0/1 matrices are used to rep-
Each warehouse has a maintenance cost, and a capacity dessent when two guests meet on a host boat at a time pe-
ignating the maximum number of stores that it can supplyriod. An occurrence constraint on each 1-d matrix allows at
Each store must be supplied by exactly one open warehousmost one such meeting. Finally, a 3-d 0/1 matrix is used.
The supply cost to a store depends on the warehouse. The obhis matrix replicates the information (assignment of gsies
jective is to determine which warehouses to open, and whiclo hosts in periods) held in the 2-d matrix, but allows capac-
of them should supply which stores such that the total cost ity constraints to be stated concisely via weighted sumssof i
minimised. columns. Furthermore, symmetry can be broken in 3 dimen-
This problem can be represented by a 1-d 0/1 ma&dyixn sions on this matrix: periods are all symmetrical, as are¢ hos
giving the open warehouses, and a 2-d 0/1 mafixply boats with equal capacity and guest boats with equal crew
designating if a store is supplied by a warehouse (see Figsizes. Three-dimensional lexicographic orderiffgRH" 01])
ure 6). One could replace this 2-d matrix with a 1-d one in-can be employed to remove much of this symmetry.
dexed by stores ranging over warehouses. Stating the prob- A simple means of channelling between the 2-d and 3-d
lem constraints on the 2-d matrix, however, generates onlynatrices is to use a set of implication constraints of thenfor
linear constraints. This results in a pure ILP model thaldou A;; = k <+ C;; = 1. The disadvantage of this approach is
efficiently be handled by powerful MIP solvers like CPLEX, thati % j * k£ such constraints are necessary. An alternative
using advanced techniques such as cutting planes and prapproach makes use of variable indexing into the 3-d matrix,
solve reductions that speed up the proof of optimality. Weas presented in Figure 7. Just j of these constraints are



necessary along with« j row constraints to ensure that the class objects. Constraint toolkits should provide the ssone
remaining elements are set to 0 (also shown in the figure). of matrix operations as found in a matrix manipulation lan-

Matrix modelling provides two key advantages for the pro-guage like MATLAB. For example, matrix symmetry break-
gressive party problem. Firstly, each of the matrices ezmbl ing predicates and the scalar product operator should be pri
one of the problem constraints to be stated easily, wheheas t itives of the language and efficient propagators should be pr
same constraint would be much more difficult to state on thevided for reasoning about them.
other matrix. The second advantage is again the translation As an alternative, the adoption sétsandrelationsas first-
from value symmetry (of the hosts in the 2-d matrix) to vari- class objects in constraint modelling languages is adedcat
able symmetry (in the 3-d matrix), which can be dealt with us{F01; FHKO1, together with operations such as relational im-
ing lexicographic ordering. These advantages are unéetlin age retrieval as well as relation composition and transposi
when we consider a problem with 7 periods, 7 hosts, and 18on. This is akin to ER-style conceptual modelling and OCL-
guests: the model without 3-d symmetry-breaking solves thistyle object modelling. Suctelational modellingis higher-
problem in 50,000 fails whereas the model with 3-d symme-{evel than matrix modelling, and thus more ambitious, bat th
try breaking makes just 2,000 fails. latter can be argued to be a perfect implementation technol-
ogy for the formef FHKO1]. It would ultimately be up to the
modellers to choose their favourite level of abstraction.

In many of our examples, symmetry was an important fea-
ture. In addition to offering standard methods to deal with
symmetry in matrix models, we should be able to identify
such symmetries automatically. Whilst identifying symmet

Matrices:
~ — periods
Meet! 0 1 0

Assion2d.: 0_> pleno;js is hard in general, it is much easier to identify row or column
sswgn ”i 2 1 0 symmetry in a matrix (or relation) model.
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