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Abstract. We identify an important class of symmetries in constraint
programming, arising from matrices of decision variables where rows
and columns can be swapped. Whilst lexicographically ordering the rows
(columns) breaks all the row (column) symmetries, lexicographically or-
dering both the rows and the columns fails to break all the compositions
of the row and column symmetries. Nevertheless, our experimental re-
sults show that this is effective at dealing with these compositions of
symmetries. We extend these results to cope with symmetries in any
number of dimensions, with partial symmetries, and with symmetric
values. Finally, we identify special cases where all compositions of the
row and column symmetries can be eliminated by the addition of only a
linear number of symmetry-breaking constraints.

1 Introduction

Modelling is one of the most difficult parts of constraint programming. Freuder
has identified it as the “last frontier” [9]. One source of difficulty is dealing
with symmetry efficiently and effectively. Symmetry occurs in many assignment,
scheduling, configuration, and design problems. Identical machines in a factory,
equivalent time periods, and equally skilled workers are just a few of the items
likely to introduce symmetry into a constraint satisfaction problem (CSP). If we
ignore symmetry, a solver will waste time considering symmetric, that is essen-
tially equivalent, assignments. As there is often a (super-)exponential number of
symmetric solutions, this can be very costly. To help tackle this problem, we iden-
tify an important class of symmetries that occur frequently in CSPs. We show
how constraints can be added to a model to break some of these symmetries,
and analyse the effectiveness of these methods theoretically and experimentally.



2 Matrix Models and Symmetry

A matriz model is a constraint program that contains one or more matrices of
decision variables. For example, a natural model of the round robin tournament
scheduling problem (prob026 in CSPlib, at www.csplib.org) has a 2-dimensional
(2-d) matrix of variables, each of which is assigned a value corresponding to the
match played in a given week and period [21]. In this case, the matrix is obvious
in the modelling of the problem: we need a table of fixtures. However, many
other problems that are less obviously defined in terms of matrices of variables
can be effectively represented and efficiently solved using matrix models [6]. For
example, the rack configuration problem (prob031) can be modelled with a 2-d
0/1 matrix representing which cards go into which racks (a model with a 3-d
matrix is given in [13]).

Symmetry is an important aspect of matrix models. Symmetry often occurs
because groups of objects within a matrix are indistinguishable. For example,
in the round robin tournament scheduling problem, weeks and periods are in-
distinguishable. We can therefore permute any two weeks or any two periods in
the schedule. That is, we can permute any two rows or any two columns of the
associated matrix, whose index sets are the weeks and periods. A symmetry is a
bijection on decision variables that preserves solutions and non-solutions. Two
variables are indistinguishable if some symmetry interchanges their réles in all
solutions and non-solutions.

Two common types of symmetry in matrices are row symmetries and col-
umn symmetries. The two examples above have row and column symmetries. A
row (column) symmetry of a 2-d matrix is a bijection between the variables of
two of its rows (columns) that preserves solutions and non-solutions. Two rows
(columns) are indistinguishable if their variables are pairwise indistinguishable
due to a row (column) symmetry. Note that the rotational symmetries of a ma-
trix are neither row nor column symmetries. A matrix model has row (column)
symmetry iff all the rows (columns) of one of its matrices are indistinguishable. A
matrix model has partial row (column) symmetry iff strict subset(s) of the rows
(columns) of one of its matrices are indistinguishable. All these definitions can
be extended to matrices with any number of dimensions. A symmetry class is an
equivalence class of assignments, where two assignments are equivalent if there is
some symmetry mapping one assignment into the other. (In group theory, such
equivalence classes are referred to as orbits.)

Many row and column symmetries have been observed [6], such as in matrix
models for the balanced incomplete block design problem (prob028 in CSPlib, at
www.csplib.org), the steel mill slab design problem [6], the social golfers problem
(prob010), the template design problem (prob002), the progressive party problem
(prob013), and (as argued above) the rack configuration problem (prob031) as
well as the round robin tournament scheduling problem (prob026).



3 Breaking Symmetry

There are a number of ways of dealing with symmetry in constraint programming
(see Section 7 for a longer discussion). A popular approach is to add constraints
that break some of the symmetries [16, 3].

One common method to break symmetry is to impose a constraint that orders
the symmetric objects. To break all the row (column) symmetries, we can order
the rows (columns) lexicographically. The rows (columns) in a 2-d matrix are
lexicographically ordered if each row (column) is lexicographically smaller (de-
noted <je,) than the next (if any), and anti-lexicographically ordered if each row
(column) is lexicographically larger than the next (if any). As a lexicographic or-
dering is total, adding lexicographic (or anti-lexicographic) ordering constraints
on the rows (columns) will break all the row (column) symmetries.

Whilst breaking all the row symmetries or all the column symmetries in a
matrix is possible with lexicographic ordering constraints, breaking both the row
and the column symmetries seems difficult since the rows and columns intersect.
Lexicographically ordering the rows will tend to put the columns into lexico-
graphic order. However, it does not always order the columns lexicographically,
and lexicographically ordering the columns can then disrupt the lexicographic
ordering on the rows.

Example 1. Consider a 3 x 4 matrix of 0/1 variables, ;;, with the constraints
that Zij zij =7 and ), xi;j -z < 1for j #k (i.e., the dot product of any two
rows is 1 or less). This model has both row and column symmetry. A solution
with lexicographically ordered rows is:

010
011
101
110

Lexicographically ordering the columns now gives the solution:

001
011
110
101

However, this destroys the lexicographic ordering on the rows. Reordering the
last two rows gives a solution that is lexicographically ordered along both the

rows and the columns:
001
011
101
110

One can even construct examples that need several sequential rounds of or-
dering the rows and then the columns, although the following theorem shows
that this process always terminates. During search, both the row and column
lexicographic ordering constraints actually work in parallel. The following theo-
rem shows that, whether this ordering is done sequentially or in parallel, there
always is a solution with the rows and columns both in lexicographic order.



Theorem 1. For a matriz model with row and column symmetry in some 2-d
matriz, each symmetry class of assignments has an element where both the rows
and the columns of that matrix are lexicographically ordered.

Proof: We order 2-d matrices by lexicographically ordering the sequences
formed by appending their rows together in top-down order. Lexicographically
ordering two rows replaces a larger row at the front of this sequence by a smaller
row from further behind. Hence, ordering two rows moves us down the matrix
ordering. Lexicographically ordering two columns also moves us down this ma-
trix ordering. Indeed, the two columns have some values (if any) in common at
the top and swapping the columns thus does not affect the matrix ordering when
just considering the corresponding top rows; also, in the top-most row (if any)
where the two columns differ, the value in the left column is then replaced by a
smaller value from the right column, as the latter was lexicographically smaller
than the left column, making that row lexicographically smaller. This moves us
down the matrix ordering, as the first changed row (if any) is replaced in the
sequence by a smaller one. Furthermore, the matrix ordering is finite, as there
are only a finite number of permutations of the values in a matrix, and bounded
below, namely by a matrix whose rows and columns are lexicographically or-
dered. So we cannot move down the matrix ordering indefinitely, and will find a
matrix in which all the rows and columns are lexicographically ordered. O

This result shows that we can always lexicographically order both the rows
and the columns. Dually, we can always anti-lexicographically order both the
rows and the columns. However, we cannot always lexicographically order the
rows and anti-lexicographically order the columns. Lexicographically ordering
the rows will tend to push the largest values to the bottom-left of the matrix.
Anti-lexicographically ordering the columns will tend to push the larger values
to the top-right. For this reason, the two orders can conflict.

Example 2. Consider a 2 x 2 matrix of 0/1 variables, ;;, with the constraints
that >, z;; = 1 and ), 7;; = 1 (i.e., every row and column has a single 1). This
model has both row and column symmetry, and has two symmetric solutions:

01 10
(25) (%)
The first solution has rows and columns that are lexicographically ordered, whilst
the second has rows and columns that are anti-lexicographically ordered. There is

thus no solution in which the rows are lexicographically ordered and the columns
are anti-lexicographically ordered.

Lexicographically ordering the rows (columns) breaks all the row (column)
symmetries. However, lexicographically ordering both the rows and the columns
does not break all the compositions of the row and column symmetries.

Example 3. Consider a 3 x 3 matrix of 0/1 variables, z;;, with the constraints
that ;1 + 242 + 23 > 1 and Eij z;; = 4. This model has both row and column



symmetry. The following two symmetric solutions have lexicographically ordered
rows and columns:

These solutions are symmetric, as one can move from one to the other by swap-
ping the first two rows and the last two columns. Swapping any rows or columns
individually breaks the lexicographic ordering. Thus, lexicographically ordering
both the rows and the columns does not break all the compositions of the row
and column symmetries.

However, our experimental results (see Section 6) suggest that lexicographi-
cally ordering both the rows and the columns breaks enough symmetries to be
useful practically.

4 Extensions

We now consider a number of extensions that extend the utility of our results
considerably.

4.1 Higher dimensions

Many problems can be effectively modelled and efficiently solved using matrix
models with a matrix of more than two dimensions. For example, the social
golfers problem can be modelled with a 3-d 0/1 matrix whose dimensions cor-
respond to weeks, groups, and players [17]. A variable x;;; in this matrix is 1
iff in week ¢ player j plays in group k. This matrix model has symmetries along
each of the three dimensions: the weeks are indistinguishable, and so are the
groups and players. We now generalise the lexicographic ordering constraint to
any number of dimensions to break some of these symmetries.

Consider a 2-d matrix. If we look along a particular dimension, we see 1-
d vectors at right angles to this axis. To break the symmetries, we order these
vectors lexicographically. Now consider a 3-d matrix. If we look along a particular
dimension, we see 2-d slices of the matrix that are orthogonal to this axis. To
break the symmetries, we need to order these slices. One way is to flatten the
slices onto vectors and lexicographically order these. In n dimensions, we see
slices that are n—1 dimensional hypercubes, which can be compared by flattening
onto vectors and lexicographically ordering these.

Definition 1. An n-dimensional matriz X, with n > 1, is multi-dimensionally
lexicographically ordered iff the following conditions hold:

Vi flatten(X[i][]...[]) <ies flatten(X[i +1][]...[])
Vj flatten(X[][5]...[]) <ieo flatten(X[][j +1]...[])

vk fatten(X[1[ ] [£]) <tes fatten(X[ ][ 1... [k +1])



where X[ ]...[ J][ ]---[ ] denotes the n — 1 dimensional hypercube obtained
by taking the slice of X at position i in the dimension where [i] appears in
[1---[1E[]---1], and where flatten is used to flatten a slice of a matriz into a
1-d vector and is defined by:

flatten(X[1..m]) = X[1..m]
flatten(X[1..m][ ]...[ ]) = append( flatten(X[1][]..-[]),

fatten(X[m][]...[ 1))

with append(Vi,...,V,,) denoting the left-to-right concatenation of the 1-d vec-
tors Vi,..., V.

As in the 2-d case, we can show that this multi-dimensional lexicographic
ordering breaks some of the symmetries. Unfortunately, it does not break all the
symmetries as the 2-d counter-examples generalise to other numbers of dimen-
sions.

Theorem 2. For a matrix model with symmetry along each dimension in some
n-dimensional matriz, where n > 1, each symmetry class of assignments has an
element where that matriz is multi-dimensionally lexicographically ordered.

Proof: A proof for the 3-d case is in [5]; it generalises to any number of
dimensions. O

4.2 Partial symmetry

We may only have partial row or column symmetry in a matrix model, namely
when only strict subset(s) of the rows or columns of one of its matrices are
indistinguishable. We here show through an example how to address this.

Ezample 4. In a 2-d 0/1 matrix model of the rack configuration problem, only
the columns that correspond to racks of the same type are indistinguishable.
Suppose there are 10 racks, where the first 4 racks are of a first type, the next
3 racks are of another type, and the last 3 racks are of a third type. Then the
following candidate solutions:

— racks — — racks —
0000010000 0000 010000
0000100000 1000 000000

40100 000000 40100 000000
cards 1000 000 000 cards0000 100 000
40000 000 100 40000 000 100
1000 000000 0000100000

are not symmetric, because the first and fifth columns have been swapped al-
though they do not pertain to the same rack type. We cannot lexicographically
order all the columns in such a situation, as that would here amount to requiring



that all the racks are of the same type. However, we can use fewer lexicographic
ordering constraints to break some of the underlying symmetries: for each subset
of rows (columns) that are indistinguishable, we only state lexicographic ordering
constraints between these rows (columns).

We can also extend the 0/1 domain of the decision variables in the matrix,
and add a first row for a dummy card that is constrained as follows, say:

—> racks —
2222 333 444

cards . . . .

Lexicographically ordering all the columns will now keep the columns pertaining
to racks of the same type together and thus only break all the symmetries arising
from indistinguishable rack types.

4.3 Value symmetry

We can deal with symmetric values using the techniques we have developed above
for dealing with symmetric variables. A variable z of an n dimensional matrix
that takes a single value (or a set of values) from a domain of indistinguishable
values vy, ..., vy, can be replaced by a vector [z1, ..., 2] of 0/1 variables, with
the semantics z; = 1 < v; = z (or z; = 1 ¢ v; € z). In other words, a
variable taking a value (or a set of values) among indistinguishable values is
replaced by a characteristic function, whose variables take values that are not
indistinguishable. This converts indistinguishable values into indistinguishable
variables, which become a new dimension in the now n + 1 dimensional matrix.

Ezample 5. Consider a 2-d matrix model of the progressive party problem [19].
A variable z;; in its matrix takes as value the host boat visited by guest ¢ in
period j. Now, host boats of the same capacity are indistinguishable. We can
turn this partial value symmetry into a partial variable symmetry by channelling
into a new 3-d 0/1 matrix that has no value symmetry. A variable y;;;, in this
new matrix is 1 iff the host boat k is visited by guest ¢ in period j. Channelling
constraints of the form y;;, = 1 <+ k = x;; can thus link the two matrices.
The new matrix model has partial symmetry along the third dimension of its
3-d matrix. We can therefore use lexicographic ordering constraints to break
these symmetries. Note that we do not always need to channel between the two
matrices and could thus replace the old matrix by the new one. However, it
is quite often the case that some constraints are more easily expressed on the
original matrix, and this is the case here.



The advantage of this approach is that we can use the multi-dimensional lex-
icographic ordering to deal simultaneously with symmetric variables and sym-
metric values. An alternative approach to breaking value symmetry is described
in [11], but this method currently assumes that all values in a domain are sym-
metrical. We can also use the techniques outlined in the previous sub-section to
deal with values that are only partially symmetric. Freuder addresses the case
of interchangeable values [8], but with respect to individual variables as opposed
to symmetries that hold globally between values. Again, we can support this
situation by ordering sub-rows or sub-columns.

5 Breaking All the Symmetries

It is always possible to break all the symmetries. In [3], a method is presented for
adding a lexicographic ordering constraint for each symmetry of the problem.

Example 6. The set of all compositions of the row and column symmetries of a
2 x 3 matrix

r1 T2

r3 Ta

r5 T6
can be broken by the following 11 constraints:

[x1, %2, 23,24, %5, T6] <iex [T3,T4,21,%2,T5, 6], that is [x1,T2] <ies [T3, 4]

<
[$1,$2,$3,$4,.’E5, 6 S

lex [$1,$2,.’E5,.Z’6,.Z'3, 4[5 that is [$37$4] Slez [m57$6]

—

T2,%4, ZUG]
<iex [T4,%3,T6, Ts5, T2]
<tez [T6,T5, %2, T1,T4]
T2, Te, Ts]

.'L'4,$3,-'176]

(1, %2, %3, T4, X5, T6] <iex [T2,T1,%4,T3,T6,T5], that is [x1,23,25] <iex

[$1,$2,$3,$4,$5, 6 Slez [.'13'4,513'3,556,335,55'2, 1]y that is [1171,113'2,553,554,335

—

]
]
]
[21, %2, T3, %4, T5, T6] <iex |T6,T5, T2, T1,%a, T3], that is [x1, T2, 23,24, 25
]
(%1, 22,73, 24, 25, T6] <ice [T4,23,T2,21,%6,25), that is [z1,22,25] <iee
[2171,$2,273,-734,$5, 6]
[331,302,173,-774,185, 6]
[$1,$2,$3,$4,»’U5, 6]
]

[.’1)1,.’L'2,.5C3,.Z'4,.’E5,.’L'6

— o

1'6;275:1'4]

!
!
lex [T5,26,23, %4, T1,T2], that is [x1,T2] <ies [T5, T6]
!
!

x
x
x
x

[3&'1,1’2,(63,.’1;'4,1175,1'6
x
T ex [T6,T5,Ta,%3,Ta,21], that is [T1,%2, 23] <iex
x
x

4]
s
1]
s3]
lex %2, 21, %6, T5, T4, 3], that is [x1,23,24] <iex
s
1]
2]
ez [£3,%4,T5, %6, L1, 22, that is [T1, T2, T3, T4] <iex [T3,24,T5, T6]
]

<
<
<
<
<
<

ex [T5,%6,T1,T2,L3, 4], that is [, %2, Ts5, 26| <iex [T5,T6, L1, 2]

The first two constraints arise from the indistinguishability of the first two rows
and the last two rows, respectively, whereas the third constraint arises from
the indistinguishability of the two columns. The remaining constraints arise
from the compositions of these row and column symmetries. These constraints
were obtained by first determining the 2! - 3! = 12 permutations of the vector
[21, %2, 3,24, T5, 6] Obtained by building the 3! concatenations of the row vec-
tors for each of the 2! permutations inside the rows, and then constraining an
arbitrary one of these 12 permutations, namely [z, 22, 23, 24, T5, Zg] here, to be
the lexicographically smallest one.



In general, an m x n matrix has m!-n! — 1 symmetries except identity, gen-
erating thus a super-exponential number of lexicographic ordering constraints.
Hence this approach is not always practical, so we now identify three special
cases where all compositions of the row and column symmetries can be broken
by a polynomial (and even linear) number of constraints.

First consider the case where all the values in the matrix are distinct. Such
matrix models are common. For example, this happens in the single-round tour-
nament scheduling problem, when the matrix entries are ordered pairs of teams.

Theorem 3. If a matriz model with row and column symmetry in some 2-d
matriz, as well as with a constraint requiring all the values in that matriz to
be distinct, has a solution, then each symmetry class of solutions has a unique
member with the largest value placed in the bottom-right corner as well as the
last row and the last column ordered.

Proof: Given a solution, the row occupied by the largest value contains distinct
values that can be permuted by ordering the columns. By ordering this row,
we break all possible column symmetries and fix the sequence of the columns.
Similarly, the column occupied by the largest value contains distinct values that
can be permuted by ordering the rows. By now ordering this column, we break
all possible row symmetries, and fix the sequence of the rows, while placing the
largest value in the bottom-right corner of the matrix. All the compositions of
the row and column symmetries are thus broken, because we have constructed
a unique symmetric solution. O

It is therefore the symmetries between identical values that make it difficult
to break all the compositions of the row and column symmetries.

In fact, our proof shows that we break all the symmetries even if the other
rows and columns contain repeated values. Ordering the row and column with
the largest value will fix all the other values in the matrix in a unique way. So we
do not need every value in the matrix to be distinct (although this is sufficient
to make the row and column with the largest value contain no repeated values).

Next, even when matrices have repeated values, it is still possible in cer-
tain situations to break all symmetries by means of a polynomial number of
symmetry-breaking constraints. In particular, this is the case for 2-d 0/1 ma-
trices with a single 1 in each row. Such matrix models are quite common. For
example, the 2-d matrix we used in the rack configuration problem has this form.

Theorem 4. If a matriz model with row and column symmetry in some 2-d
0/1 matriz, as well as with a constraint requiring a single 1 in each row of
that matriz, has a solution, then each symmetry class of solutions has a unique
solution with the rows ordered lexicographically as well as the columns ordered
lexicographically and by their sums.

Proof: Given a solution, by Theorem 1, there is a symmetric solution with
the rows and columns lexicographically ordered. In that solution, the top-right
corner must contain a 1. Suppose that in the next row down, the 1 occurs to



the right of where it does in this row. Then the next row is not lexicographically
larger. Suppose that it occurs more than one column across to the left. Then
the columns in between are not lexicographically larger. Hence, the 1 in the
next row down must occur either directly below or one column to the left. The
only freedom is in how many consecutive rows have 1s in the same column. This
symmetry is broken by ordering the sums of the columns. All the compositions
of the row and column symmetries are broken, because we have constructed a
unique symmetric solution. [

Note that we can have the column sums in increasing or decreasing order,
depending on which is preferable.

Finally, all the symmetries can be broken with a linear number of con-
straints when all the rows, seen as multisets, are distinct. We say that a vector
vy is multiset-lexicographically smaller than another vector vy if sort(v) <jeq
sort(vs), where sort(v) denotes the ordered permutation of vector v. For in-
stance, the vector [0, 1,2, 1, 1] is multiset-lexicographically smaller than the vec-
tor [0,3,1,1,1] because [0,1,1,1,2] <, [0,1,1,1,3].

Theorem 5. If a matriz model with row and column symmetry in some 2-d
matriz, as well as with a constraint requiring all the rows of that matriz to be
distinct as multisets, has a solution, then each symmetry class of solutions has a
unique solution with the rows multiset-lexicographically ordered and the columns
lexicographically ordered.

Proof: Given a solution, we can first multiset-lexicographically order the rows.
Because the rows are distinct as multisets, this fixes the order of the rows. We
can now order the columns lexicographically without changing the multiset of
any row. All the compositions of the row and column symmetries are broken,
because we have constructed a unique symmetric solution. [

6 Experimental Results

To test the ability of lexicographic ordering constraints to break the compositions
of row and column symmetries, we ran some experiments on balanced incomplete
block design (BIBD) generation. This is a standard combinatorial problem from
design theory. It has applications in experimental design and cryptography (see
prob028 at www.csplib.org for more details).

A BIBD is an arrangement of v distinct objects into b blocks, such that
each block contains exactly k distinct objects, each object occurs in exactly r
different blocks, and every two distinct objects occur together in exactly A blocks.
A BIBD instance is thus determined by its parameters (v, b, 7, k, A). One way of
modelling a BIBD is in terms of its incidence matrix, which is a v x b 0/1 matrix
with exactly r ones per row, k ones per column, and with a scalar product of
A between any pair of distinct rows [6]. This matrix model has row and column
symmetry since we can permute any rows or columns freely without affecting any
of the constraints. This kind of symmetry is often partially broken by setting the

10



distinct |[row & col lex|set 1st row & col row lex col lex

Instance #sol ||#sol time #sol time #sol time #sol time
(7,7,3,3,1) 1 1 1.05 216 8 30 3 30 4
(6,10, 5, 3,2) 1 1 0.95 17,280 332 60, 480 3,243 12 2
(7,14,6, 3,2) 4 24 10.63| > 90,448 —| > 68,040 — 465 55
(9,12,4,3,1) 1 8 28.14] >5,340 — >342 - 840 1,356
(8,14,7,4,3) 4 92 171.00f > 5,648 —| >2,588 —|> 5,496 -
(6,20, 10, 3,4) [unknown|| 21  10.30|> 538,272 —|> 429, 657 — 73 20

Table 1. Experimental results on BIBD instances

first row and the first column, as this is a cheap but effective method. However,
this breaks less symmetry than lexicographically ordering both the rows and the
columns, as shown next.

Table 1 shows our experimental results on some BIBD instances. We used
the ECLIPSE toolkit as it has a lexicographic ordering constraint. The instances
in this table are also used in [14,15]. We only present a representative sample
of our experiments. We enforced a lexicographic ordering between neighbouring
pairs of rows and columns (row & col lex). We also include the results when
we set the first row and the first column (set 1st row & col), as well as when
we impose lexicographic ordering constraints only on the rows (row lex) or only
on the columns (col lex). For each instance, we show the number of distinct
solutions (distinct #sol), the number of symmetric solutions being always in
excess of 2.5 million, as well as the total number of solutions found (#sol) and
the run-times (time, in seconds, or a “—” whenever 1 clock hour was exceeded,
in which case we report the number of solutions found at that moment) for each
of the four symmetry-breaking techniques listed above.

With the row and column lexicographic ordering constraints, we labelled
along one row and then down one column, and so on, as this is more efficient
than labelling just along the rows or just down the columns, on these instances.
However, there are some instances (not shown in the table) where labelling along
the rows is much more efficient than labelling along the rows and columns. With
the first row and column set, the best labelling strategy varies from instance
to instance; we report the best results achieved among the three strategies.
Indeed, the objective was to get, within reasonable amounts of time, numbers
of solutions that can be compared, rather than to compare the times needed
to do so. The times are only indicated to reveal that our symmetry-breaking
techniques are cost-effective compared to an existing one. With row lexicographic
ordering constraints, the best strategy is to label the columns, and with column
lexicographic ordering constraints, the best strategy is to label the rows.

The table reveals that the column lexicographic ordering constraints are much
more efficient than the row ones. This is true for many other instances (that are
not shown in the table). We conjecture that the scalar product constraint so
tightly constrains the rows that little work is left to be done by the row lexico-
graphic ordering constraints. The column lexicographic ordering constraints act

11




orthogonally and so are more constraining. The results also confirm that lexico-
graphically ordering the rows and columns can break most of the compositions
of the row and column symmetries.

In [15], a binary CSP model encoded in SAT that breaks symmetries in a
different way was proposed to solve several BIBD instances using SATZ, WSAT,
and CLS. All its instances could be solved fast enough with our 2-d 0/1 matrix
model using row and column lexicographic ordering constraints. For example,
our model solves the instance (8,14,7,4,3) in 171 seconds, while this instance
was not solved in several hours with any algorithm or encoding in [15].

6.1 Experiments with Value Symmetry

To test the efficacy of channelling to an 0/1 matrix in order to break value
symmetry with lexicographic ordering constraints, we experimented with Schur’s
Lemma (prob 015 in CSPlib). The problem is to put n balls, labelled {1,...n},
into 3 boxes so that for any triple of balls (z,y,2) with  + y = z, not all are in
the same box. A natural model consists of a one-dimensional matrix of variables
with domain size 3, each element of which corresponds to a particular box. The
boxes, and therefore the values, are symmetrical. We tested this model with no
symmetry breaking and with Gent’s method [11]. A second model channels to
an 0/1 matrix of balls x boxes. In this model, a row corresponds to the contents
of a box. Hence, we can use lexicographic row ordering to break the symmetry.

Table 2 summarises the results. Both symmetry breaking methods result in a
dramatic reduction in the number of solutions discovered and the size of search
tree. Gent’s method appears to propagate slightly before the lexicographic ap-
proach, hence the (negligible) difference in terms of fails and choices. Given three
boxes, we require just two lexicographic ordering constraints between adjacent
rows of the 0/1 matrix. Although Gent’s method requires fewer extra variables
than the lexicographic approach, each has a relatively large domain. This coupled
with O(n) extra constraints results in the gap in overall performance.

n || No Symmetry Breaking Gent’s Method Lexicographic
Fails |Choices| Time| Solns ||Fails| Choices| Time|Solns||Fails| Choices| Time|Solns
15| 7878 | 25451 | 0.6s |17574||1313| 4241 | 0.6s [2929|(1317| 4245 | 0.2s |2929
16(|10356| 25067 | 0.6s |14712||1726| 4177 | 0.6s |2452|(1730| 4181 | 0.2s |2452
17](11970| 24029 | 0.6s |12060{|1995| 4004 | 0.7s |2010 (|1999| 4008 | 0.2s |2010
18{|11970| 19025 | 0.6s | 7056 ||{1995| 3170 | 0.7s [1176((1999| 3174 | 0.2s |1176
19](12132| 16391 | 0.6s | 4260 |{2022| 2731 | 0.7s | 710 |[2026]| 2735 | 0.2s | 710
20(|11976| 14117 | 0.5s | 2142 |[1996] 2352 | 0.8s | 357 ||2000| 2356 | 0.2s | 357
21{|10878| 11783 | 0.5s | 906 |[1813| 1963 | 0.7s | 151 ||1817| 1967 | 0.2s | 151
22{|110206| 10397 | 0.5s | 192 |[1701| 1732 | 0.8s | 32 |[1705| 1736 | 0.2s | 32
23(1 9738 | 9755 |0.5s| 18 |[1623| 1625 | 0.8 3 ||1627| 1629 |0.2s| 3
2411 9072 | 9071 | 0.5s 0 1512| 1511 | 0.8 0 ||1516| 1515 |0.2s| O

Table 2. Experimental results on Schur’s Lemma
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7 Related Work

There is currently much interest in symmetry in constraint satisfaction problems.
The existing approaches can be broadly categorised into five types.

The first approach, deployed here, adds symmetry-breaking constraints to
the model in an attempt to remove some symmetries before search starts [16, 3].

A second method adds symmetry-breaking constraints during search to prune
symmetric branches (e.g., [1], the global cut framework (GCF) [7], and symmetry-
breaking during search (SBDS) [12]). A disadvantage of methods like SBDS is
that, at each node in the search tree, a constraint for each symmetry is added,
but that, for matrix models, there is a super-exponential number of symmetries
that have to be treated. Recently, promising results on combining the dynamic
SBDS with our static pre-search approach [5] have been reported for matrix
models [20], especially for combined methods that break some of the symmetries
using row sum ordering and column lexicographic ordering.

Third, in symmetry-breaking via dominance detection (SBDD) [4], the search
procedure is modified by adding a dominance check that checks if the current
assignment is symmetric to a previously encountered assignment. Such a domi-
nance check is problem-specific.

A fourth approach is to break symmetry by means of a heuristic variable-
ordering that directs the search towards subspaces with a high density of non-
symmetric solutions (e.g., [14]).

Lastly, it is sometimes possible to remodel a problem to remove some sym-
metries, for example via the use of set variables. However, this can produce a
more complex model [18].

All of these approaches would benefit from an efficient means of automatic
symmetry detection. However, symmetry detection has been shown to be graph-
isomorphism complete in the general case [2]. Therefore, it is often assumed that
the symmetries are known by the user. Since matrices of decision variables are
common in constraint programs [6], and since rows and columns in such matrices
are often indistinguishable, making matrices first-class objects in the modelling
language would give a heuristic symmetry-detection technique obvious clues as
to where to look.

8 Conclusions

We have identified an important class of symmetries in constraint models: row
and column symmetries. We have shown that we can lexicographically order
both the rows and the columns to break some of these symmetries. Whilst lexi-
cographically ordering the rows breaks all the row symmetries and lexicograph-
ically ordering the columns breaks all the column symmetries, lexicographically
ordering both the rows and the columns fails to break all the compositions of
these symmetries. Nevertheless, our experimental results show that this can be
effective at dealing with these compositions of the row and column symmetries.
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We have extended these results to cope with symmetries in any number of di-
mensions, with partial symmetries, and with symmetric values. Finally, we have
identified a number of special cases where all compositions of the row and col-
umn symmetries can be broken by means of adding only a linear number of
constraints.

Having established the utility of lexicographic ordering, there is a clear need
for efficient methods for establishing generalised arc consistency on constraints
that impose this ordering. A first step is to consider lexicographic ordering be-
tween a pair of vectors, which is our current focus [10]. We can then consider
enforcing generalised arc consistency on sets of such constraints. Furthermore, in
Example 6 the choice of which permutation is to be the lexicographically small-
est is arbitrary, but the performance of the variable-and-value-ordering depends
on this choice. Work on this topic is in progress.

In other future work, we intend to find ways of detecting the row and col-
umn symmetries automatically. Also, given several matrices with symmetry and
with channelling constraints in-between them, it is not clear how lexicographic
orderings on the matrices interact. Finally, we will investigate ways of detect-
ing redundancies among the super-exponential number of lexicographic ordering
constraints that are necessary for breaking all the symmetries. For instance, in
Example 6, the last three constraints are logically redundant.
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