
Adding resolution to the DPLL procedure for
Boolean satisfiability

Lyndon Drake, Alan Frisch and Toby Walsh
{lyndon,frisch,tw}@cs.york.ac.uk

Department of Computer Science, University of York,
York YO10 5DD, United Kingdom

Abstract

We study the tradeoff between inference and search in the Davis Put-
nam algorithm. We show that neighbour resolution, a restricted form of
resolution applied during search, can be simulated by applying binary res-
olution before search. We compare experimentally the cost of the two
different methods. Our results demonstrate that binary resolution during
preprocessing is generally effective at reducing both the size of the search
tree and the total search time.

1 Introduction

The original Davis-Putnam [5] algorithm for propositional satisfiability (SAT)
used resolution [12], but because of the space complexity of resolution [7] it was
soon supplanted by DPLL [4], a backtracking search procedure. DPLL based
search procedures have been the basis for almost all complete SAT solvers since
then, including the fastest currently available SAT solvers [9, 10, 13].

Recently there has been interest in using resolution in combination with
search, to reduce the amount of search required to solve SAT problems [11, 6].
The challenge involved in such techniques is ensuring that the cost of doing the
resolution does not outweigh the benefit accruing to the search procedure. Res-
olution can prune the size of the search tree, but it is only worthwhile if the time
spent on resolving is less than the time gained by reducing the search space.

We present two more techniques that combine resolution and search, and de-
scribe the relationship between them. The first technique, neighbour resolution,
uses a restricted form of resolution during search, while the second uses a single
level of binary resolution as a preprocessing step. We show that the preprocess-
ing technique can prune the search tree as much as neighbour resolution during
search, allowing us to replace expensive inference during search with a single
stage of preprocessing.

1



2 Method A: Neighbour resolution during search

Neighbour resolution is a restricted form of resolution that produces resolvents
which subsume both parents. We use neighbour resolution during complete
search by applying it at decision points in the DPLL algorithm. By adding resol-
vents that subsume both parents, we can both prune the search tree and reduce
the size of the formula. This is in contrast to most resolutions, which increase
the size of the formula by adding more clauses.

Cha and Iwama [2] first used neighbour resolution to improve performance
in a local search algorithm, ANC. By their definition, two disjunctive clauses are
neighbouring iff they differ by the sign of a single literal. For example, {x∨y∨ z}
and {¬x ∨ y ∨ z} are neighbours, while {a ∨ b ∨ c} and {¬a ∨ d ∨ e} are not.
Similarly to Cha and Iwama, we use the term “neighbour resolution” to refer to
the resolution of neighbouring pairs of clauses.

Neighbour resolution was originally used between the restarts of the ANC
local search algorithm. Neighbour resolutions are also valuable to a complete
solver because they produce a resolvent that subsumes both of its parents. These
resolvents can be used to simplify the formula by replacing a pair of clauses with
one simpler clause. For example, resolving {x∨ y ∨ z} and {¬x∨ y∨ z} results in
{y ∨ z}, which subsumes both {x ∨ y ∨ z} and {¬x ∨ y ∨ z}.

The motivation for applying neighbour resolution during search is that, al-
though SAT instances frequently contain very few neighbouring clauses, clauses
often become neighbours as literals are deleted during search. For example,
{x ∨ y ∨ z ∨ a} and {¬x ∨ y ∨ z ∨ ¬b} are not neighbours, but would become
neighbours if a was assigned false and b was assigned true.

3 Method B: Binary resolution before search

The second technique uses a single stage of binary resolution before starting
the search procedure. All possible binary resolutions (except those that would
produce a tautology) are carried out, and the resolvents added to the formula.
Once added to the formula, resolvents are not used in further resolutions. In this
section we show that a stage of binary resolution before search can have the same
pruning effect on a search tree as neighbour resolution does during search.

3.1 Definitions

Two clauses are resolvable under binary resolution if they are of the form {w}∪X
and {¬w} ∪ Y . We say that a pair of clauses are neighbours iff X = Y , and that
they are weak neighbours iff X ⊆ Y . It is obvious that all neighbours are also
weak neighbours, and that all weak neighbours are binary resolvable.

We refer to the ordered list of all assignments in effect at a particular node

2



n in a search tree by An. Assignments resulting from branching decisions,
pure literal rule applications, and unit propagation are included in An, so
An is unique to node n. An(c) means applying the assignments in their
original order to a clause c.

Given a clause c, if in the course of a search we delete literals from c then we
call the resulting clause c′ a descendant clause, and we call c the ancestor of c′.

3.2 Proofs

Lemma 1. Let c1 and c2 be two clauses at the root node of a search tree and
assume that at some node n, An(c1) and An(c2) are neighbours and
that their resolvent is c′. Then c1 and c2 are binary resolvable. Furthermore, if c
is the resolvent of c1 and c2, then An(c) = c′.

Proof. If An(c1) and An(c2) are neighbours, then from the definition of
neighbourhood we know that An(c1) = {w}∪X and An(c2) = {¬w}∪Y ,
where X = Y . From the definition of An we can see that c1 = {w} ∪ X ∪ A
and c2 = {¬w} ∪ Y ∪ B, and A and B are the sets of literals deleted from c1 and c2

respectively by An. Therefore c1 and c2 are by definition binary resolvable.
The resolvent c′ of An(c1) and An(c2) is X ∪ Y . The resolvent c of

c1 and c2 is X ∪ Y ∪ A∪ B. Applying An to c will have the effect of deleting
A and B, so An(c) = X ∪ Y , and An(c) = c′. �

Theorem 1. Consider two search trees, a and b, for a particular SAT instance.
Both trees use the same branching order. Tree a is the result of applying neigh-
bour resolution at each branching node. Tree b is the result of doing all binary
resolutions before searching. In both trees, only descendants of clauses in the
original formula (and not those that are derived from resolution) can be resolved.
Let na be the number of nodes in tree a, and nb be the number of nodes in tree b.
Then nb ≤ na.

Proof. As the branching order is the same in both trees, the only way that nb

could be greater than na is if a branch is pruned from tree a and not from tree
b. Unit propagation does not affect the pruning, as any unit clause at node n in
tree a will also be a unit clause by node n in tree b. Neither does the pure literal
rule change the situation, because the same pure literals will appear in both trees.
Both search trees apply to the same formula, so any such additional pruning in
tree a could only be the result of a clause added to a by neighbour resolution
which was not in b.

But by Lemma 1 we know that for any clause ca added to a, another clause
cb has been added to b. If ca was added at node n in tree a, then An(cb) = ca,
and so any pruning resulting from ca at node n will also occur in tree b. Because
there is no way for a branch to be pruned from tree a without the same branch
also being pruned from tree b, then nb ≤ na. �

3



3.3 Notes

We have demonstrated that any clause derived by neighbour resolution during
search is the descendant of a clause that can be derived by binary resolution at
the root of the search tree. In order to make this technique do everything that
neighbour resolution does, we would have to subsume the parents of the resol-
vents whenever an assignment made it possible to do so. A second difference
between the two techniques is that binary resolution not only generates the an-
cestors of the neighbour resolvents, but many other clauses as well.

4 Implementation

All our experiments were carried out using Swan, a SAT solver that we wrote in
order to easily try out ways of using inference during search. Swan is written in
C, and is reasonably fast (though it needs the addition of conflict clause recording
to match the performance of the fastest available solvers).

In order to resolve clauses quickly, we applied an ordering of the literals to
all the clauses (any ordering will do, so long as the literals are ordered the same
way in all clauses). This makes it possible to produce a resolvent clause with
a single pass over the clauses (i.e. in linear time in the length of the longest
clause). Swan can do many thousands of resolutions per second on our test
hardware. The time cost of each of the algorithms is almost entirely due to the
time required to identify pairs of resolvable clauses (along with any subsequent
time used in managing the added clause); the cost of actually resolving a pair of
clauses is inconsequential.

In the initial preprocessing implementation, we identified resolvable clauses
by comparing every pair of clauses in the problem. This was not cost effective,
though it did prune the search tree well. An alternative method of finding such
pairs is to use the positive and negative literal lists of each variable. This allows
us to quickly find pairs of clauses with a common variable differing only by its
sign. It is not always possible to resolve such clauses, as the resolvent might
be a tautology, but we expected it to involve a smaller number of failed clause
comparisons.

In practice, the real problem turned out to be the large number of added
clauses. Many problems have so many resolvable clauses that doing all res-
olutions adds many more clauses than were in the problem initially. To get
around this, we limited the number of resolutions so that the maximum num-
ber of clauses added was about the same number as in the original problem.

All the experiments were carried out on a dual Pentium III 750MHz with
256MB of RAM.

4



5 Results

5.1 Method A: Neighbour resolution during search

Using neighbour resolution at decision points during search was not an effective
technique. While for many problems the search space was reduced dramatically
(sometimes by two orders of magnitude), the cost involved in finding neighbours
at many different points during the search was so high that it was rare for the
solution time to decrease. We also looked at applying neighbour resolution at
only some of the search nodes without success. The level of pruning on the
search tree was encouraging, though, which is what led us to attempt to simulate
neighbour resolution using binary resolution before search.1

5.2 Method B: Binary resolution before search

1e+01 1e+03 1e+05 1e+07

1e
+

01
1e

+
03

1e
+

05
1e

+
07

Standard DPLL

D
P

LL
 w

ith
 r

es
ol

ut
io

n

Search nodes for AIM instances

1e−03 1e−01 1e+01

1e
−

03
1e

−
01

1e
+

01

Standard DPLL

D
P

LL
 w

ith
 r

es
ol

ut
io

n
Time (seconds) for AIM instances

Figure 1: Performance of preprocessing binary resolution

This version was successful, both consistently pruning nodes and showing a
time profit. Figure 1 shows a comparison between standard DPLL and DPLL
with preprocessing binary resolution, from which it can be seen that DPLL with
resolution nearly always wins. The problem instances in the graph are DIMACS
AIM instances, and the times shown include the cost of the preprocessing. Points
in the bottom right half of the graph are instances where DPLL with resolution
performed better than standard DPLL. Note that, because the branching heuristic

1Our experiments with neighbour resolution allowed resolvents to become parents in subse-
quent neighbour resolutions. This does not correspond to the definition in Theorem 1, though we
do believe that it had any significant impact on our results.

5



can see the added clauses, the number of search nodes is sometimes greater in
the resolution version than in the standard DPLL version.

Interestingly, though, on one set of DIMACS problem instances (JNH),
neighbour resolution lost in terms of both the number of search nodes and the
search time. This suggests that different techniques may be necessary for differ-
ent problem classes.2

6 Related work

Rish and Dechter [11] compared directional resolution (a form of ordered res-
olution) to search for SAT problems. Directional resolution makes it possible
to identify pairs of resolvable clauses quickly. A heuristic for choosing a good
ordering was described. They also showed that two hybrid algorithms combin-
ing resolution and search performed more efficiently than pure search (the first
algorithm used directional resolution as a preprocessing step, while the second
did resolution during search).

Van Gelder and Tsuji [6] describe 2cl, a hybrid algorithm combining reso-
lution and search. 2cl replaces the unit propagation and pure literal operations
of DPLL with a number of resolution and subsumption operations. They point
out that efficient data structures are extremely important in practical hybrid algo-
rithms. They show that their hybrid algorithm performs better than DPLL, and
the performance improvement is greater for more difficult problems.

7 Future work

We intend to alter our preprocessing algorithm to more closely simulate the effect
of neighbour resolution during search. One particularly valuable aspect of neigh-
bour resolution is that the resolvents subsume both parents. Keeping track of all
subsumptions resulting from assignments is too expensive, and so our current
preprocessing algorithm ignores subsumption. We expect to be able to reduce
the cost by only comparing resolvents with their parents during search, as these
are the only subsumptions carried out by neighbour resolution. We also plan to
limit the number of resolutions by using the branching order to predict which
clauses are likely to become neighbours.

We will also compare the current algorithm with one where the heuristic is
not allowed to consider inferred clauses. This is likely to be beneficial because
inferred clauses cannot increase the number of search nodes unless the branching
order is altered, which can only happen if the additional clauses are considered
by the branching heuristic. Ensuring that the number of search nodes cannot

2More results will appear in the full paper.

6



increase as a result of adding clauses will limit the time cost to that of doing the
resolutions.

One problem with using resolution as a preprocessing step is that some in-
stances respond better than others (e.g. the differences we observed between
the AIM and JNH problem classes). We intend to explore syntactic methods for
detecting some of these instances, thereby avoiding attempting resolution on an
instance where doing so is not worthwhile. A simple example of such a syntactic
check is to consider problems where each clause consists of either all positive
literals or all negative literals; it is impossible for a pair of such clauses to be
neighbours. For example, (a ∨ b ∨ c) and (¬a ∨ ¬b ∨ ¬c) cannot become neigh-
bours as a result of assignments. It is simple to identify instances which possess
this property, and avoid wasting time looking for resolvable pairs of clauses.

Perhaps the most interesting area we plan to look at is the interaction be-
tween conflict clause recording [8] and resolution-based simplification methods.
Conflict clause recording is used by all of the best-performing SAT solvers avail-
able, and involves generating an implied clause at each backtrack point in order
to prevent repeated exploration of dead regions of the search space. It may be
possible to combine knowledge about the branching order and conflict recording
algorithm to guide the choice of a preprocessing simplification algorithm.

A fifth possible line of research is to use neighbour resolution between
restarts in a complete solver. Restarts have proved to be very effective in prac-
tice [1], and have also been theoretically shown to reduce expected solution times
[3]. Neighbour resolution was originally applied between local search restarts
with the intention of preventing the search procedure from reaching the same
area of the search space again. Using neighbour resolution between restarts in a
complete procedure might have the same effect.

8 Summary

We have presented two techniques for adding more inference to a complete
search algorithm for SAT. The first of these techniques, neighbour resolution,
is too expensive to be effective, despite the level of pruning it achieves. The
second technique, a limited use of binary resolution as a preprocessing step, is
cost effective. In addition, we have shown that binary resolution can be used to
provide the same pruning effect as neighbour resolution. . We are planning a
number of improvements to our implementation of the preprocessing algorithm,
in particular to make it more closely follow the behaviour of neighbour resolu-
tion.

7



References
[1] L. Baptista, I. Lynce, and J. P. Marques-Silva. Complete search restart

strategies for satisfiability. In IJCAI Workshop on Stochastic Search Algo-
rithms (IJCAI-SSA), August 2001.

[2] Byungki Cha and Kazuo Iwama. Adding new clauses for faster local
search. In Proceedings of AAAI-96, pages 332–337, 1996.

[3] Hubie Chen, Carla Gomes, and Bart Selman. Formal models of heavy-
tailed behaviour in combinatorial search. In Toby Walsh, editor, Proceed-
ings of CP 2001, LNCS 2239, pages 408–421. Springer, 2001.

[4] Martin Davis, George Logemann, and Donald Loveland. A machine pro-
gram for theorem-proving. Communications of the ACM, 5:394–397, 1962.

[5] Martin Davis and Hilary Putnam. A computing procedure for quantification
theory. Journal of the ACM, 7:201–215, 1960.

[6] Allen Van Gelder. Satisfiability testing with more reasoning and less guess-
ing. In D. S. Johnson and M. Trick, editors, Cliques, Coloring, and Satis-
fiability: Second DIMACS Implementation Challenge, DIMACS Series in
Discrete Mathematics and Theoretical Computer Science. American Math-
ematical Society, 1995.

[7] A. Haken. The intractability of resolution. Theoretical Computer Science,
39:297–308, 1985.

[8] João P. Marques Silva and Karem A. Sakallah. Conflict analysis in search
algorithms for satisfiability. In Proceedings of the IEEE International Con-
ference on Tools with Artificial Intelligence, Nov 1996.

[9] João P. Marques Silva and Karem A. Sakallah. GRASP: A search algorithm
for propositional satisfiability. IEEE Transactions on Computers, 48(5),
may 1999.

[10] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:
Engineering an efficient sat solver. In 39th Design Automation Conference,
Las Vegas, June 2001.

[11] Irina Rish and Rina Dechter. Resolution versus search: Two strategies for
SAT. In Ian Gent, Hans van Maaren, and Toby Walsh, editors, SAT2000:
Highlights of Satisfiability Research in the Year 2000, volume 63 of Fron-
tiers in Artificial Intelligence and Applications, pages 215–259. IOS Press,
2000.

[12] J. A. Robinson. A machine-oriented logic based on the resolution principle.
Journal of the Association for Computing Machinery, 12(1):23–41, 1965.

[13] Hantao Zhang and Mark E. Stickel. Implementing the Davis-Putman
method. In Ian Gent, Hans van Maaren, and Toby Walsh, editors, SAT2000:
Highlights of Satisfiability Research in the Year 2000, volume 63 of Fron-
tiers in Artificial Intelligence and Applications, pages 309–326. IOS Press,
2000.

8


