
A Calculus for Rippling�David A. BasinMax-Planck-Institut f�ur InformatikSaarbr�ucken, GermanyEmail: basin@mpi-sb.mpg.deToby WalshINRIA-Lorraine, 615, rue du Jardin Botanique,54602 Villers-les-Nancy, FranceEmail: walsh@loria.frAbstractRippling is a special type of rewriting which uses annotations to guide the derivation towards aparticular goal. It has many desirable properties. For example, it terminates yet allows rules likeassociativity to be used in both directions; it is also highly goal-directed applying only those rewriterules needed to remove the di�erences between the goal and some hypothesis. Although it has beensuggested that rippling can be directly implemented via �rst-order term rewriting on annotated terms,we show that this is not possible. We describe a simple calculus we have implemented for rippling andprove that it has the desired properties. This calculus allows us to combine rippling with conventionalterm rewriting. Such a combination o�ers the
exibility and uniformity of conventional rewriting withthe highly goal-directed nature of rippling.1 IntroductionRippling is a type of rewriting developed at Edinburgh [5, 3] and independently by [8]. Although ripplingwas originally designed for inductive theorem proving, it has recently been applied with success to domainsoutwith inductive theorem proving [1, 9]. Rippling is rewriting tightly restricted by special kinds ofannotation. Consider, for example, a proof of the associativity of multiplication using structural induction.In the step-case, the induction hypothesis is, (x� y)� z = x� (y � z) and the induction conclusion is,(s(x) � y)� z = s(x) � (y � z):The annotations in the induction conclusion mark the di�erences with the induction hypothesis. Deletingeverything in the box that is not underlined gives the skeleton; this is preserved during rewriting. Bycomparison, simply removing annotations from terms gives the erasure. The boxed but not underlinedterms are wave-fronts; these are removed by rippling. The underlined parts are wave-holes; they representterms in the wave-front we would like to leave unchanged. To remove the wave-fronts, we use annotated�We thank Leo Bachmair, Alan Bundy, and Michael Rusinowitch. The �rst author was funded by the German Ministryfor Research and Technology (BMFT) under grant ITS 9102. The second author was supported by a Human Capital andMobility Postdoctoral Fellowship from the European Union. The current address for the second author is IRST, LocationPant�e di Povo, I38100 Trento, Italy. 1

rewrite rules called wave-rules which move wave-fronts in some well founded manner (usually towardsthe top of the term where cancellation can occur). In this example, we need the wave-rules,s(U) � V) (U � V) + V (1)U + V �W) U �W + V �W (2)Rippling using (1) yields (3) and then with (2) gives (4).(x� y + y)� z = (x� (y � z)) + y � z (3)((x � y)� z) + y � z = (x� (y � z)) + y � z (4)As the wavefronts are now at the top of each term, we have successfully rippled-out both sides of theequality. We can complete the proof by simplifying with the induction hypothesis.While the ideas behind rippling are intuitive, implementation is more complex than one might expect.In this paper we show where some of the di�culties lie and why �rst-order rewriting alone cannot directlyimplement rippling. We propose a new calculus that rede�nes the normal notions of substitution andmatching and prove that it has the desired properties. To save space we restrict ourselves in several ways.First, we only consider so called \outward oriented" wave-rules (see [3]) and second we restrict ourselvesto rippling in equational theories. Both restrictions are easily lifted.2 PropertiesRippling may be viewed as �rst-order rewriting with the addition of annotation to restrict applicabilityof rewrite rules. In the CLAM system [4], rippling is implemented as �rst-order rewriting in a meta-leveltheory in which the signature of the original theory is extended with two new unary function symbolswf and wh (representing wave-fronts and wave-holes). In a well annotated term, every wave-front has atleast one proper subterm that is a wave-hole. Terms in wave-holes may be further annotated.De�nition 1 (wats) well annotated terms (or wats) are the smallest set such that,1. t is a wat for all unannotated terms;2. wf (f(t1; :::; tn)) is a wat i� 9i:ti = wh(si) and 8i:ti = wh(si), si is a wat and 8i:ti 6= wh(si), ti isan unannotated term (unat);3. f(t1; :::tn) is a wat where f 6= wf and f 6= wh i� 8i:ti is a wat.To aid the reader, we will always write annotated terms using boxes and holes, though this is just meantto be syntactic sugar for wf and wh .We also introduce two functions which return the skeleton and the erasure of a well annotated term.De�nition 2 (skeleton) the function skel :wats! P(wats) is de�ned by,1. skel(x) = fxg for all variables x;2. skel(f(t1; :::; tn)) = ff(s1; :::; sn)j8i:si 2 skel(ti)g where f 6= wf ;3. skel(wf (f(t1; :::; tn))) = fsj9i:ti = wh(t0i) ^ s 2 skel(t0i)g.De�nition 3 (erasure) the function erase :wats! unats is de�ned by,1. erase(x) = x for all variables x;2. erase(f(t1; :::; tn)) = f(s1; :::; sn) where f 6= wf and si = erase(ti);2

3. erase(wf (f(t1; :::; tn))) = f(s1; :::; sn) where if ti = wh(t0i) then si = erase(t0i) else si = erase(ti).Proofs constructed in this annotated meta-theory are translated into proofs in the original theory byerasing annotations using erase. Unfortunately this simple idea of rippling as �rst-order rewriting is notadequate. To show why, we de�ne four properties desired of rippling.well-formedness: rippling produces only well annotated terms (wats);skeleton preservation: rippling preserves the skeleton of the term being rewritten;correctness: rippling produces terms whose erasures are equal in the underlying equational theory;termination: rippling terminates.Unfortunately, it is not possible to achieve these aims by direct �rst-order rewriting. Consider awave-rule formed for the recursive de�nition of multiplication,s(x) � y) y + x� y :If we implement rippling with �rst-order rewriting this rule generates terms which are not well annotated.For example, s(a) � s(b) is a wat but rewrites to s(b) + a� s(b) which is not a wat since the �rstargument of plus contains a wave-front (a box) directly inside another without an intermediate wave-hole.Termination also fails using �rst-order rewriting. Consider, for example, the equation, h(f(x; s(y))) =s(h(f(s(x); y))). This is a wave-rule in the forward direction (see [2]) annotated ash(f(x; s(y)))) s(h(f(s(x); y))) :This rule should not lead to non-termination; the rough intuition is that the skeleton of both terms ish(y) and the wave-rule transforms a wave-front on the left-hand side that is two nested function symbolsdeep to one on the right-hand side at the same position that is only one function symbol deep and anotherwave-front at a higher position in the skeleton. This equation also constitutes a wave-rule in the reversedirection with di�erent annotation.s(h(f(s(x); y)))) h(f(x; s(y)))Again this rule should not lead to non-termination; the intuition here is that the outermost wave-front isrippled \o� the top" and disappears. However, these wave-rules together lead to cycling, as the followingderivation illustrates:h(f(a; s(a))) 7! s(h(f(s(a); a))) 7! h(f(a; s(a))) 7! : : : :Note that unlike the multiplication example, all the terms involved in this derivation are well annotatedand share the same skeleton. With two equations, we can also construct looping derivations.The problems of improperly annotated terms and non-termination arise when an annotated term treplaces an unannotated term in a wave-front. We therefore de�ne a calculus for rippling based on anew notion of term replacement for annotated terms that erases annotation where appropriate; in thiscase, it erases the annotations on t. This new notion of term replacement naturally gives a new notion ofsubstitution, and thus matching. By means of these simple modi�cations, we get a calculus for rewritingannotated terms which is guaranteed to preserve well-formedness of annotation, skeletons, and correctnesswrt the underlying theory. Moreover, for unannotated terms and rewrite rules, this calculus performsconventional rewriting. 3

3 A Calculus for RipplingWe begin with ground rewriting and extend to �rst-order rewriting in a straightforward way. We distin-guish between two kinds of variables: those in rewrite rules and those in terms. The later kind, \termvariables" will be treated as constants here.1 Hence we shall always consider the rewritten term as groundand by non-ground rewriting we mean equations between terms that may contain (non-term) variables.We de�ne a new function for subterm replacement s[l] 7! s[r] which is identical to usual subtermreplacement except if l occurs solely within a wave-front, the annotations on r are erased. For example,replacing a in f(a; b) by g(a) gives f(g(a); b) , but replacing b by g(b) gives f(a; g(b)) . We willperform all term replacement in substitution, and rewriting using this function. We will also restrictrewriting by only using proper equations which preserve skeletons.De�nition 4 (proper equation) l =T r is a proper equation i� l and r are wats, skel(l) = skel(r)and erase(l) =T erase(r).All the results given in this paper go through if we weaken the de�nition of proper equation to skel(l) �skel(r) except rippling preserves now only a subset of the skeletons. We de�ne ground annotated rewritingas rewriting using proper equations between ground terms. If s is a wat and l =T r a proper equationbetween ground wats then s[l] 7!G s[r] denotes the ground annotated rewriting of a subterm l of s.We now show that ground annotated rewriting preserves the well-formedness of annotated terms,skeletons and erasure wrt the theory.Theorem 1 if s is a wat, l =T r a proper equation and s[l] 7!G s[r], then1. s[r] is a wat,2. skel(s[l]) = skel(s[r]),3. erase(s[l]) =T erase(s[r]).Proof: By structural induction on the wat s.Case 1. s is a (term) variable. The three properties hold trivially.Case 2. s = wf (f(s1; :::sn)). Now l is a subterm of s. If it is s itself then the three properties holdtrivially. On the other hand, suppose l is a subterm of some si. Either si = wh(ti) or si 6= wh(ti).In the �rst case, l is a subterm of the wat ti as l is a wat and cannot itself be headed by wh . By theinduction hypothesis, ti[r] is a wat . Thus, s[r] is a wat . Also, by the induction hypothesis skel(ti[l]) =skel(ti[r]). As all other subterms wh(sj) are unchanged, the union of these skeletons is unchanged. Henceskel(s[l]) = skel(s[r]). Finally, by the induction hypothesis, erase(ti[l]) =T erase(ti[r]). Again, as allthe other subterms are unchanged, their erasures stay the same. Thus, erase(s[l]) =T erase(s[r]). In thesecond case, si 6= wh(ti). From the de�niton of wat , si must be an unannotated term. Thus, when wesubstitute r for l we will erase annotations on r. Hence, si[r] is unannotated, and s[r] is a wat . By thede�nition of skeleton, skel(s[l]) = skel(s) = skel(s[r]). Since si is unannotated and l =T r is a properequation, erase(si[l]) =T erase(si[r]). Hence, erase(s[l]) = erase(s[r]).Case 3. Suppose s = f(s1; :::sn) and f is not wh or wf . Now l is a subterm of s. If it is s itselfthen the three properties trivially hold. On the other hand, suppose l is a subterm of some si, i.e.,si[l]. By the induction hypothesis, si[r] is a wat . Hence s[r] is a wat . By the induction hypothesis,skel(si[l]) = skel(si[r]). As skel(sj) = skel(sj), we have by the de�nition of the skeleton function thatskel(s[l]) = skel(s[r]). By the induction hypothesis, erase(si[l]) =T erase(si[r]). As the other sj havethe same erasures, by the de�nition of erase, erase(s[l]) =T erase(s[j]). 2By induction on number of rewrite steps, the re
exive transitive closure of 7!G also preserves well-formedness, skeletons and erasure wrt the theory.1E.g., See [6] Section II. 4

4 Annotated MatchingWe now consider rewriting with variables. Since substitution depends on subterm replacement, ournew de�nition of subterm replacement gives rise to a new kind of substitution; in particular, duringsubstitution terms replacing variables in wave-fronts are erased of annotation. For example, applying� = fx= s(a) g to t = f(x; x) gives f(s(a); s(a)) : We say that � is a well-annotated substitution(was) i� for every xi=ti 2 �, ti is a wat . Unlike regular substitution, this new substitution functionpreserves well-formedness, skeletons and erasure.Theorem 2 if t is a wat and � a was then1. �(t) is a wat,2. skel(�(t)) = (skel(�))(skel(t)),3. erase(�(t)) = (erase(�))(erase(t)).Proof: By structural induction on the wat t.Case 1. t is a (term) variable x. The three properties trivially hold.Case 2. Suppose t = wf (f(t1; :::tn)). Either ti = wh(si) or ti 6= wh(si). In the �rst case, us-ing the induction hypothesis and the fact that si is a wat , �(si) must also be a wat . In the secondcase, ti must be unannotated. As unannotated terms are a subset of wats , calling upon the inductionhypothesis, �(ti) is a wat . Thus, erase(�(ti)) is unannotated. Hence, by the de�nition of annotatedsubstitution, �(t) is a wat . By the de�ntion of skeleton, skel(�(t)) = fsjs 2 skel(�(si))g. By the in-duction hypothesis this is fsjs 2 (skel(�))(skel(si))g: But this is equal to (skel(�))(fsjs 2 skel(si)g)which itself equals (skel(�))(skel(t)). Hence, skel(�(t)) = (skel(�))(skel(t)). To prove the third prop-erty, we perform a case split on whether ti = wh(si) or ti 6= wh(si). In the �rst case, by the induc-tion hypothesis, erase(�(si)) = (erase(�))(erase(si)). In the second case, ti is unannotated and, bythe induction hypothesis, erase(�(ti)) = (erase(�))(erase(ti)). By structural induction over unats,erase(erase(�(ti))) = erase(�(ti)). Thus, by the de�nition of erasure and annotated substitution,erase(�(t)) = (erase(�))(erase(t)).Case 3. Suppose t = f(t1; :::tn) and f is not wh or wf . Now �(t) = f(�(t1); :::�(tn)). By the inductionhypothesis, �(ti) are wats . Thus �(t) is also a wat . By the de�nition of skeleton, skel(f(�(t1); :::�(tn)))=f(skel(�(t1)); :::skel(�(tn))). This equals f((skel(�))(skel(t1)); :::(skel(�))(skel(tn))) by the inductionhypothesis. By the de�nition of substitution, this is (skel(�))(f(skel(t1); :::skel(tn))). Hence, skel(�(t))= (skel(�))(skel(t)). By the de�nition of erasure, erase(f(�(t1); :::�(tn)))= f(erase(�(t1)); :::erase(�(tn))).By the induction hypothesis this equals f((erase(�))(erase(t1)); :::(erase(�))(erase(tn))). By the de�ni-tion of substitution, this is (erase(�))(f(erase(t1); :::erase(tn))). Hence, erase(�(t)) = (erase(�))(erase(t)).2 To perform rewriting, we need a notion of annotated matching corresponding to this new notion ofannotated substitution.De�nition 5 (annotated match) if s and t are wats, then � is an annotated match of s with t i� �is a was and �(s) = t.Observe that even if we restrict � to variables in s annotated matching is not unitary. For example,fx=s(0)g and fx= s(0) g are both annotated matches of f(x; 0) with f(s(0); 0) . Matches di�er only inthe amount of annotation which appear on substitutions for variables the occur in wave-fronts but notin skeletons. We can, however, de�ne a notion of minimality of annotation so that annotated matchingis unique. In the following, annotations(s) is the set of addresses of waveholes in the wat s.De�nition 6 (minimality) if �1 and �2 are was then �1 � �2 i� for all x=t 2 �1 there exists x=s 2 �2with erase(t) = erase(s) and annotations(t) � annotations(s).5

De�nition 7 (minimal match) if s and t are wats, then � is a minimal match of s with t i� Dom(�) =vars(s), � is an annotated match of s with t and there does not exists any annotated match �0 6= � with�0 � �.Theorem 3 (uniqueness) if � is a minimal match of s with t then � is unique.Proof: By contradiction. Let �1 and �2 be di�erent minimal matches of s with t. Since Dom(�1) =vars(s) = Dom(�2) and �1 6= �2 there must be at least one variable x in vars(s) on which �1 and�2 disagree. Let x=s1 2 �1 and x=s2 2 �2 where s1 6= s2. By the well formedness of annotatedsubstitution, erase(s1) = erase(s2). Assume x occurs in the skeleton of s. By well formedness again,skel(s1) = skel(s2). But this means that s1 = s2. Hence x can only occur in the wavefront but notin the skeleton. As �1 is minimally annotated, s1 must therefore be an unat . Similarly, s2 must be anunat . Thus s1 = s2. 2We now give a complete and correct annotated matching procedure. The ideais to rename apart variables in the wavefront from their occurrences in the skeleton and to combine thesubstitutions at the end of regular matching provided the renamed vars have the appropriate erasure. Todo this, we de�ne two new functions, convert and combine.De�nition 8 (convert)1. convert(x) = x for all variables x;2. convert(f(t1; :::; tn)) = f(convert(t1); :::convert(tn)) where f 6= wf ;3. convert(wf (f(t1; :::; ti))) = wf (f(s1; :::sn)) where if ti = wh(t0i) then si = wh(convert(t0i)) otherwisesi = new-vars(ti).The function new-vars takes a term and replaces all variables in it by fresh ones which are guaranteed tobe unique from all other variables. Di�erent occurrences of the same variable are replaced by the samevariable. If the set of variable renamings performed is given by � and we have a substitution � returnedfrom ordinary matching (using the renamed term) then we can combine these into a single substitutioncomposed of two parts: �skel contains the substitutions for variables in the skeleton for the annotatedmatch, whilst �wf contains the (unannotated) substitutions for the variables that occur just in wavefront.De�nition 9 (combine) combine(�; �) = �skel [�wf where,� �skel = fx=s j x=s 2 � ^ (y=x 2 � ! y=erase(s) 2 �)g� �wf = fx=s j s is an unat ^ x 62 Dom(�) ^ y=x 2 � ^ y=s 2 �gTo perform annotated matching, we rename variables in the wavefront using convert, perform regularmatching and then combine the resulting substitution with the renamings using the function combine.We de�ne this process with the (partial) function amatch.De�nition 10 (amatch) amatch(s; t) = � if r = convert(s), �(r) = s, �(r) = t, � = combine(�; �),and Dom(�) = vars(s).Note that the annotated match can fail because Dom(�) � vars(s) indicating that the substitutions forrenamed variables were incompatible. In such a situation, annotated matching fails.Theorem 4 (correctness and completeness) if s and t are wats then amatch(s; t) = � i� �(s) = tand � is a minimal match.Proof: ()) Since amatch(s; t) = �, we have r = convert(s), �(r) = s, �(r) = t, � = combine(�; �),and Dom(�) = vars(s). Now � is a was by construction. Consider �(s) and �(r). By construction,these terms are identical except where variables occur in s. Consider an occurrence of a variable in the6

skeleton of s. By the construction of �, the same annotated substitution from �skel is applied to both.Consider an occurrence of a variable in the wavefront of s that does not appear in the skeleton. By theconstruction of �, the same unannotated substitution from �wf is also applied to both. Finally, consideran occurrence of a variable in the wavefront of s that also appears in the skeleton. By the construction of�, the same unannotated substitution from �skel is also applied to both. Thus �(s) is identical to �(r).But �(r) = t. Hence �(s) = t. In addition, by construction, � is a minimal match for variables whichappear just in the wavefront.(() Let �(s) = t. Let r = convert(s), �(r) = s, and � = � [�wf where �wf = fx=erase(s) j x=y 2� ^ y=s 2 �g. Consider, �(r) and �(s). By construction, these terms are identical except where variablesoccur in s. Consider an occurrence of a variable in the skeleton of s. By the construction of � , the sameannotated substitution from � is applied to both. Consider an occurrence of a variable in the wavefrontof s. By the construction of �wf , the same unannotated substitution from is also applied to both. Thus�(r) and �(s) are identical. Also, by construction, since � is a minimal match then � = combine(�; �).Trivially, Dom(�) = vars(s). Hence amatch(s; t) = �. 2Annotated matching can be performed, like regular matching, in linear time.Theorem 5 (complexity) annotated matching can be performed in O(jtj) time where jtj is the size ofthe term being matched against.Proof: Consider the annotated match of s with t. We will assume that annotated terms are representedby dags. First we rename the variables in the wavefront of s. This takes O(jsj) time. At the positionof each renaming, we add a new type of arc (called erase) linking the renamed variable with its originalname. This arc represents the constraint on the erasure of substitution. In addition, it also
ags thatthis is a renamed variables. (If a variable occurs only in the wavefront and not in the skeleton then wedo not need to rename it). Next, we compare s with t from the root of both dags to the leaves of thepattern. This takes O(jsj) time. Finally, we check that the substitutions which must be performed atthe leaves for variables in wavefronts have unannotated substitutions and have an appropriate erasure.These tests can be performed together. We explore down t from the position where a renamed variableoccurred in the pattern checking that no annotations occur. At the same time, by following the erasearc, we can explore down the skeleton of t skipping over wavefronts to ensure that we have the sameerasure. At worst, this exploration will take O(jtj) time since we are bounded by the size of t. Combiningthe three steps, we see that annotated matching can be performed in O(jsj)+O(jtj) time. However, sincethere cannot be an annotated match for s with t unless jsj � jtj, this can be simpli�ed to O(jtj). 25 First-Order RipplingWe can now show that rippling with proper equations is correct and specify su�cient conditions fortermination. We do this by lifting the results of ground annotated rewriting to the �rst-order case.The previous de�nition of proper equation carries over without change. We use it to de�ne non-groundrewriting. If s is a wat and l =T r a proper equation with V ars(r) � V ars(l), then we write s[�(l)] 7!s[�(r)] to indicate the annotated rewriting of a subterm of s with which l annotated matches giving �.Correctness parallels the ground case. The proof relies on the fact that � is a was and we can thus reducethe problem to the correctness of ground-rewriting.Theorem 6 if s is a wat, l =T r a proper equation, and s[�(l)] 7! s[�(r)], then1. s[�(r)] is a wat,2. skel(s[�(l)]) = skel(s[�(r)]),3. erase(s[�(l)]) =T erase(s[�(r)]). 7

Proof: Annotated matching guarantees that � is a was . By Theorem 2, �(l) and �(r) are wats withthe same skeleton and erasures. Now, as �(l) is syntactical identical to a subterm of s it is ground (recalldiscussion about treating \term variables" as constants). Furthermore �(r) is also ground as to be arewrite rule we require V ars(r) � V ars(l). Hence the rewriting of s[�(l)] 7! s[�(r)] is equivalent to thatperformed by the ground rewrite rule �(l)! �(r) which is proper as l =T r and Theorem 2 tells us thethree properties are maintained for any �. Thus, by Theorem 1, the three properties hold. 2Let �7! be the re
exive transitive closure of 7!. By induction on number of rewrite steps, it followsfrom Theorem 6 that annotated rewriting is correct. That is, if we erase all annotations, we can performthe same (object-level) rewriting. Annotations merely guide rewriting in a skeleton preserving way.Theorem 7 (correctness) if s is a wat and s �7! t then1. t is a wat,2. skel(s) = skel(t),3. erase(s) =T erase(t).6 TerminationWe can now turn towards questions of termination. A simple way to ensure termination of groundannotated rewriting is to rewrite only with wave rules which are measure decreasing under some wellfounded order which is monotonic with respect to wats .De�nition 11 (monotonicity wrt wats) an order > is monotonic wrt wats i� for all wats l and rsuch that l > r, s[l] 7!G s[r] implies s[l] > s[r].Note that this is weaker than the usual de�nition of monotonicity since we do not consider all possiblesubterms of s, only those that are wats . The orders in [2, 3], for example, are monotonic wrt wats .Theorem 8 (ground termination) for a well founded order > monotonic wrt wats, ground annotatedrewriting using rewrite rules l) r for which l > r is terminating.Proof: An in�nite rewrite sequence t1) t2) : : : gives rise to an in�nite sequence of terms t1 > t2 >which contradicts the well foundedness of >. 2Note that the preservation of skeletons is important for termination since proposed termination ordersfor rippling (eg. those in [2, 3]) depend upon the skeleton remaining constant (or bounded in size).Finally we lift our requirements on termination to non-ground rewriting. To do this, we need arestricted form of stability.De�nition 12 (stable wrt wats) an order > is stable wrt wats i� for all wats s, t and any was �,s > t implies �(s) > �(t).The orders in [2, 3] based on the width (but not size) of the wavefronts are stable wrt wats . It followsfrom our �nal theorem that rippling with the wave-rules given there is terminating.Theorem 9 (termination) for a well founded-order > monotonic and stable wrt wats, annotated re-writing using proper rewrite rules l =T r for which l > r is terminating.Proof: We again reduce the problem to the ground case. If s 7! t using l =T r then there is a groundinstance �(l) =T �(r) and as > is stable wrt wats , �(l) > �(r). By the termination of ground annotatedrewriting, we have termination in the general case. 28

7 Conclusions and Related WorkThe implementation of rippling in CLAM uses �rst-order rewriting restricted by some precondition check-ing. It is considerably more restricted than what we propose here, yet leads to ill-formed annotation andpotentially non-terminating deduction. The INKA system [8] uses a formalized calculus for rippling butit is considerably more complex and specialized. In addition, the termination of rippling has not beenconsidered within this framework.Our results show that conventional term rewriting systems can be used to perform rippling via a simplemodi�cation to the routines for subterm replacement and matching. Moreover, the same routines canbe used for annotated and conventional unannotated term rewriting. We have implemented this calculusand we will describe some applications. Many possible directions can now be explored: for example,rippling in an implicit induction setting, Knuth-Bendix completion of annotated terms, simpli�cation ofskeletons and wave-fronts using term rewriting. We speculate that such combinations will o�er the bestof both worlds, the
exibility and uniformity of conventional rewriting procedures combined with thehighly goal-directed nature of rippling.References[1] D. Basin and T. Walsh. Di�erence uni�cation. In Proceedings of the 13th IJCAI, pages 116{122, 1993.[2] D. Basin and T. Walsh. Termination Orderings for Rippling. To appear in A. Bundy, editor, Pro-ceedings of CADE-12, 1994.[3] A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, and A. Smaill. Rippling: A heuristic for guidinginductive proofs. Arti�cial Intelligence, 62:185{253, 1993.[4] A. Bundy, F. van Harmelen, C. Horn, and A. Smaill. The Oyster-Clam system. In M.E. Stickel,editor, Proceedings of CADE-10, Springer-Verlag, 1990.[5] A. Bundy, F. van Harmelen, A. Smaill, and A. Ireland. Extensions to the rippling-out tactic for guidinginductive proofs. In M.E. Stickel, editor, Proceedings of CADE-10, pages 132{146. Springer-Verlag,1990.[6] N. Dershowitz. Termination of rewriting. In J.-P. Jouannaud, editor, Rewriting Techniques andApplications, pages 69{116. Academic Press, 1987.[7] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor, Handbook ofTheoretical Computer Science, volume B. North-Holland, 1990.[8] D. Hutter. Guiding inductive proofs. In M.E. Stickel, editor, Proceedings of CADE-10, pages 147{161.Springer-Verlag, 1990.[9] T. Walsh, A. Nunes, and A. Bundy. The use of proof plans to sum series. In D. Kapur, editor,Proceedings of CADE-11, pages 325{339. Springer Verlag, 1992.

9

