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Abstract

We show that a rescaled constrainedness parameter
provides the basis for accurate numerical models of
search cost for both backtracking and local search
algorithms. In the past, the scaling of performance
has been restricted to critically constrained problems
at the phase transition. Here, we show how to ex-
tend models of search cost to the full width of the
phase transition. This enables the direct compari-
son of algorithms on both under-constrained and over-
constrained problems. We illustrate the generality
of the approach using three different problem do-
mains (satisfiability, constraint satisfaction and trav-
elling salesperson problems) with both backtracking
algorithms like the Davis-Putnam procedure and lo-
cal search algorithms like GSAT. As well as modelling
data from experiments, we give accurate predictions
for results beyond the range of the experiments.

Introduction

How does the performance of an algorithm scale? The-
oretical analysis, especially average-case, can be very
difficult. We often therefore use empirical data, espe-
cially random instances. For many NP-complete prob-
lems, the hardest random instances tend to cluster near
a transition in solubility where problems are “critically
constrained” (Cheeseman, Kanefsky, & Taylor 1991).
A definition for the ‘constrainedness’ of problem en-
sembles has been proposed that predicts the location
of this phase transition for many different NP-complete
problem classes (Gent et al. 1996). A simple rescaling
of this parameter models the scaling of the transition
in solubility with problem size (Kirkpatrick & Selman
1994; Gent et al. 1996).

In this paper, we investigate claims made in (Gent et
al. 1995; Selman & Kirkpatrick 1996) that this rescaled

parameter may also be suitable for modelling search
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cost. We show that this parameter permits simple but
accurate models of the growth of search cost across the
full width of the phase transition — in the past, mod-
els have usually been restricted to growth at a single
point, critically constrained problems with the maxi-
mum search cost. In these models, we take problem
size to be the log of the size of the state space. As well
as modelling empirical data, we predict search cost at
problem sizes beyond the range of our experiments.
We model both complete and local search procedures,
and thereby compare algorithms that share no natural
measure of search cost other than cPU time.

Constrainedness

(Gent et al. 1996) proposes a general purpose parame-
ter, k, for the constrainedness of an ensemble of prob-
lems. If each problem has a state space with oV states,
of which (Sol) are expected to be solutions, then

k=g 1- logz(f\fSol» (1)
This definition gives parameters used to study phase
transition behaviour in many problem classes including
satisfiability, constraint satisfaction, number partition-
ing, and travelling salesperson problems. A phase tran-
sition in solubility is predicted to occur around k = 1.

Whilst {Sol) can grow exponentially with problem
size at the phase transition in solubility (for exam-

ple, as 2018V for random 3-SAT), k varies much more
slowly. Indeed, a technique borrowed from statistical
mechanics called finite size scaling (Barber 1983) can
usually model any variation by a simple rescaling of
k. Around a critical value (in this case, k.) finite size
scaling predicts that maroscopic properties of the en-
semble (in this case, the probability of solubility) will
be indistinguishable except for a simple power law scal-
ing with problem size (in this case, Nl/”). Following
(Gent et al. 1996), we define a rescaled parameter,

K — Ke

Y =def N (2)
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To illustrate this rescaling, we use a popular ensemble
of Csp’s described by the tuple (n,m, p1, pa), as used
in for example (Prosser 1996; Smith & Dyer 1996).
Each problem has n variables, a domain size of m,
and pin(n — 1)/2 binary constraints, each with pam?
of the possible pairs of values ruled out. In Figure
1(a), we plot the probability of solubility for the ensem-
ble {n,3, p1, %> against the rescaled parameter v with
N = nlog,(3). We use 10,000 problems at each point.
Analysis of the experimental data suggests values of
0.64 for k. and 2.1 for v. We see a familiar transition
in solubility around v & 0. In Figure 1(b), we plot
the median search cost for the algorithm Fc-CBJ-FF,
forward checking with conflict directed backjumping
using the fail first heuristic (Prosser 1993), against
using the same values of k. and v. We use leaf-nodes as
a measure of search cost. This graph shows the classic
“easy-hard-easy” pattern through the phase transition.
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(a) probability of solubility (y-axis) against v (x-axis)
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(b) median leaf nodes searched (y-axis) against v

Figure 1: Rescaled phase transition for <n,3,p1,%>
with k. = 0.64, v = 2.1

Scaling of Search Cost

To model growth of search cost with problem size, we
need to compute a well-defined measure at each prob-

lem size. Typically, this has been the maximum search
cost, experienced on critically constrained problems at
the phase transition. The rescaled constrainedness pa-
rameter allows us to build more detailed models in
which we can in addition study growth of search cost
on under and over-constrained problems away from the
phase transition.

(Selman & Kirkpatrick 1996) suggests normalizing
the maximum value of measures like median search
cost. This is in effect a one parameter model since it
predicts search cost at a given problem size when pro-
vided with the normalising constant. Figure 2 shows
that this model is only accurate close to the peak in
search cost. The equal separation between contours
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Figure 2: Normalised median leaf nodes searched (y-
axis) for (n, 3, p1, %> against v with k. = 0.64, v = 2.1

in Figure 1(b) suggests a simple two parameter model
based on exponential growth. For a given percentile
of search cost and value of v, we model search cost
as OzQﬁN, where a and 3 are independent of N. To
compute « and 3, we use the least squares estimates
for the intersection and gradient of the log of search
cost against IV, interpolating data points where neces-
sary. This interpolation may introduce errors near the
phase transition where search cost changes rapidly and
the estimated values for the exponents, 3, are largest.

Figure 3 shows that this model describes median
search cost very successfully across the full width of
the phase transition. In Figure 3(a), points give actual
data whilst lines indicate the values that our model
gives rounded to the nearest integer. We interpolate
between adjacent estimates of the regression parame-
ters where necessary. Figure 3(b) shows that our model
gives either a very small error in the number of nodes
or a small percentage error. The model is never more
than 15 nodes out, and only as much as 10% in error
when 1t also correct to within a single node. Indeed,
ignoring the large number of points where the model is
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(a) modelled (lines) and observed (points) search
costs (both on y-axis) against v (x-axis)
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Figure 3: Median leaf nodes searched by Fc-CBJ-FF
on {(n, 3, p1, %>

ezxact, the overwhelming majority of the data is mod-
elled to within both 10% and 10 nodes error. We obtain
similar results with other percentiles of search cost.
Since we tested 12 values of n, we have modelled a
system with 12 degrees of freedom to a reasonable de-
gree of accuracy using just 2 parameters. Unlike Sel-
man and Kirkpatrick’s normalizing model, we can also
predict search costs at new problem sizes. We first
test predictions for a problem size within the range
of our experimental data, namely 65 variables, again
using 10,000 problems at each point. This value of
n was not previously tested and thus played no role
in the regression. Figure 4(a) shows the accuracy of
the predictions for a variety of percentiles at 65 vari-
ables. All data points shown were predicted to within
either 15% or 10 nodes. We next test how our model
extrapolates to problem sizes larger than used in the
regression. In Figure 4(b) we plot the predicted and
observed results for 150 variables using 1000 problems
at each point. Although we now see significant errors
of more than 100%, such large errors only occur in the

99th percentile near the phase transition. Because of
the reduced sample size, the 99th percentile is subject
to more noise than usual. The model both over- and
under-estimates the observed 99th percentile. The lack
of a consistent trend suggests experimental noise rather
than a modelling error. In other percentiles, most pre-
dictions are accurate to within 25%. Note that, as
these predictions are for problems with 30 more vari-
ables than used in the regression, the underlying search
space has increased by a factor of more than 10'*.
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Figure 4: Predicted (lines) and observed (points) per-
centiles of leaf nodes searched (both on y-axis) for
(n,3,p1, %> against y (x-axis).

Ensembles of problems close to the phase transition
contain both soluble and insoluble problems. There are
situations in which only one kind of problem is of inter-
est. For example, local search procedures usually can-
not show insolubility. Our methods work even better if
we construct a model just for soluble or insoluble prob-
lems. In Figure 5 we use the same model as before but
restricted to soluble or insoluble problems, depending
on which was predominant. The worst errors of predic-
tion are smaller with a separated model, as might be
expected, since soluble and insoluble problems behave
very differently. The worst errors in the unified model



are in the ‘mushy region’ (Smith & Dyer 1996) where
both soluble and insoluble problems occur. The model
also works with soluble problems when most problems
are insoluble, and insoluble problems when most are
soluble. However, we must generate a large number
of problems to ensure a sufficient sample of the rare
soluble or insoluble problems.
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Figure 5: Predicted (lines) and observed (points) per-
centiles of leaf nodes searched (both on y-axis) for
(150,3,p1, 2) against v (on x-axis). Where 50% or
more of problems are (in)soluble, we study only the
search cost of the (in)soluble problems.

We are also able to model a completely different
ensemble of CsP’s with a fixed number of variables
and varying domain size. As in (Gent ef al. 1995),
we used (10,m,1.0,ps) with m = 10 to 100. Fi-
nite size scaling now requires k. = 1.01, v = 0.8
and N = 10log,(m). The same model of exponen-
tial growth accurately models observed median search
costs and predicts values for problem sizes not previ-
ously tested.

Travelling Salesperson Problem

We now consider a different NP-complere problem,
the asymmetric travelling salesperson problem (ATSP)
with inter-city distances drawn randomly from a nor-
mal distribution with mean g and standard deviation
0. We focus on the decision problem of deciding if
there is a tour of length d or less which visits all n
cities. For convenience, we normalise the tour length
to d = (d — ny)/o\/n. Correcting an error in (Gent et
al. 1996),

0% og, (¢),/2 + log, (|d1v/27)
log,(n — 1)!

For n=6 to 48 in steps of 6, we use 1000 pseudo-
random problems with inter-city distances indepen-
dently and normally distributed with p=10°% and

0=105.  We solve these problems using a branch
and bound algorithm with the Hungarian heuristic
(Carpaneto & Toth 1980) for branching. (Gent et al.
1996) shows that the probability of a tour existing for
this problem class rescales with k. = 0.75, ¥ = 2 and
N =log,(n—1)!. As with constraint satisfaction prob-
lems, the measure most suitable for modelling growth
of search cost appears to be leaf nodes. We only con-
sider the high percentiles of leaf nodes, as many prob-
lems are solved in just one node. The same model of
simple exponential growth fits the data well. We put
aside the extremes of our data, and construct a model
for v = —3 to 3 in steps of 0.25 using n=12 to 42. We
then compare the modelled data with observed, and
also the search costs the model predicts at 6 and 48
cities. Figure 6 shows the accuracy of the modelling
and predictions. For example, the model successfully
predicts that at n = 6 we will explore just a single leaf
node throughout the phase transition. It is remark-
able that a simple model of exponential growth does
so well when search costs never reaches very large val-
ues, and granularity therefore plays an important role.
(Gent & Walsh 1996) reports a phase transition in the
Euclidean Tsp, but the parameter used was derived
from asymptotic considerations and not from the con-
strainedness parameter k. It would be interesting to
see if modelling of search cost works well against this
parameter.
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Figure 6: Modelled/predicted (lines) and observed
(points) 90th percentile of leaf nodes searched to solve
ATsP instances (both on y-axis) against v (x-axis) with
ke = 0.75, v = 2.

Local vs Complete Search

By modelling the growth of search costs for com-
plete and local search procedures, we can compare al-
gorithms that only share CPU time as a measure of



search cost. We use satisfiability (SAT) as a case study
for such a comparison. As in many previous stud-
ies, for example (Selman, Levesque, & Mitchell 1992),
we use the random 3-SAT problem class. For prob-
lems from this class with [ clauses and n variables,
k= —log,(7/8) % (Gent et al. 1996). This is just
a constant times the more familiar ratio {/n. Once
again finite size scaling (of the probability of satisfia-
bility) works well with the critical value of I/n being
4.17, corresponding to k. = 0.803, v = 1.5 and N =n
(Kirkpatrick & Selman 1994).

For the complete procedure, we use the Davis-
Putnam algorithm without pure literal deletion (Davis,
Logemann, & Loveland 1962) with the branching
heuristic from (Jeroslow & Wang 1990). We call this
Dp-Jw. As in the previous sections, we measure leaf
nodes searched. For the local search procedure, we
use the random hill-climbing algorithm GsAaT (Selman,
Levesque, & Mitchell 1992) measuring, as in previ-
ous studies, the number of truth-values flipped during
search. As GSAT cannot solve unsatisfiable problems,
we restrict analysis for both algorithms to satisfiable
problems. From n = 10 to 100 and {/n up to at least
4.4, we tested GsaT and DpP-Jw on 1000 satisfiable
pseudo-random 3-SAT problems. For GSAT, we use
the value of ‘max-flips’ that minimises the number of
flips used at {/n = 4.3 for each n.

Figure 7(a) shows that the simple exponential
growth model also works well for DP-Jw. Since we set
aside n = 100, the top contour is a prediction rather
than modelling. We were unable to fit the data for
GSAT to the exponential model of search growth. In-
stead, we construct a simple two parameter power law
model in which the number of flips used grows as an® at
each value of v. Figure 7(b) shows that this model de-
scribes the data well when we set aside n = 10, 20, and
100. The scaling exponent b is never greater than 4, i.e.
search never grows faster than quartically. The lines at
n = 10, 20, and 100 are predictions. The predictions
are not very accurate for n = 10 or 20, but are good for
n = 100 though they seem to under-estimate the true
values near the phase transition. (Parkes & Walser
1996) report being unable to fit data (for the peak in
search cost only) for a similar algorithm, WsAT, using
a two parameter model.

Note that the same technique worked well for both
complete and local search procedures: i.e. modelling
the growth of search cost against the rescaled con-
strainedness parameter v and the problem size. The
differences between the models suggest a different scal-
ing of search cost for the two algorithms. While search
cost for DP-Jw seems to grow exponentially, search
cost in GSAT appears to grow no faster than n*. This

suggests that GSAT scales better than Dp-Jw. This
was not motivated by comparison of pure run-times,
as in (Selman, Levesque, & Mitchell 1992). At 100
variables our code for each algorithm solved problems
in broadly similar amounts of cPU time. Nor was it
motivated by naive comparison of the different search
measures: GSAT needs many more flips than Dp-Jw
needs leaf nodes at 100 variables. The suggestion arises
out of a simple mathematical model, constructed from
data about comparatively small problems. Whilst it is
valuable to test problems as large as technically feasi-
ble, our use of small problems enabled large samples
to be used across the phase transition.
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(a) DP-Jw leaf nodes (y-axis) against v (x-axis)
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Figure 7: Modelled/predicted (lines) and observed
(points) 90th percentile of the search cost for random

3-SAT with k. =0.803 and v =1.5

Related work

Gent and Walsh report a possible cubic growth in
search cost for GSAT at the random 3-SAT phase tran-
sition (Gent & Walsh 1993). Parkes and Walser also
record sub-exponential growth for several variants of
the GSAT procedure at the random 3-SAT phase tran-
sition (Parkes & Walser 1996). All these results were
just for the worst case, critically constrained problems



at the phase transition. By comparsion, this paper
models scaling across the entire phase transition.

Crawford and Auton report simple exponential
growth for TABLEAU, a Davis Putnam variant on
the random 3-SAT problem class at {/n = 4.2 (the
phase transition) and {/n = 10 (over-constrained re-
gion) (Crawford & Auton 1996). They also record
roughly linear growth at [/n = 1,2 and 3 in the under-
constrained region, but caution that some problems
in this region can be as hard as those at the phase
transition. Selman and Kirkpatrick construct a sim-
ple one parameter model that normalizes maximum
search costs for a Davis Putnam procedure on the ran-
dom 3-SAT problem class, using the ratio of clauses to
variables rescaled by finite size scaling (Selman & Kirk-
patrick 1996). Whilst this model performs well close
to the phase boundary, it performs poorly on under-
and over-constrained problems.

Theoretical analysis of performance of algorithms for
satisfiability has largely been restricted to the easier
constant probability problem class. One exception is
Yugami who has developed an approximate theoretical
model for the average case complexity of the Davis-
Putnam procedure across the random 3-SAT phase
transition (Yugami 1995). Whilst the results agree
well with experiment, the derivation is complex and
only yields recursion equations.

Conclusions

We have proposed a very general technique for study-
ing the growth of search cost in random NP-complete
problems. For a given problem class, the scaling of
the phase transition in the probability of solubility
suggests a rescaled constrainedness parameter. This
parameter then provides the basis for models of the
growth of search cost with problem size. We have
shown that this technique works in a variety of different
NP-complete problem classes such as constraint satis-
faction, travelling salesperson, and satisfiability prob-
lems. For the first time, this enables empirically de-
rived predictions of search cost across the whole phase
transition. We have shown this modelling technique
works for both complete and local search procedures.
We can thereby compare algorithms which have no
comparable measure of search cost except for CPU time.
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