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cost. We show that this parameter permits simple butaccurate models of the growth of search cost across thefull width of the phase transition { in the past, mod-els have usually been restricted to growth at a singlepoint, critically constrained problems with the maxi-mum search cost. In these models, we take problemsize to be the log of the size of the state space. As wellas modelling empirical data, we predict search cost atproblem sizes beyond the range of our experiments.We model both complete and local search procedures,and thereby compare algorithms that share no naturalmeasure of search cost other than cpu time.Constrainedness(Gent et al. 1996) proposes a general purpose parame-ter, �, for the constrainedness of an ensemble of prob-lems. If each problem has a state space with 2N states,of which hSoli are expected to be solutions, then� =def 1� log2(hSol i)N (1)This de�nition gives parameters used to study phasetransition behaviour in many problem classes includingsatis�ability, constraint satisfaction, number partition-ing, and travelling salesperson problems. A phase tran-sition in solubility is predicted to occur around � � 1.Whilst hSol i can grow exponentially with problemsize at the phase transition in solubility (for exam-ple, as 20:18N for random 3-Sat), � varies much moreslowly. Indeed, a technique borrowed from statisticalmechanics called �nite size scaling (Barber 1983) canusually model any variation by a simple rescaling of�. Around a critical value (in this case, �c) �nite sizescaling predicts that maroscopic properties of the en-semble (in this case, the probability of solubility) willbe indistinguishable except for a simple power law scal-ing with problem size (in this case, N1=�). Following(Gent et al. 1996), we de�ne a rescaled parameter,
 =def �� �c�c N1=� (2)



To illustrate this rescaling, we use a popular ensembleof Csp's described by the tuple hn;m; p1; p2i, as usedin for example (Prosser 1996; Smith & Dyer 1996).Each problem has n variables, a domain size of m,and p1n(n � 1)=2 binary constraints, each with p2m2of the possible pairs of values ruled out. In Figure1(a), we plot the probability of solubility for the ensem-ble hn; 3; p1; 29 i against the rescaled parameter 
 withN = n log2(3). We use 10,000 problems at each point.Analysis of the experimental data suggests values of0:64 for �c and 2:1 for �. We see a familiar transitionin solubility around 
 � 0. In Figure 1(b), we plotthe median search cost for the algorithm Fc-Cbj-Ff,forward checking with con
ict directed backjumpingusing the fail �rst heuristic (Prosser 1993), against 
using the same values of �c and �. We use leaf-nodes asa measure of search cost. This graph shows the classic\easy-hard-easy" pattern through the phase transition.
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Figure 1: Rescaled phase transition for hn; 3; p1; 29 iwith �c = 0:64, � = 2:1Scaling of Search CostTo model growth of search cost with problem size, weneed to compute a well-de�ned measure at each prob-

lem size. Typically, this has been the maximum searchcost, experienced on critically constrained problems atthe phase transition. The rescaled constrainedness pa-rameter allows us to build more detailed models inwhich we can in addition study growth of search coston under and over-constrained problems away from thephase transition.(Selman & Kirkpatrick 1996) suggests normalizingthe maximum value of measures like median searchcost. This is in e�ect a one parameter model since itpredicts search cost at a given problem size when pro-vided with the normalising constant. Figure 2 showsthat this model is only accurate close to the peak insearch cost. The equal separation between contours
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 with �c = 0:64, � = 2:1in Figure 1(b) suggests a simple two parameter modelbased on exponential growth. For a given percentileof search cost and value of 
, we model search costas �2�N , where � and � are independent of N . Tocompute � and �, we use the least squares estimatesfor the intersection and gradient of the log of searchcost against N , interpolating data points where neces-sary. This interpolation may introduce errors near thephase transition where search cost changes rapidly andthe estimated values for the exponents, �, are largest.Figure 3 shows that this model describes mediansearch cost very successfully across the full width ofthe phase transition. In Figure 3(a), points give actualdata whilst lines indicate the values that our modelgives rounded to the nearest integer. We interpolatebetween adjacent estimates of the regression parame-ters where necessary. Figure 3(b) shows that our modelgives either a very small error in the number of nodesor a small percentage error. The model is never morethan 15 nodes out, and only as much as 10% in errorwhen it also correct to within a single node. Indeed,ignoring the large number of points where the model is
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10(b) absolute error (y-axis) against absolutepercentage error (x-axis)Figure 3: Median leaf nodes searched by Fc-Cbj-Ffon hn; 3; p1; 29 i.exact, the overwhelming majority of the data is mod-elled to within both 10% and 10 nodes error. We obtainsimilar results with other percentiles of search cost.Since we tested 12 values of n, we have modelled asystem with 12 degrees of freedom to a reasonable de-gree of accuracy using just 2 parameters. Unlike Sel-man and Kirkpatrick's normalizing model, we can alsopredict search costs at new problem sizes. We �rsttest predictions for a problem size within the rangeof our experimental data, namely 65 variables, againusing 10,000 problems at each point. This value ofn was not previously tested and thus played no rolein the regression. Figure 4(a) shows the accuracy ofthe predictions for a variety of percentiles at 65 vari-ables. All data points shown were predicted to withineither 15% or 10 nodes. We next test how our modelextrapolates to problem sizes larger than used in theregression. In Figure 4(b) we plot the predicted andobserved results for 150 variables using 1000 problemsat each point. Although we now see signi�cant errorsof more than 100%, such large errors only occur in the

99th percentile near the phase transition. Because ofthe reduced sample size, the 99th percentile is subjectto more noise than usual. The model both over- andunder-estimates the observed 99th percentile. The lackof a consistent trend suggests experimental noise ratherthan a modelling error. In other percentiles, most pre-dictions are accurate to within 25%. Note that, asthese predictions are for problems with 30 more vari-ables than used in the regression, the underlying searchspace has increased by a factor of more than 1014.
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 (x-axis).Ensembles of problems close to the phase transitioncontain both soluble and insoluble problems. There aresituations in which only one kind of problem is of inter-est. For example, local search procedures usually can-not show insolubility. Our methods work even better ifwe construct a model just for soluble or insoluble prob-lems. In Figure 5 we use the same model as before butrestricted to soluble or insoluble problems, dependingon which was predominant. The worst errors of predic-tion are smaller with a separated model, as might beexpected, since soluble and insoluble problems behavevery di�erently. The worst errors in the uni�ed model



are in the `mushy region' (Smith & Dyer 1996) whereboth soluble and insoluble problems occur. The modelalso works with soluble problems when most problemsare insoluble, and insoluble problems when most aresoluble. However, we must generate a large numberof problems to ensure a su�cient sample of the raresoluble or insoluble problems.
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 (on x-axis). Where 50% ormore of problems are (in)soluble, we study only thesearch cost of the (in)soluble problems.We are also able to model a completely di�erentensemble of Csp's with a �xed number of variablesand varying domain size. As in (Gent et al. 1995),we used h10;m; 1:0; p2i with m = 10 to 100. Fi-nite size scaling now requires �c = 1:01, � = 0:8and N = 10 log2(m). The same model of exponen-tial growth accurately models observed median searchcosts and predicts values for problem sizes not previ-ously tested.Travelling Salesperson ProblemWe now consider a di�erent NP-complere problem,the asymmetric travelling salesperson problem (Atsp)with inter-city distances drawn randomly from a nor-mal distribution with mean � and standard deviation�. We focus on the decision problem of deciding ifthere is a tour of length d or less which visits all ncities. For convenience, we normalise the tour lengthto d̂ = (d� n�)=�pn. Correcting an error in (Gent etal. 1996),� = d̂2 log2(e)=2 + log2(jd̂jp2�)log2(n� 1)!For n=6 to 48 in steps of 6, we use 1000 pseudo-random problems with inter-city distances indepen-dently and normally distributed with �=106 and

�=105. We solve these problems using a branchand bound algorithm with the Hungarian heuristic(Carpaneto & Toth 1980) for branching. (Gent et al.1996) shows that the probability of a tour existing forthis problem class rescales with �c = 0:75, � = 2 andN = log2(n�1)!. As with constraint satisfaction prob-lems, the measure most suitable for modelling growthof search cost appears to be leaf nodes. We only con-sider the high percentiles of leaf nodes, as many prob-lems are solved in just one node. The same model ofsimple exponential growth �ts the data well. We putaside the extremes of our data, and construct a modelfor 
 = �3 to 3 in steps of 0.25 using n=12 to 42. Wethen compare the modelled data with observed, andalso the search costs the model predicts at 6 and 48cities. Figure 6 shows the accuracy of the modellingand predictions. For example, the model successfullypredicts that at n = 6 we will explore just a single leafnode throughout the phase transition. It is remark-able that a simple model of exponential growth doesso well when search costs never reaches very large val-ues, and granularity therefore plays an important role.(Gent & Walsh 1996) reports a phase transition in theEuclidean Tsp, but the parameter used was derivedfrom asymptotic considerations and not from the con-strainedness parameter �. It would be interesting tosee if modelling of search cost works well against thisparameter.
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 (x-axis) with�c = 0:75, � = 2.Local vs Complete SearchBy modelling the growth of search costs for com-plete and local search procedures, we can compare al-gorithms that only share cpu time as a measure of



search cost. We use satis�ability (Sat) as a case studyfor such a comparison. As in many previous stud-ies, for example (Selman, Levesque, & Mitchell 1992),we use the random 3-Sat problem class. For prob-lems from this class with l clauses and n variables,� = � log2(7=8) ln (Gent et al. 1996). This is justa constant times the more familiar ratio l=n. Onceagain �nite size scaling (of the probability of satis�a-bility) works well with the critical value of l=n being4.17, corresponding to �c = 0:803, � = 1:5 and N = n(Kirkpatrick & Selman 1994).For the complete procedure, we use the Davis-Putnam algorithmwithout pure literal deletion (Davis,Logemann, & Loveland 1962) with the branchingheuristic from (Jeroslow & Wang 1990). We call thisDp-Jw. As in the previous sections, we measure leafnodes searched. For the local search procedure, weuse the random hill-climbing algorithmGsat (Selman,Levesque, & Mitchell 1992) measuring, as in previ-ous studies, the number of truth-values 
ipped duringsearch. As Gsat cannot solve unsatis�able problems,we restrict analysis for both algorithms to satis�ableproblems. From n = 10 to 100 and l=n up to at least4.4, we tested Gsat and Dp-Jw on 1000 satis�ablepseudo-random 3-Sat problems. For Gsat, we usethe value of `max-
ips' that minimises the number of
ips used at l=n = 4:3 for each n.Figure 7(a) shows that the simple exponentialgrowth model also works well for Dp-Jw. Since we setaside n = 100, the top contour is a prediction ratherthan modelling. We were unable to �t the data forGsat to the exponential model of search growth. In-stead, we construct a simple two parameter power lawmodel in which the number of 
ips used grows as anb ateach value of 
. Figure 7(b) shows that this model de-scribes the data well when we set aside n = 10, 20, and100. The scaling exponent b is never greater than 4, i.e.search never grows faster than quartically. The lines atn = 10, 20, and 100 are predictions. The predictionsare not very accurate for n = 10 or 20, but are good forn = 100 though they seem to under-estimate the truevalues near the phase transition. (Parkes & Walser1996) report being unable to �t data (for the peak insearch cost only) for a similar algorithm,Wsat, usinga two parameter model.Note that the same technique worked well for bothcomplete and local search procedures: i.e. modellingthe growth of search cost against the rescaled con-strainedness parameter 
 and the problem size. Thedi�erences between the models suggest a di�erent scal-ing of search cost for the two algorithms. While searchcost for Dp-Jw seems to grow exponentially, searchcost in Gsat appears to grow no faster than n4. This

suggests that Gsat scales better than Dp-Jw. Thiswas not motivated by comparison of pure run-times,as in (Selman, Levesque, & Mitchell 1992). At 100variables our code for each algorithm solved problemsin broadly similar amounts of cpu time. Nor was itmotivated by naive comparison of the di�erent searchmeasures: Gsat needs many more 
ips than Dp-Jwneeds leaf nodes at 100 variables. The suggestion arisesout of a simple mathematical model, constructed fromdata about comparatively small problems. Whilst it isvaluable to test problems as large as technically feasi-ble, our use of small problems enabled large samplesto be used across the phase transition.
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 (x-axis)Figure 7: Modelled/predicted (lines) and observed(points) 90th percentile of the search cost for random3-Sat with �c = 0:803 and � = 1:5Related workGent and Walsh report a possible cubic growth insearch cost for Gsat at the random 3-Sat phase tran-sition (Gent & Walsh 1993). Parkes and Walser alsorecord sub-exponential growth for several variants ofthe Gsat procedure at the random 3-Sat phase tran-sition (Parkes & Walser 1996). All these results werejust for the worst case, critically constrained problems



at the phase transition. By comparsion, this papermodels scaling across the entire phase transition.Crawford and Auton report simple exponentialgrowth for Tableau, a Davis Putnam variant onthe random 3-Sat problem class at l=n = 4:2 (thephase transition) and l=n = 10 (over-constrained re-gion) (Crawford & Auton 1996). They also recordroughly linear growth at l=n = 1; 2 and 3 in the under-constrained region, but caution that some problemsin this region can be as hard as those at the phasetransition. Selman and Kirkpatrick construct a sim-ple one parameter model that normalizes maximumsearch costs for a Davis Putnam procedure on the ran-dom 3-Sat problem class, using the ratio of clauses tovariables rescaled by �nite size scaling (Selman& Kirk-patrick 1996). Whilst this model performs well closeto the phase boundary, it performs poorly on under-and over-constrained problems.Theoretical analysis of performance of algorithms forsatis�ability has largely been restricted to the easierconstant probability problem class. One exception isYugami who has developed an approximate theoreticalmodel for the average case complexity of the Davis-Putnam procedure across the random 3-Sat phasetransition (Yugami 1995). Whilst the results agreewell with experiment, the derivation is complex andonly yields recursion equations.ConclusionsWe have proposed a very general technique for study-ing the growth of search cost in random NP-completeproblems. For a given problem class, the scaling ofthe phase transition in the probability of solubilitysuggests a rescaled constrainedness parameter. Thisparameter then provides the basis for models of thegrowth of search cost with problem size. We haveshown that this technique works in a variety of di�erentNP-complete problem classes such as constraint satis-faction, travelling salesperson, and satis�ability prob-lems. For the �rst time, this enables empirically de-rived predictions of search cost across the whole phasetransition. We have shown this modelling techniqueworks for both complete and local search procedures.We can thereby compare algorithms which have nocomparablemeasure of search cost except for cpu time.ReferencesBarber, M. N. 1983. Finite-size scaling. In PhaseTransitions and Critical Phenomena, Volume 8, 145{266. Academic Press.Carpaneto, G., and Toth, P. 1980. New branchingand bounding criteria for the asymmetric travellingsalesman problem. Management Sci. 26:736{743.
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