Phase Transitions and Annealed Theories:
Number Partitioning as a Case Study

Ian P. Gent' and Toby Walsh?

Abstract. We outline a technique for studying phase transi-
tion behaviour in computational problems using number par-
titioning as a case study. We first build an “annealed” the-
ory that assumes independence between parts of the number
partition problem. Using this theory, we identify a parame-
ter which represents the “constrainedness” of a problem. We
determine experimentally the critical value of this parame-
ter at which a rapid transition between soluble and insoluble
problems occurs. Finite-size scaling methods developed in sta-
tistical mechanics describe the behaviour around the critical
value. We identify phase transition behaviour in both the deci-
sion and optimization versions of number partitioning, in the
size of the optimal partition, and in the quality of heuristic
solutions. This case study demonstrates how annealed theo-
ries and finite-size scaling allows us to compare algorithms
and heuristics in a precise and quantitative manner.

1 Introduction

Phase transition behaviour has recently received considerable
attention in the AT community [2, 14]. Whilst random prob-
lems are typically easy to solve, hard random problems can
be found at a phase transition [2]. Problems from the phase
transition are now routinely used to benchmark satisfiability
and constraint satisfaction algorithms. In this paper, we out-
line an approach for identifying such phase transitions using
“annealed” theories. In addition, we show how phase transi-
tion behaviour can be used to provide precise and quantitative
comparisons between algorithms and heuristics.

To illustrate our approach, we present number partitioning
as a case study. Given a bag of n positive integers we partition
the baginto two disjoint bags. Let A be the difference between
the sums of the two bags. The decision problem is to deter-
mine if there is a partition such that A < d. The optimization
problem is to determine the minimum A. If A <1 then the
partition is perfect otherwise we call it imperfect. Through-
out this paper, we consider numbers drawn uniformly and at
random from (0,]. Similar results hold, however, for other
distributions (e.g. a Poisson distribution).

Number partitioning is of both considerable theoretical and
practical importance. It is one of Garey and Johnson’s six ba-
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sic NP-complete problems that lie at the heart of the theory of
NP-completeness [4]. Asit is the only problem about numbers,
it is often the natural choice for NP-completeness proofs of
other number problems (e.g. bin packing, quadratic program-
ming, and knapsack problems). There are also many practi-
cal applications including multiprocessor scheduling, and the
minimization of VLSI circuit size and delay.
Our results correct the claim of Fu that “...
NP complete problem, that of random number partitioning,

at least one

can be solved exactly in statistical mechanics and no phase
transition of any kind is found ...” [3]. By means of an an-
nealed theory, we identify a simple phase transition for num-
ber partitioning. It remains an open question if there is any
NP-complete problem which lacks a phase transition.

2 Annealed theory

We first compute the expected number of perfect partitions
(see Section 6 for an extension to imperfect partitions). Con-
sider the binary representation of the n integers that are being
partitioned (the choice of base turns out to be irrelevant). We
also consider just those bags with an even sum. Each bag must
add to the same target sum. A nearly identical analysis can be
given for bags with an odd sum. To develop an annealed the-
ory, we average probabilities independently over the different
digit positions® On average, we expect just 1/2 the possible
partitions to add up to a number with the same parity as
the least significant bit of the target sum. We can apply the
same argument to each binary digit in turn, of which there
are log,(!). If we assume independence of each bit position,
a partition is perfect in a fraction, (1/2)1°g2(l) (that is, 1/1)
of the 2™ possible partitions. The expected number of perfect
partitions, {Sol) is therefore simply,

n
(Sol) = 2.
l
The exact analysis of number partitioning problems has been
considerably more difficult. Karmarkar et al. [11] have deter-
mined bounds on the probability distribution for the optimum
partition for a bag of real numbers drawn from the interval
[0,1]. Using some complicated analysis based on second mo-
ments, they showed that the size of the median optimal parti-
tion is ©(y/n/2"), but were unable to derive the mean size of

3 This is by analogy with an annealed theory of materials which
averages independently over sources of disorder. Both give good
approximations in the thermodynamic limit.



the optimal partition. Interestingly, using a simple and heuris-
tic argument based upon a drunkard’s walk, Karmarkar et al.
were able to propose quickly the result ©(y/n/2").

Similar annealed theories have been constructed in con-
straint satisfaction [17, 16, 7] (assuming independence be-
tween constraints) and in propositional satisfiability [12] (as-
suming independence between clauses).

3 Constrainedness

Phase transition behaviour depends on the constrainedness
of problems. Problems which are very over-constrained are
insoluble and it is usually easy to determine this. Problems
which are very under-constrained are soluble and it is usually
easy to guess one of the many solutions. A phase transition
occurs inbetween when problems are “critically constrained”
and it is difficult to determine if they are soluble or not.

How tightly constrained a problem is depends on both the
expected number of solutions, {Sol) and the problem size, n.
[6] defines a constrainedness parameter,

lo Sol
K =qer 1— g2 (( >) (1)
n
The “1-” simply rescales & so that it lies in the interval [0, co).
If k is small then the problem is underconstrained and there
are a large number of solutions compared to the problem size.
If & 1s large then the problem is overconstrained and there are
very few or no solutions. Substituting the annealed value of
(Sol) into Equation (1) and simplifying gives,
log, ()

n
As in [17, 16] for constraint satisfaction, we predict that a
phase transition for number partitioning will occur when {(Sol)
1. Or equivalently when k &~ 1. In the next section, we test
this hypothesis experimentally.

This definition of a constrainedness parameter, & is useful
in other problem domains. In satisfiability, given a formula
with n variables and [ clauses each of which has k literals,
& in Equation (1) is —log,(1 —1/2%)1/n (that is, a constant
times {/n for fixed k). A phase transition in satisfiability oc-
curs around a critical value of I/n [14]. In constraint satisfac-
tion, given n variables, a domain size of m, constraint den-
sity of p; and a tightness of pz, & in Equation (1) becomes
2=lp logm(1_1p2). A phase transition in solubility again oc-
curs around a critical value of this parameter [7].

Korf (personal communication) has predicted that a phase
transition occurs when the median optimal difference is 1,
and that this coincides with a peak in search cost. Using the
asymptotic value for the median optimal difference due to

Karmarkar et al. [11], Korf suggested that the phase transition
SRl

on

occurs when = 1. This agrees asymptotically with k = 1.

4 Phase transition

To determine the critical value of x, we plot in Figure 4 the
probability that a bag with an even sum has a perfect parti-
tion against x for n from 6 to 30, and log,({) from 0 to 2n.
In this and all subsequent experiments 1000 problems were
generated at each value of [ and n. Similar results are seen
using bags with an odd sum, and bags with both odd and even
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sums. As predicted, a phase transition occurs around x & 1
with the transition sharpening as n increases.
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Figure 1. Probability of a perfect partition against .

We next applied finite-size scaling methods [1] to determine
how the probability scales with problem size. Around some
critical point, we predict that problems of all sizes will be
indistinguishable except for a change of scale. This suggests,

).on'M) (@)

Prob(perfect partition) = f((%
c
where f is a fundamental function, k. is the critical point,
and n'/¥ provides the change of scale. The fraction, (x —
kc)/ke plays the role of the reduced temperature, (T'—1T.)/T.
in physical systems. Equation (2) has a fixed point where &
equals k. and for all n, the probability is the constant value
f(0). To estimate «., we take the fixed point to be that where
the spread in probabilities is smallest. This gives k. = 0.96 £+
0.02, where the errors indicate the range giving less than 9%
spread. To compute v, we assume (2) holds at the point of
50% probability, and calculate the median estimate for v. This
gives ¥ = 1 £ 0.3 where errors represent the upper and lower
quartiles of estimates of v. We define a rescaled parameter,

x — 0.96

Tt T 96

In Figure 2, we plot the probability of a perfect partition ex-
isting against v. This graph suggest that finite-size scaling
provides both a simple and accurate model for the scaling of
probability with problem size. A similar rescaling of the con-
strainedness parameter, x describes the finite-size scaling of
the phase transition in satisfiability [12], constraint satisfac-
tion [7] and traveling salesman problems [9].

5 Optimization cost

As in many other combinatorial problems, a peak in search
cost is associated with the phase transition in solubility. Korf
has proposed a branch and bound algorithm for finding the
optimal partition, called CKK [13]. This uses the Karmarkar
Karp (KK) heuristic based on set differencing to branch. He
has shown this can give orders of magnitude better perfor-
mance than a simple branch and bound algorithm with a
greedy heuristic for branching. He claims that CKK outper-
forms the best previously-known algorithms, and will parti-
tion arbitrarily large bags of integers with up to 12 decimal
digits.
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Figure 2. Probability of a perfect partition against .

In Figure 3, we plot the average number of nodes searched
by the CKK algorithm against the rescaled parameter, =, for
n from 6 to 30 and log,(!) from 0 to 2n. We have observed a
similar result for Korf’s greedy branch and bound algorithm
[13]. As in satisfiability [15] and constraint satisfaction [7],
finite-size rescaling of search costs offers a clear and consistent
view of how search costs varies through the phase transition
for different problem sizes. In the soluble phase problems are,
on average, easy. Problem hardness increases as we approach
the phase boundary. Interestingly, problems appear to remain
uniformly hard for CKK in the insoluble phase away from the
phase boundary. Experiments out to larger ! do not show
problems becoming significantly easier (or harder) well away
from the phase transition. This reflects the fact that a lot
of search is needed to determine that a problem is insoluble.
More sophisticated pruning techniques (for example, using
bounds based upon modular arithmetic) can make such over-
constrained problems easier and turn this easy-hard pattern
into the more traditional easy-hard-easy pattern [8].
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Figure 3. Average nodes searched by CKK against .

By plotting the maximum average search cost for all [ at
each value of n for both the CKK and the greedy branch
and bound algorithms [13], we estimate that the worst aver-
age search costs grow as approximately 2°%°% for the CKK
algorithm and approximately 2°?°Y for the greedy branch
and bound algorithm. Note that simply computing all possi-
ble partitions would give a maximum search costs that grows
as 2%. This confirms quantitatively Korf’s claim that “CKK
is asymptotically more efficient than the standard [greedy
branch and bound] algorithm” [13].
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6 Imperfect partitions

We repeat our derivation of an “annealed” theory to identify a
constrainedness parameter for partitioning into less than per-
fect partitions (i.e. where the difference, d is bigger than 1).
For simplicity assume d is a power of 2 and ! > d. The argu-
ment extends with little change if we drop these assumptions.
We now don’t care about the bottom log,(d) bits. We do,
however, insist that the top log,(I) —log,(d) bits in each bag
add up to a particular parity. This gives (Sol) = 2" /(1 — d).
Substituting this annealed value into Equation (1) gives,

log,(1/d)

. .
As expected, a phase transition again occurs around the value
k = 1. This phase transition rescales identically to that for
perfect partitioning. In Figure 4, we plot the probability that

a bag has an imperfect partition against x for n = 24, log,(d)
from 1 to 5 and 10, and log,(!) from 0 to 2n.
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Figure 4. Probability of an imperfect partition against .

Search cost again peaks at the phase transition. In Figure 5,
the average number of nodes searched by the CKK algorithm
against £ again for n = 24, log,(d) from 1 to 5 and 10, and
log, (1) from 0 to 2n. We run the CKK algorithm as a decision
procedure, terminating search immediately a partition less
than or equal to d is found. Note that all problems in this
graph are of the same size, n so that we do not need to rescale.
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Figure 5. Average number of nodes searched by CKK finding
an imperfect partition against k.
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7 Multi-way partitioning

We repeat our derivation of an “annealed” theory to identify
a constrainedness parameter for multi-way partitioning. We
wish to partition the bag of n numbers into m bags (m > 2)
such that the maximum difference between any two bags is d.
We consider just perfect partitions. The extension to imper-
fect partitions is analogous to that for 2-way partitioning. We
assume that the bag has a sum which is an exact multiple of
m and d = 0 (this assumption can be dropped if we let d = 1).
We repeat our argument about digit positions to derive the
expected number of perfect partitions. If we are partitioning a
bag of numbers m-ways, then at each digit position, the first
m — 1 bags must each have a given sum modulo 2 and this is
expected to happen with probability (1/2)™~'. The last bag
is guaranteed to have the right digit sum if the first m — 1
do. As there are m™ possible m-way partitions and log, (I) bit
positions, the expected number of perfect partitions is,

1

(Sol) = m".(2

Jm=1log(1),

Substituting this annealed value into Equation (1) gives,

(m —1)log,, (1)

n

We again expect that a phase transition occurs around x =
1 and that it will rescale identically to 2-way partitioning.
In Figure 6, we plot the probability that a bag has a 3-way
partition against v for n = 6 to 24 and log,(I) from 0 to 2n.

Figure 6. Probability of a perfect 3-way partition against .

Search cost again peaks at the phase transition. In Fig-
ure 7, we plot the average number of nodes searched by the
CKK algorithm for 3-way partitioning [13] against 7. The sec-
ondary peak at » = 18 in the soluble region is almost entirely
due to one hard problem which took 94896 nodes to solve
following a poor branching decision early in search. For com-
parison, the median problem at this point took just 17 nodes
(i.-e. no search was needed to find a perfect 3-way partition).
We conjecture that the greater incidence of such “hard” prob-
lems in 3-way partitioning compared to 2-way partitioning is
a consequence of the larger branching rate and the resulting
larger probability of a branching mistake. In graph-colouring
and satisfiability [10, 5], similar “hard” problems occur in the
soluble phase following early branching mistakes.
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Figure 7. Average number of nodes searched by CKK finding
the optimal 3-way partition against +.

8 Optimal partition

Finite-size scaling also offers a good view of the size of the
optimal partition. In Figure 8, we plot the average size of
the optimal 2-way partition against v for n = 6 to 24 and
log,(!) from 0 to 2n. For ¥ << 1, all problems have a perfect
partition. As half the problems have an even sum and half
have an odd sum, Agptimar = 1/2.
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Figure 8. Average size of optimal partition against ~.

By measuring the gradient and intercept in Figure 8, and
substituting Equation (2) for v, we estimate that the average
size of the optimal partition is given by,

1 l

2. ).

(Aopt) = max(g, o

9 Heuristic partitions

Finite-size scaling also provides a quantitative method for
comparing heuristics. To use finite-size scaling to compare
heuristics, we need to substitute different values of k. into
the definition of . In Figure 9, we plot the average size of
the KK partition (that is, the possibly sub-optimal partition
found by the KK heuristic) against v for n = 6 to 24 and
log,(!) from 0 to 2n. To obtain a good fit, we set k. = 0.40
and not 0.96 as previously. Recall that &, is the fixed point for
the rescaling. It gives the value of the constrainedness param-
eter at which we move between different phases. For k < 0.40,
the KK heuristic almost always returns the perfect partition.
For k > 0.4, the quality of the solution returned decreases as
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n increases. In the region 0.40 < k < 1, the KK heuristic per-
forms poorly as n increases. This is despite the fact that these
problems have perfect partitions that can often be found with
little search.
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Figure 9. Average size of KK partition, (Axx) against 7.

Performance guarantees for optimization procedures are of-
ten given as a ratio of the optimal value. Since the optimal
partition can have a difference of zero, such a ratio would be
undefined for perfect partitions. We therefore make a “mean-

field” approximation that, (%KK-) ~ LEK) The mean op-
opt (Aom)

timal partition size, {Aop¢) is at least 1/2 so the performance
ratio is always defined. In Figure 10, we plot the average per-
formance ratio for the KK heuristic against v again for n = 6
to 24 and log,(!) from 0 to 2n. The maximum performance
ratio grows approximately as a simple exponential in n.
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Figure 10. Average performance ratio for the KK heuristic,
Arr/Aopr against 7.

We see very similar behaviour with the greedy heuristic.
This assigns the largest remaining number to the smaller par-
tition. However, we now need to rescale around x. = 0.15.
Finite-size scaling thus provides us with a very simple and
quantitative method for comparing heuristics. For x < 0.15
both the greedy and the KK heuristics return a perfect par-
tition. For 0.15 < k < 0.40, the greedy heuristic but not the
KK heuristic performs poorly as n increases. This is despite
the fact that these problems have perfect partitions that are
usually found by the KK heuristic. And for 0.40 < x < 1,
both the greedy and the KK heuristics perform poorly as n
increases, again despite the fact that these problems have per-
fect partitions that can be found often with little search.
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10 Conclusions

We have outlined a technique for studying phase transition
behaviour based upon “annealed” theories and finite-size scal-
ing. Using an annealed theory, we identified a “constrained-
ness” parameter for number partitioning. Contrary to the
claims of Fu [3], a phase transition occurs at a the critical
value of this parameter. Hard number partitioning problems
are associated with this transition. Finite-size scaling meth-
ods developed in statistical mechanics describe the behaviour
around this critical value. We were able to identify phase
transition behaviour in both the decision and optimization
versions of number partitioning, in the size of the optimal
partition, and in the quality of heuristic solutions. This case
study demonstrates how annealed theories and finite-size scal-
ing allows us to compare algorithms and heuristics in a precise
and quantitative manner.
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