A Calculus for Rippling*

David A. Basin
Max-Planck-Institut fiir Informatik
Saarbriicken, Germany
Email: basin@mpi-sb.mpg.de

Toby Walsh
INRIA-Lorraine, 615, rue du Jardin Botanique,
54602 Villers-les-Nancy, France
Email: walsh@Iloria.fr

Abstract

Rippling is a special type of rewriting which uses annotations to guide the derivation towards a
particular goal. It has many desirable properties. For example, it terminates yet allows rules like
associativity to be used in both directions; it is also highly goal-directed applying only those rewrite
rules needed to remove the differences between the goal and some hypothesis. Although it has been
suggested that rippling can be directly implemented via first-order term rewriting on annotated terms,
we show that this is not possible. We describe a simple calculus we have implemented for rippling and
prove that it has the desired properties. This calculus allows us to combine rippling with conventional
term rewriting. Such a combination offers the flexibility and uniformity of conventional rewriting with
the highly goal-directed nature of rippling.

1 Introduction

Rippling is a type of rewriting developed at Edinburgh [5, 3] and independently by [8]. Although rippling
was originally designed for inductive theorem proving, it has recently been applied with success to domains
outwith inductive theorem proving [1, 9]. Rippling is rewriting tightly restricted by special kinds of
annotation. Consider, for example, a proof of the associativity of multiplication using structural induction.
In the step-case, the induction hypothesis is, (z x y) x z = & X (y X z) and the induction conclusion is,

(s(@)|xy) xz=|s(x)|x (yx2).

The annotations in the induction conclusion mark the differences with the induction hypothesis. Deleting
everything in the box that is not underlined gives the skeleton; this is preserved during rewriting. By
comparison, simply removing annotations from terms gives the erasure. The boxed but not underlined
terms are wave-fronts; these are removed by rippling. The underlined parts are wave-holes; they represent
terms in the wave-front we would like to leave unchanged. To remove the wave-fronts, we use annotated

*We thank Leo Bachmair, Alan Bundy, and Michael Rusinowitch. The first author was funded by the German Ministry
for Research and Technology (BMFT) under grant ITS 9102. The second author was supported by a Human Capital and
Mobility Postdoctoral Fellowship from the European Union. The current address for the second author is IRST, Location
Panté di Povo, 138100 Trento, Italy.

rewrite rules called wave-rules which move wave-fronts in some well founded manner (usually towards
the top of the term where cancellation can occur). In this example, we need the wave-rules,

@]xv = [(Ex)+V] (1)
[UA+V]xW = [UxW+V xW])

Rippling using (1) yields (3) and then with (2) gives (4).

(xy+u)xz = [@xxa)+yxz (3)

(xxy)xz)+yxz| = |(xx(yxz)+yxz (4)

As the wavefronts are now at the top of each term, we have successfully rippled-out both sides of the
equality. We can complete the proof by simplifying with the induction hypothesis.

While the ideas behind rippling are intuitive, implementation is more complex than one might expect.
In this paper we show where some of the difficulties lie and why first-order rewriting alone cannot directly
implement rippling. We propose a new calculus that redefines the normal notions of substitution and
matching and prove that it has the desired properties. To save space we restrict ourselves in several ways.
First, we only consider so called “outward oriented” wave-rules (see [3]) and second we restrict ourselves
to rippling in equational theories. Both restrictions are easily lifted.

2 Properties

Rippling may be viewed as first-order rewriting with the addition of annotation to restrict applicability
of rewrite rules. In the CLAM system [4], rippling is implemented as first-order rewriting in a meta-level
theory in which the signature of the original theory is extended with two new unary function symbols
wf and wh (representing wave-fronts and wave-holes). In a well annotated term, every wave-front has at
least one proper subterm that is a wave-hole. Terms in wave-holes may be further annotated.

Definition 1 (wats) well annotated terms (or wats) are the smallest set such that,

1. t is a wat for all unannotated terms;

2. wf(f(t1, .., tn)) is a wat 4ff Ji-t; = wh(s;) and Vi.t; = wh(s;), s; is a wat and Vi.t; # wh(s;), t; is
an unannotated term (unat);

3. f(t1,...t,) is a wat where f # wf and f # wh iff Vi.t; is a wat.

To aid the reader, we will always write annotated terms using boxes and holes, though this is just meant
to be syntactic sugar for wf and wh.
We also introduce two functions which return the skeleton and the erasure of a well annotated term.

Definition 2 (skeleton) the function skel:wats — P(wats) is defined by,

1. skel(z) = {x} for all variables x;

2. skel(f(t1,...,tn)) = {f(s1,..y5n)|Vi.s; € skel(t;)} where f # wf;
3. skel(wf(f(t1,...,tn))) = {s|3i.t; = wh(t]) A s € skel(t})}.

Definition 3 (erasure) the function erase:wats — unats is defined by,

1. erase(x) = x for all variables x;
2. erase(f(t1,...,tn)) = f(s1,...,5n) where f # wf and s; = erase(t;);

3. erase(wf(f(t1,....,tn))) = f(s1,..., n) where if t; = wh(t}) then s; = erase(t}) else s; = erase(t;).

Proofs constructed in this annotated meta-theory are translated into proofs in the original theory by
erasing annotations using erase. Unfortunately this simple idea of rippling as first-order rewriting is not
adequate. To show why, we define four properties desired of rippling.

well-formedness: rippling produces only well annotated terms (wats);

skeleton preservation: rippling preserves the skeleton of the term being rewritten;

correctness: rippling produces terms whose erasures are equal in the underlying equational theory;
termination: rippling terminates.

Unfortunately, it is not possible to achieve these aims by direct first-order rewriting. Consider a
wave-rule formed for the recursive definition of multiplication,

(@]« =[]

If we implement rippling with first-order rewriting this rule generates terms which are not well annotated.

For example, X is a wat but rewrites to ‘ s(b) ‘4— a X ‘ s(b) ‘ which is not a wat since the first

argument of plus contains a wave-front (a box) directly inside another without an intermediate wave-hole.
Termination also fails using first-order rewriting. Consider, for example, the equation, h(f(z,s(y))) =
s(h(f(s(x),y))). This is a wave-rule in the forward direction (see [2]) annotated as

h(f(z,s()) = |sh(f(s(2),9))]

This rule should not lead to non-termination; the rough intuition is that the skeleton of both terms is
h(y) and the wave-rule transforms a wave-front on the left-hand side that is two nested function symbols
deep to one on the right-hand side at the same position that is only one function symbol deep and another
wave-front at a higher position in the skeleton. This equation also constitutes a wave-rule in the reverse
direction with different annotation.

s(h((f(s(@),9))| = A flzs))

Again this rule should not lead to non-termination; the intuition here is that the outermost wave-front is
rippled “off the top” and disappears. However, these wave-rules together lead to cycling, as the following
derivation illustrates:

h(| f(a,s(a)) = |s(h(| f(s(a),a)])| — h(fla,s(a)]) = ...

Note that unlike the multiplication example, all the terms involved in this derivation are well annotated
and share the same skeleton. With two equations, we can also construct looping derivations.

The problems of improperly annotated terms and non-termination arise when an annotated term ¢
replaces an unannotated term in a wave-front. We therefore define a calculus for rippling based on a
new notion of term replacement for annotated terms that erases annotation where appropriate; in this
case, it erases the annotations on ¢. This new notion of term replacement naturally gives a new notion of
substitution, and thus matching. By means of these simple modifications, we get a calculus for rewriting
annotated terms which is guaranteed to preserve well-formedness of annotation, skeletons, and correctness
wrt the underlying theory. Moreover, for unannotated terms and rewrite rules, this calculus performs
conventional rewriting.

3 A Calculus for Rippling

We begin with ground rewriting and extend to first-order rewriting in a straightforward way. We distin-
guish between two kinds of variables: those in rewrite rules and those in terms. The later kind, “term
variables” will be treated as constants here.! Hence we shall always consider the rewritten term as ground
and by non-ground rewriting we mean equations between terms that may contain (non-term) variables.

We define a new function for subterm replacement s[l] — s[r] which is identical to usual subterm
replacement except if [occurs solely within a wave-front, the annotations on r are erased. For example,

, but replacing b by gives | f(a,| g(b)) | We will

replacing a in ‘ f(a,b) ‘ by ‘g(g) ‘ gives ‘ f(g(a),b)

perform all term replacement in substitution, and rewriting using this function. We will also restrict
rewriting by only using proper equations which preserve skeletons.

Definition 4 (proper equation) [=; 7 is a proper equation iff | and r are wats, skel(l) = skel(r)
and erase(l) =r erase(r).

All the results given in this paper go through if we weaken the definition of proper equation to skel(l) D
skel(r) except rippling preserves now only a subset of the skeletons. We define ground annotated rewriting
as rewriting using proper equations between ground terms. If s is a wat and [=p r a proper equation
between ground wats then s[l] —¢ s[r] denotes the ground annotated rewriting of a subterm [of s.

We now show that ground annotated rewriting preserves the well-formedness of annotated terms,
skeletons and erasure wrt the theory.

Theorem 1 if s is a wat, [=7 r a proper equation and s[l] —»¢ s[r], then

1. s[r] is a wat,
2. skel(s[l]) = skel(s[r]),

3. erase(s[l]) =1 erase(s[r]).

Proof: By structural induction on the wat s.

Case 1. s is a (term) variable. The three properties hold trivially.

Case 2. s = wf(f(s1,-.-8n)). Now [is a subterm of s. If it is s itself then the three properties hold
trivially. On the other hand, suppose [is a subterm of some s;. Either s; = wh(t;) or s; # wh(t;).
In the first case, [is a subterm of the wat ¢; as [is a wat and cannot itself be headed by wh. By the
induction hypothesis, t;[r] is a wat. Thus, s[r] is a wat. Also, by the induction hypothesis skel(t;[l]) =
skel(t;[r]). As all other subterms wh(s;) are unchanged, the union of these skeletons is unchanged. Hence
skel(s[l]) = skel(s[r]). Finally, by the induction hypothesis, erase(t;[l]) =7 erase(t;[r]). Again, as all
the other subterms are unchanged, their erasures stay the same. Thus, erase(s[l]) =1 erase(s[r]). In the
second case, s; # wh(t;). From the definiton of wat, s; must be an unannotated term. Thus, when we
substitute r for [we will erase annotations on r. Hence, s;[r] is unannotated, and s[r] is a wat. By the
definition of skeleton, skel(s[l]) = skel(s) = skel(s[r]). Since s; is unannotated and [=7 r is a proper
equation, erase(s;[l]) =r erase(s;[r]). Hence, erase(s[l]) = erase(s[r]).

Case 3. Suppose s = f(s1,...s,) and f is not wh or wf. Now [is a subterm of s. If it is s itself
then the three properties trivially hold. On the other hand, suppose [is a subterm of some s;, i.e.,
s;[l]. By the induction hypothesis, s;[r] is a wat. Hence s[r] is a wat. By the induction hypothesis,
skel(s;[l]) = skel(s;[r]). As skel(sj) = skel(s;), we have by the definition of the skeleton function that
skel(s[l]) = skel(s[r]). By the induction hypothesis, erase(s;[[]) =r erase(s;[r]). As the other s; have
the same erasures, by the definition of erase, erase(s[l]) =7 erase(s[j]). O

By induction on number of rewrite steps, the reflexive transitive closure of —¢ also preserves well-
formedness, skeletons and erasure wrt the theory.

'E.g., See [6] Section II.

4 Annotated Matching

We now consider rewriting with variables. Since substitution depends on subterm replacement, our
new definition of subterm replacement gives rise to a new kind of substitution; in particular, during
substitution terms replacing variables in wave-fronts are erased of annotation. For example, applying

o= {x/-} tot = - gives | f(s(a),| s(a)) | We say that o is a well-annotated substitution

(was) iff for every z;/t; € o, t; is a wat. Unlike regular substitution, this new substitution function
preserves well-formedness, skeletons and erasure.

Theorem 2 ift is a wat and o a was then

1. o(t) is a wat,
2. skel(o(t)) = (skel(o))(skel(t)),
3. erase(o(t)) = (erase(o))(erase(t)).

Proof: By structural induction on the wat t.

Case 1. t is a (term) variable z. The three properties trivially hold.

Case 2. Suppose t = wf(f(t1,...tp)). Either ¢; = wh(s;) or t; # wh(s;). In the first case, us-
ing the induction hypothesis and the fact that s; is a wat, o(s;) must also be a wat. In the second
case, t; must be unannotated. As unannotated terms are a subset of wats, calling upon the induction
hypothesis, o(t;) is a wat. Thus, erase(o(t;)) is unannotated. Hence, by the definition of annotated
substitution, o(t) is a wat. By the defintion of skeleton, skel(o(t)) = {s|s € skel(o(s;))}. By the in-
duction hypothesis this is {s|s € (skel(o))(skel(s;))}. But this is equal to (skel(o))({s|s € skel(s;)})
which itself equals (skel(o))(skel(t)). Hence, skel(o(t)) = (skel(o))(skel(t)). To prove the third prop-
erty, we perform a case split on whether ¢; = wh(s;) or t; # wh(s;). In the first case, by the induc-
tion hypothesis, erase(o(s;)) = (erase(o))(erase(s;)). In the second case, t; is unannotated and, by
the induction hypothesis, erase(o(t;)) = (erase(o))(erase(t;)). By structural induction over wunats,
erase(erase(o(t;))) = erase(o(t;)). Thus, by the definition of erasure and annotated substitution,
erase(o(t)) = (erase(o))(erase(t)).

Case 3. Suppose t = f(t1,...t,) and f is not wh or wf. Now o(t) = f(o(t1),...0(t,)). By the induction
hypothesis, o(t;) are wats. Thus o(t) is also a wat. By the definition of skeleton, skel(f((t1),...0(tn)))=
f(skel(o(t1)),...skel(o(t,))). This equals f((skel(o))(skel(t1)),...(skel(o))(skel(t))) by the 1nduct10n
hypothesis. By the definition of substitution, this is (skel(o))(f(skel(t1),...skel(t,))). Hence, skel(o(t))

= (skel(0))(skel(t)). By the definition oferasure, erase(f(o(t1),...0(t,)))= f(erase(o(t1)),. erase((tn)))-
By the induction hypothesis this equals f((erase(o))(erase(t1)), ...(erase(o))(erase(ty,))). By the defini-
tion of substitution, this is (erase(o))(f(erase(ty), ...erase(ty))). Hence erase(o(t)) = (erase(o))(erase(t)).
O

To perform rewriting, we need a notion of annotated matching corresponding to this new notion of
annotated substitution.

Definition 5 (annotated match) if s and t are wats, then o is an annotated match of s with ¢ iff o
is a was and o(s) = t.

Observe that even if we restrict o to variables in s annotated matchlng is not unitary. For example,
{z/s(0)} and {:c/-} are both annotated matches of‘ f(z,0) ‘ with ‘ f(s(0),0) ‘ Matches differ only in
the amount of annotation which appear on substitutions for variables the occur in wave-fronts but not

in skeletons. We can, however, define a notion of minimality of annotation so that annotated matching
is unique. In the following, annotations(s) is the set of addresses of waveholes in the wat s.

Definition 6 (minimality) if 01 and o2 are was then o1 < o2 iff for all x/t € o1 there exists x/s € o3
with erase(t) = erase(s) and annotations(t) C annotations(s).

Definition 7 (minimal match) if s and ¢ are wats, then o is a minimal match of s with t iff Dom(o) =
vars(s), o is an annotated match of s with t and there does not exists any annotated match o' # o with
o' <o.

Theorem 3 (uniqueness) if o is a minimal match of s with t then o is unique.

Proof: By contradiction. Let o1 and oy be different minimal matches of s with ¢. Since Dom(oy) =
vars(s) = Dom(o2) and o1 # o9 there must be at least one variable z in vars(s) on which o; and
oo disagree. Let x/s; € o1 and z/s2 € o2 where s; # s2. By the well formedness of annotated
substitution, erase(s1) = erase(sz). Assume x occurs in the skeleton of s. By well formedness again,
skel(s1) = skel(sy). But this means that s; = s3. Hence & can only occur in the wavefront but not
in the skeleton. As o; is minimally annotated, s; must therefore be an unat. Similarly, s, must be an
unat. Thus s; = s;. OWe now give a complete and correct annotated matching procedure. The idea
is to rename apart variables in the wavefront from their occurrences in the skeleton and to combine the
substitutions at the end of regular matching provided the renamed vars have the appropriate erasure. To
do this, we define two new functions, convert and combine.

Definition 8 (convert)

1. convert(x) = x for all variables x;
2. convert(f(t1,...,tn)) = f(convert(ty), ...convert(t,)) where f # wf;

3. convert(wf (f(ti,...,t:))) = wf(f(s1,...5n)) where if t; = wh(t}) then s; = wh(convert(t})) otherwise
s; = new-vars(t;).

The function new-vars takes a term and replaces all variables in it by fresh ones which are guaranteed to
be unique from all other variables. Different occurrences of the same variable are replaced by the same
variable. If the set of variable renamings performed is given by p and we have a substitution 7 returned
from ordinary matching (using the renamed term) then we can combine these into a single substitution
composed of two parts: osre; contains the substitutions for variables in the skeleton for the annotated
match, whilst g,y contains the (unannotated) substitutions for the variables that occur just in wavefront.

Definition 9 (combine) combine(p,T) = osper U oy where,

o osker ={z/s | x/sET N (y/x € p — ylerase(s) € T)}
o oy ={x/s | sisanunat A x ¢ Dom(r) N y/rep N y/serT}

To perform annotated matching, we rename variables in the wavefront using convert, perform regular
matching and then combine the resulting substitution with the renamings using the function combine.
We define this process with the (partial) function amatch.

Definition 10 (amatch) amatch(s,t) = o if r = convert(s), p(r) = s, 7(r) = t, o = combine(p, 1),
and Dom(c) = vars(s).

Note that the annotated match can fail because Dom(o) C vars(s) indicating that the substitutions for
renamed variables were incompatible. In such a situation, annotated matching fails.

Theorem 4 (correctness and completeness) if s and t are wats then amatch(s,t) = o iff o(s) =t
and o is a minimal match.

Proof: (=) Since amatch(s,t) = o, we have r = convert(s), p(r) = s, 7(r) = t, 0 = combine(p, 1),
and Dom(o) = vars(s). Now o is a was by construction. Consider o(s) and 7(r). By construction,
these terms are identical except where variables occur in s. Consider an occurrence of a variable in the

skeleton of s. By the construction of o, the same annotated substitution from ogge; is applied to both.
Consider an occurrence of a variable in the wavefront of s that does not appear in the skeleton. By the
construction of o, the same unannotated substitution from o,y is also applied to both. Finally, consider
an occurrence of a variable in the wavefront of s that also appears in the skeleton. By the construction of
o, the same unannotated substitution from o is also applied to both. Thus o(s) is identical to 7(r).
But 7(r) = t. Hence o(s) = t. In addition, by construction, o is a minimal match for variables which
appear just in the wavefront.

(<) Let 0(s) = t. Let r = convert(s), p(r) = s, and 7 = ¢ U 7y where 7,y = {x/erase(s) | z/y €
p A y/s € o}. Consider, 7(r) and o(s). By construction, these terms are identical except where variables
occur in s. Consider an occurrence of a variable in the skeleton of s. By the construction of 7, the same
annotated substitution from o is applied to both. Consider an occurrence of a variable in the wavefront
of s. By the construction of 7, the same unannotated substitution from is also applied to both. Thus
7(r) and o(s) are identical. Also, by construction, since ¢ is a minimal match then o = combine(p, 7).
Trivially, Dom(o) = vars(s). Hence amatch(s,t) = o. O

Annotated matching can be performed, like regular matching, in linear time.

Theorem 5 (complexity) annotated matching can be performed in O(|t|) time where |t| is the size of
the term being matched against.

Proof: Consider the annotated match of s with t. We will assume that annotated terms are represented
by dags. First we rename the variables in the wavefront of s. This takes O(|s|) time. At the position
of each renaming, we add a new type of arc (called erase) linking the renamed variable with its original
name. This arc represents the constraint on the erasure of substitution. In addition, it also flags that
this is a renamed variables. (If a variable occurs only in the wavefront and not in the skeleton then we
do not need to rename it). Next, we compare s with ¢ from the root of both dags to the leaves of the
pattern. This takes O(|s|) time. Finally, we check that the substitutions which must be performed at
the leaves for variables in wavefronts have unannotated substitutions and have an appropriate erasure.
These tests can be performed together. We explore down ¢ from the position where a renamed variable
occurred in the pattern checking that no annotations occur. At the same time, by following the erase
arc, we can explore down the skeleton of ¢ skipping over wavefronts to ensure that we have the same
erasure. At worst, this exploration will take O(]¢|) time since we are bounded by the size of ¢. Combining
the three steps, we see that annotated matching can be performed in O(]s|)+O(|t|) time. However, since
there cannot be an annotated match for s with ¢ unless |s| < |¢|, this can be simplified to O(|¢]). O

5 First-Order Rippling

We can now show that rippling with proper equations is correct and specify sufficient conditions for
termination. We do this by lifting the results of ground annotated rewriting to the first-order case.
The previous definition of proper equation carries over without change. We use it to define non-ground
rewriting. If s is a wat and | =7 r a proper equation with Vars(r) C Vars(l), then we write s[o(l)] —
s[o(r)] to indicate the annotated rewriting of a subterm of s with which ! annotated matches giving o.
Correctness parallels the ground case. The proof relies on the fact that o is a was and we can thus reduce
the problem to the correctness of ground-rewriting.

Theorem 6 if s is a wat, [=7 r a proper equation, and s[o(l)] — s[o(r)], then

1. s[o(r)] is a wat,
2. skel(s[o(1)]) = skel(s[o(r)])

3. erase(s[o(1)]) =r erase(s[o(r)]).

Proof: Annotated matching guarantees that o is a was. By Theorem 2, ¢(l) and o(r) are wats with
the same skeleton and erasures. Now, as o(l) is syntactical identical to a subterm of s it is ground (recall
discussion about treating “term variables” as constants). Furthermore o(r) is also ground as to be a
rewrite rule we require Vars(r) C Vars(l). Hence the rewriting of s[o(l)] = s[o(r)] is equivalent to that
performed by the ground rewrite rule o(l) — o(r) which is proper as [=7 r and Theorem 2 tells us the
three properties are maintained for any ¢. Thus, by Theorem 1, the three properties hold. O

Let ¥ be the reflexive transitive closure of —. By induction on number of rewrite steps, it follows
from Theorem 6 that annotated rewriting is correct. That is, if we erase all annotations, we can perform
the same (object-level) rewriting. Annotations merely guide rewriting in a skeleton preserving way.

Theorem 7 (correctness) if s is a wat and s ~ t then

1. t is a wat,
2. skel(s) = skel(t),

3. erase(s) =r erase(t).

6 Termination

We can now turn towards questions of termination. A simple way to ensure termination of ground
annotated rewriting is to rewrite only with wave rules which are measure decreasing under some well
founded order which is monotonic with respect to wats.

Definition 11 (monotonicity wrt wats) an order > is monotonic wrt wats iff for all wats | and r
such that 1 > r, s[l] =g s[r] implies s[l] > s[r].

Note that this is weaker than the usual definition of monotonicity since we do not consider all possible
subterms of s, only those that are wats. The orders in [2, 3], for example, are monotonic wrt wats.

Theorem 8 (ground termination) for a well founded order > monotonic wrt wats, ground annotated
rewriting using rewrite rules I = r for which | > r is terminating.

Proof: An infinite rewrite sequence t; = t2 = ... gives rise to an infinite sequence of terms ¢; > to >
which contradicts the well foundedness of >. O
Note that the preservation of skeletons is important for termination since proposed termination orders
for rippling (eg. those in [2, 3]) depend upon the skeleton remaining constant (or bounded in size).
Finally we lift our requirements on termination to non-ground rewriting. To do this, we need a
restricted form of stability.

Definition 12 (stable wrt wats) an order > is stable wrt wats iff for all wats s, t and any was o,
s >t implies o(s) > o(t).

The orders in [2, 3] based on the width (but not size) of the wavefronts are stable wrt wats. It follows
from our final theorem that rippling with the wave-rules given there is terminating.

Theorem 9 (termination) for a well founded-order > monotonic and stable wrt wats, annotated re-
writing using proper rewrite rules | =1 r for which [> r is terminating.

Proof: We again reduce the problem to the ground case. If s — t using | =7 r then there is a ground
instance o(l) =7 o(r) and as > is stable wrt wats, o(I) > o(r). By the termination of ground annotated
rewriting, we have termination in the general case. O

7 Conclusions and Related Work

The implementation of rippling in CLAM uses first-order rewriting restricted by some precondition check-
ing. It is considerably more restricted than what we propose here, yet leads to ill-formed annotation and
potentially non-terminating deduction. The INKA system [8] uses a formalized calculus for rippling but
it is considerably more complex and specialized. In addition, the termination of rippling has not been
considered within this framework.

Our results show that conventional term rewriting systems can be used to perform rippling via a simple
modification to the routines for subterm replacement and matching. Moreover, the same routines can
be used for annotated and conventional unannotated term rewriting. We have implemented this calculus
and we will describe some applications. Many possible directions can now be explored: for example,
rippling in an implicit induction setting, Knuth-Bendix completion of annotated terms, simplification of
skeletons and wave-fronts using term rewriting. We speculate that such combinations will offer the best
of both worlds, the flexibility and uniformity of conventional rewriting procedures combined with the
highly goal-directed nature of rippling.

References

[1] D. Basin and T. Walsh. Difference unification. In Proceedings of the 13th IJCAI, pages 116-122, 1993.

[2] D. Basin and T. Walsh. Termination Orderings for Rippling. To appear in A. Bundy, editor, Pro-
ceedings of CADE-12, 1994.

[3] A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, and A. Smaill. Rippling: A heuristic for guiding
inductive proofs. Artificial Intelligence, 62:185-253, 1993.

[4] A. Bundy, F. van Harmelen, C. Horn, and A. Smaill. The Oyster-Clam system. In M.E. Stickel,
editor, Proceedings of CADE-10, Springer-Verlag, 1990.

[5] A.Bundy, F. van Harmelen, A. Smaill, and A. Ireland. Extensions to the rippling-out tactic for guiding
inductive proofs. In M.E. Stickel, editor, Proceedings of CADE-10, pages 132-146. Springer-Verlag,
1990.

[6] N. Dershowitz. Termination of rewriting. In J.-P. Jouannaud, editor, Rewriting Techniques and
Applications, pages 69-116. Academic Press, 1987.

[7] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, volume B. North-Holland, 1990.

[8] D. Hutter. Guiding inductive proofs. In M.E. Stickel, editor, Proceedings of CADE-10, pages 147-161.
Springer-Verlag, 1990.

[9] T. Walsh, A. Nunes, and A. Bundy. The use of proof plans to sum series. In D. Kapur, editor,
Proceedings of CADE-11, pages 325—339. Springer Verlag, 1992.

