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Abstract
Voting is a simple mechanism to aggregate the pref-
erences of agents. Many voting rules have been
shown to be NP-hard to manipulate. However, a
number of recent theoretical results have suggested
that this complexity may only be in the worst-case
and manipulation may be easy in practice. In this
paper, we show that empirical studies are useful
in improving our understanding of this issue. We
demonstrate that there is a smooth transition in the
probability that a coalition can elect a desired can-
didate as the size of the manipulating coalition is
varied. We show that a rescaled probability curve
displays a simple and universal form independent
of the size of the problem. We argue that for many
independent and identically distributed votes, ma-
nipulation will be computationally easy even when
the coalition of manipulators is critical in size.
Based on this argument, we identify a situation in
which manipulation is computationally hard. This
is when votes are highly correlated and the election
is “hung”. We show, however, that even a single
uncorrelated voter is enough to make manipulation
easy again.

1 Introduction
The Gibbard-Satterthwaite theorem proves that, under some
simple assumptions, most voting rules are manipulable. That
is, it may pay for an agent not to report their preferences truth-
fully. One possible escape from this result was proposed by
Bartholdi, Tovey and Trick [Bartholdi et al., 1989]. Whilst
a manipulation may exist, perhaps it is computationally too
difficult to find? Many results have subsequently been proven
showing that various voting rules are NP-hard to manipulate
under different assumptions including: an unbounded num-
ber of candidates; a small number of candidates but weighted
votes; and uncertainty in the distribution of votes. See, for
instance, [Bartholdi et al., 1989; Bartholdi and Orlin, 1991;
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Conitzer et al., 2007]. There is, however, increasing con-
cern that worst-case results like these may not reflect the
difficulty of manipulation in practice. Indeed, a number of
recent theoretical results suggest that manipulation may of-
ten be computational easy [Conitzer and Sandholm, 2006;
Procaccia and Rosenschein, 2007b; Xia and Conitzer, 2008a;
Friedgut et al., 2008; Xia and Conitzer, 2008b].

In this paper we show that, in addition to attacking this
question theoretically, we can profitably study it empirically.
There are several reasons why empirical analysis is useful.
First, theoretical analysis is often asymptotic and so does not
show the size of any hidden constants. In addition, elections
are typically bounded in size. Can we be sure that asymp-
totic behaviour is relevant for the finite sized electorates met
in practice? Second, theoretical analysis is often restricted to
particular distributions (e.g. independent and identically dis-
tributed votes). Manipulation may be very different in prac-
tice due to correlations between the votes. For instance, if
all preferences are single-peaked then there are voting rules
which cannot be manipulated. With such rules, it is in the best
interests of all agents to state their true preferences. Third,
many of these theoretical results about the easiness of ma-
nipulation have been hard won and are limited in their appli-
cability. For instance, Friedgut et al. have not so far been
able to extend their result beyond three candidates [Friedgut
et al., 2008]. An empirical study may quickly suggest if the
result extends to more candidates. Finally, empirical studies
may suggest new avenues for theoretical study. For example,
the experiments reported here suggest a simple and universal
form for the probability that a coalition of critical size is able
to elect a desired candidate. It would be interesting to try to
tackle this theoretically.

2 Background
We suppose that there are n agents who have voted and a
coalition of m additional agents who wish to manipulate the
result. When the manipulating coalition is small, they have
too little weight to be able to change the result. On the other
hand, when the coalition is large, they are sure to be able
to make their desired candidate win. Procaccia and Rosen-
schein prove that for most scoring rules and a wide variety of
distributions over votes, when m = o(

√
n), the probability

that a manipulating coalition can change the result tends to 0,
and when m = ω(

√
n), the probability that they can manipu-



late the result tends to 1 [Procaccia and Rosenschein, 2007a].
They offer two interpretations of this result. On the positive
side, they suggest it may focus attention on other distributions
which are computationally hard to manipulate. On the neg-
ative side, they suggest that it may strengthen the argument
that manipulation problems are easy on average.

More recently, Xia and Conitzer show that for a large class
of voting rules, as the number of agents grows, either the
probability that a coalition can manipulate the result is very
small (as the coalition is too small), or the probability that
they can (easily) manipulate the result to make any alternative
win is very large [Xia and Conitzer, 2008a]. They leave open
only a small interval in the size of the coalition for which the
coalition is large enough to be able to manipulate but not ob-
viously large enough to be able to manipulate the result eas-
ily. More precisely, for a wide range of voting rules includ-
ing scoring rules, STV, Copeland and maximin, with votes
which are drawn independently and with an identical distri-
bution that is positive everywhere, they identify three cases:
• if m = O(np) for p < 1

2 then the probability that the
result can be changed is O( 1√

n
);

• if m = Ω(np) for p > 1
2 and o(n) and votes are uniform

then the probability that the result can be manipulated is
1−O(e−Θ(n2p−1)) using a simple greedy procedure;
• if m = Θ(

√
n) then they provide no result.

In this paper, we shall provide empirical evidence to help
close this gap and understand what happens when the coali-
tion is of a critical size that grows as Θ(

√
n).

3 Finding manipulations
We will focus on the veto rule. This is a scoring rule in which
each agent gets to cast a veto against one candidate. The
candidate with the fewest vetoes wins. We suppose that tie-
breaking is in favor of the manipulators. However, it is easy to
relax this assumption. There are several reason why we start
this investigation into the complexity of manipulation with
the veto rule. First, it is very simple to reason about. This can
be contrasted with other voting rules that are computationally
hard to manipulate. For example, the STV rule is NP-hard
to manipulate [Bartholdi and Orlin, 1991] but its complexity
appears to come in part from reasoning about what happens
between the different rounds. Second, it is on the borderline
of complexity since constructive manipulation of the veto rule
by a coalition of weighted agents is NP-hard but destructive
manipulation is polynomial [Conitzer et al., 2007]. Third,
efficient number partitioning algorithms can be used to com-
pute a successful manipulation. In particular, we show that
manipulation of an election with 3 candidates and weighted
votes (which is NP-hard [Conitzer et al., 2007]) can be very
directly reduced to 2-way number partitioning (which we can
solve using the efficient CKK algorithm [Korf, 1995]). A
similar argument can be given to show that the manipulation
of a veto election of p candidates by a weighted coalition can
be reduced to finding a p− 1-way partition of numbers.

Theorem 1 There exists a successful manipulation of an
election with 3 candidates by a weighted coalition using the

veto rule iff there exists a partitioning of W ∪ {|a − b|} into
two bags such that the difference between their two sums is
less than or equal to a+b−2c+

∑
i∈W i whereW is the mul-

tiset of weights of the manipulating coalition, a, b and c are
the weights of vetoes assigned to the three candidates by the
non-manipulators and the manipulators wish the candidate
with weight c to win.
Proof: It never helps a coalition manipulating the veto rule
to veto the candidate that they wish to win. The coalition
does, however, need to decide how to divide their vetoes be-
tween the candidates that they wish to lose. Consider the
case a ≥ b. Suppose the partition has weights w − ∆/2
and w + ∆/2 where 2w =

∑
i∈W∪{|a−b|} i and ∆ is the

difference between the two sums. The same partition of ve-
toes is a successful manipulation iff the winning candidate
has no more vetoes than the next best candidate. That is,
c ≤ b + (w − ∆/2). Hence ∆ ≤ 2w + 2b − 2c =
(a− b) + 2b− 2c+

∑
i∈W i = (a+ b− 2c) + 2

∑
i∈W i. In

the other case, a < b and ∆ ≤ (b+ a− 2c) +
∑
i∈W i. Thus

∆ ≤ a+ b− 2c+
∑
i∈W i. 2

A similar (but slightly more complex) argument can be
used to show that manipulation of any scoring rule with 3
candidates and weighted votes can be reduced to 2-way num-
ber partitioning. However, the argument used does not ex-
tend to more than 3 candidates. Manipulating elections with
greater than 3 candidates and scoring rules other than veto or
plurality seems to require other more complex methods.

4 Uniform votes
We consider the case that the n agents veto uniformly at
random one of the 3 possible candidates, and vetoes carry
weights drawn uniformly from (0, k]. When the coalition is
small in size, it has too little weight to be able to change the
result. On the other hand, when the coalition is large in size,
it is sure to be able to make a favored candidate win. There
is thus a transition in the manipulability of the problem as the
coalition size increases (see Figure 1).

Based on [Procaccia and Rosenschein, 2007a; Xia and
Conitzer, 2008a], we expect the critical coalition size to in-
crease as

√
n. In Figure 2, we see that the phase transition

appears to display a simple and universal form when plotted
against m/

√
n. The phase transition appears to be smooth,

with the probability varying slowly and not approaching a
step function as problem size increases. We obtained a good
fit with 1 − 2/3em/

√
n. Other smooth phase transitions have

been seen with 2-coloring [Achlioptas, 1999], 1-in-2 satisfi-
ability and Not-All-Equal 2-satisfiability [Walsh, 2002]. It is
interesting to note that all these decision problems are poly-
nomial.

The theoretical results mentioned earlier leave open how
hard it is to compute whether a manipulation is possible when
the coalition size is critical. Figure 3 displays the computa-
tional cost to find a manipulation (or prove none exists) using
the efficient CKK algorithm. Even in the critical region where
problems may or may not be manipulable, it is easy to com-
pute whether the problem is manipulable. All problems can
be solved in a few branches. This contrasts with phase tran-
sition behaviour in problems like propositional satisfiability
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Figure 1: Probability of a coalition of m agents electing a
chosen candidate where n agents have already voted, and ve-
toes are weighted and uniformly drawn from (0, 28]. Note
that at m = 0, there is a 1/3rd chance that the non-
manipulators have already elected this candidate. In this and
all subsequent experiments, we tested 10,000 problems at
each data point.

[Cheeseman et al., 1991; Mitchell et al., 1992] and number
partitioning [Gent and Walsh, 1998], where the hardest prob-
lems tend to occur around the phase transition.

5 Why hard problems are rare
By using the reduction of manipulation problems to number
partitioning, we give a heuristic argument why hard manip-
ulation problems are vanishing rare as n ; ∞ and m =
Θ(
√
n). The basic idea is simple: by the time the coalition

is large enough to be able to change the result, the variance
in scores between the candidates is likely to be so large that
computing a successful manipulation or proving none is pos-
sible will be easy.

Suppose that the manipulators want candidates A and B
to lose so that C wins, and that the non-manipulators have
cast vetoes of weight a, b and c for A, B and C respectively.
Without loss of generality we suppose that a ≥ b. There are
three cases to consider. In the first case, a ≥ c and b ≥ c. It is
then easy for the manipulators to make C win since C wins
whether they veto A or B. In the second case, a ≥ c > b.
Again, it is easy for the manipulators to decide if they can
make C win. They all veto B. There is a successful manipu-
lation iff C now wins. In the third case, a < c and b < c. The
manipulators must partition their m vetoes between A and B
so that the total vetoes received by A and B exceeds those
for C. Let d be the deficit in weight between A and C and
betweenB and C. That is, d = (c−a)+(c−b) = 2c−a−b.
We can model d as the sum of n random variables drawn uni-
formly with probability 1/3 from [0, 2k] and with probability
2/3 from [−k, 0]. These variables have mean 0 and variance
2k2/3. By the Central Limit Theorem, d tends to a normal
distribution with mean 0, and variance s2 = 2nk2/3. For a
manipulation to be possible, d must be less than w, the sum
of the weights of the vetoes of the manipulators. By the Cen-
tral Limit Theorem, w also tends to a normal distribution with
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Figure 2: Rescaled probability that a coalition of m agents
can elected a chosen candidate where n agents have already
voted, and vetoes are weighted and uniformly drawn from
(0, 28]. The x-axis is scaled by 1/

√
n.
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Figure 3: Computational cost for the CKK algorithm to de-
cide if a coalition of m agents can manipulate a veto election
where n agents have already voted, and vetoes are weighted
and uniformly drawn from (0, 2m]. Even the most difficult
problems are solved with almost no search.

mean µ = mk/2, and variance σ2 = 2mk2/3.
A simple heuristic argument due to [Karmarkar et al.,

1986] and also based on the Central Limit Theorem upper
bounds the optimal partition difference of m numbers from
(0, k] by O(k

√
m/2m). In addition, based on the phase tran-

sition in number partitioning [Gent and Walsh, 1998], we
expect partitioning problems to be easy unless log2(k) =
Θ(m). Combining these two observations, we expect hard
manipulation problems when 0 ≤ w − d ≤ α

√
m for some

constant α. The probability of this occurring is:∫ ∞
0

1√
2πσ

e−
(x−µ)2

2σ2

∫ x

x−α
√
m

1√
2πs

e−
y2

2s2 dy dx

By substituting for s, µ and σ, we get:∫ ∞
0

1√
4πmk2/3

e
− (x−mk/2)2

4mk2/3

∫ x

x−α
√
m

1√
4πnk2/3

e
− y2

4nk2/3 dy dx



For n ;∞, this tends to:∫ ∞
0

1√
4πmk2/3

e
− (x−mk/2)2

4mk2/3
α
√
m√

4πnk2/3
e
− x2

4nk2/3 dx

As e−z ≤ 1 for z > 0, this is upper bounded by:
α
√
m√

4πnk2/3

∫ ∞
0

1√
4πmk2/3

e
− (x−mk/2)2

4mk2/3 dx

Since the integral is bounded by 1, m = Θ(
√
n) and

log2(k) = Θ(m), this upper bound varies as:

O(
1√
m2m

)

Thus, we expect hard instances of manipulation problems to
be exponentially rare. Since even a brute force manipula-
tion algorithm takes O(2m) time in the worst-case, we do not
expect the hard instances to have a significant impact on the
average-case as n (and thusm) grows. We stress this is only a
heuristic argument. It makes assumptions about the complex-
ity of manipulation problems (in particular that hard instances
should lie within the narrow interval 0 ≤ w − d ≤ α

√
m).

These assumptions are only supported by empirical observa-
tion and informal argument. However, the experimental re-
sults reported in Figure 3 support the overall conclusions.

6 Varying weights
The theoretical analyses of manipulation in [Procaccia and
Rosenschein, 2007a; Xia and Conitzer, 2008a] suggest that
the probability of an election being manipulable is largely in-
dependent of k, the size of the weights attached to the vetoes.
Figure 4 demonstrates that this indeed appears to be the case
in practice. When weights are varied in size from 28 to 216,
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Figure 4: Independence of the size of the weights and the
manipulability of an election. Probability that a coalition of
m agents can elect a chosen candidate where n agents have
already voted, and vetoes are weighted and uniformly drawn
from (0, k].

the probability does not appear to change. In fact, the prob-
ability curve fits the same simple and universal form plotted
in Figure 2. We also observed that the cost of computing a
manipulation or proving that none is possible did not change
as the weights were varied in size.

7 Normally distributed votes
What happens with other distributions of votes? The theoret-
ical analyses of manipulation in [Procaccia and Rosenschein,
2007a; Xia and Conitzer, 2008a] suggest that there is a criti-
cal coalition size that increases as Θ(

√
n) for many types of

independent and identically distributed random votes. Sim-
ilarly, our heuristic argument about why hard manipulation
problems are vanishingly rare depends on application of the
Central Limit Theorem. It therefore works with other types
of independent and identically distributed random votes.
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Figure 5: Weighted votes taken from a normal distribution.
We plot the probability that a coalition ofm agents can elect a
chosen candidate where n agents have already voted, and ve-
toes are weighted and drawn from a normal distribution with
mean 28 and standard deviation 27. The x-axis is scaled by√
n.

We shall consider therefore another type of independent
and identically distributed vote. In particular, we study an
election in which weights are independently drawn from a
normal distribution. Figure 5 shows that there is again a
smooth phase transition in manipulability. We also plotted
Figure 5 on top of Figures 2 and 4. All curves appear to fit the
same simple and universal form. As with uniform weights,
the computational cost of deciding if an election is manip-
ulable was small even when the coalition size was critical.
Finally, we varied the parameters of the normal distribution.
The probability of electing a chosen candidate as well as the
cost of computing a manipulation did not appear to depend
on the mean or variance of the distribution.

8 Correlated votes
To find hard manipulation problems, it seems we must look
to votes which are more correlated. For example, consider a
“hung” election where all n agents veto the candidate that the
manipulators wish to win, but the m manipulators have ex-
actly twice the weight of vetoes of the n agents. This election
is finely balanced. The favored candidate of the manipula-
tors wins iff the manipulators perfectly partition their vetoes
between the two candidates that they wish to lose.

In Figure 6, we plot the probability that themmanipulators
can make their preferred candidate win in such a “hung” elec-
tion as we vary the size of their weights k. Similar to number
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Figure 6: Manipulation of an election where votes are highly
correlated and the result is “hung”. We plot the probabil-
ity that a coalition of m agents can elect a chosen candidate
where the vetoes of the manipulators are weighted and uni-
formly drawn from (0, k], the other agents have all vetoed
the candidate that the manipulators wish to win, and the sum
of the weights of the manipulators is twice that of the non-
manipulators.

partitioning [Gent and Walsh, 1998], we see a rapid transi-
tion in manipulability around log2(k)/m ≈ 1. In Figure 7,
we observe that there is a rapid increase in the computation-
ally complexity to compute a manipulation around this point.

What happens when the votes are not so perfectly corre-
lated? We consider an election which is perfectly hung as
before except for one agent who votes at random between the
three candidates. In Figure 8, we plot the cost of comput-
ing a manipulation as k′, the size of the weight of this single
random veto increases. We see that even one uncorrelated
vote is enough to make manipulation easy if it has the same
magnitude in weight as the vetoes of the manipulators. This
suggests that we will only find hard manipulation problems
in highly correlated voting distributions.

9 Other related work
There have been a number of other recent theoretical results
about the computational complexity of manipulating elec-
tions. For instance, Procaccia and Rosenschein give a sim-
ple greedy procedure that will in polynomial time find a ma-
nipulation of a scoring rule for any “junta” distribution of
weighted votes with a probability of failure that is an in-
verse polynomial in n [Procaccia and Rosenschein, 2007b].
A “junta” distribution is concentrated on the hard instances.

As a second example, Friedgut, Kalai and Nisan prove
that if the voting rule is neutral and far from any dictator-
ship and there are three candidates then there exists an agent
for whom a random manipulation succeeds with probability
Ω( 1

n ) where n is the number of agents [Friedgut et al., 2008].
They were, however, unable to extend their proof to four (or
more) candidates. Xia and Conitzer showed that, starting
from different assumptions, a random manipulation would
succeed with probability Ω( 1

n ) for 3 or more candidates for
STV, for 4 or more candidates for a scoring rule and for 5 or
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Figure 7: The cost to decide if a hung election can be manipu-
lated. We plot the computational cost for the CKK algorithm
to decide if a coalition of m agents can manipulate a veto
election where the vetoes of the manipulators are weighted
and uniformly drawn from (0, k], the other agents have all
vetoed the candidate that the manipulators wish to win, and
the sum of the weights of the manipulators is twice that of the
non-manipulators.

more candidates for Copeland [Xia and Conitzer, 2008b].
Coleman and Teague provide polynomial algorithms to

compute a manipulation for the STV rule when either the
number of voters or the number of candidates is fixed [Cole-
man and Teague, 2007]. They also conducted an empirical
study which demonstrates that only relatively small coalitions
are needed to change the elimination order of the STV rule.
They observe that most uniform and random elections are not
trivially manipulable using a simple greedy heuristic.

Finally, a similar phenomena has been observed in the
phase transition for deciding if a random graph contains a
Hamiltonian cycle [Vandegriend and Culberson, 1998]. If the
number of edges is small, there is likely to be a node of de-
gree smaller than 2. There cannot therefore be any Hamilto-
nian cycle. By the time that there are enough edges for all
nodes to be degree two, there are likely to be many possible
Hamiltonian cycles and even a simple heuristic can find one.
Thus, the phase transition in the existence of a Hamiltonian
cycle is not associated with hard instances of the problem. We
saw a similar phenomenon here. By the time the coalition is
large enough to manipulate the result, the variance in scores
between the candidates is likely to be so large that computing
a successful manipulation or proving none is possible is easy.

10 Conclusions
We have studied the question of whether computational com-
plexity is a barrier to the manipulation of a voting rule. We
showed that there is a smooth transition in the probability
that a coalition can elect a desired candidate as the size of
the manipulating coalition is varied. We demonstrated that
a rescaled probability curve displays a simple and universal
form independent of the size of the problem. Unlike phase
transitions for other NP-complete problems, hard problems
are not associated with the transition between satisfiable and
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Figure 8: The impact of a single random voter on the manip-
ulability of a hung election. We plot the computational cost
for the CKK algorithm to decide if a coalition of m agents
can manipulate a veto election where the vetoes of the ma-
nipulators are weighted and uniformly drawn from (0, k], the
non-manipulating agents have all vetoed the candidate that
the manipulators wish to win, and the sum of the weights of
the manipulators is twice that of the non-manipulators except
for one random non-manipulating agent whose weight is uni-
formly drawn from (0, k′]. When the veto of the one random
voter has the same weight as the other voters, it is computa-
tionally easy to decide if the election can be manipulated.

unsatisfiable problems. We observed similar behavior with
other independent and identically distributed votes like those
following a normal distribution. Finally, we studied the im-
pact of correlation between votes. We showed that manipula-
tion is computationally hard when votes are highly correlated
and the election is “hung”. However, even a single uncorre-
lated voter was enough to make manipulation easy again.

What general lessons can be learnt from this study? First,
whilst we have focused on the veto rule, it is likely that sim-
ilar behavior will be seen with other voting rules. It would,
for instance, be interesting to study the STV rule. This is
NP-hard to manipulate even without weights. In addition, the
rule has multiple rounds making it hard to reason about and
to manipulate. Second, there appears to be an universal form
for the probability that a coalition is able to elect a chosen
candidate. It would be interesting to derive this form theoret-
ically. Third, we conjecture that there is a connection between
the smoothness of the phase transition and problem hardness.
Sharp phase transitions (like that for propositional satisfiabil-
ity) appear to be associated with hard instances of decision
problems, whilst smooth transitions appear to be associated
with easy instances of NP-hard problems or with polynomial
problems like 2-colorability. Fourth, these results demon-
strate that empirical studies can improve our understanding
of manipulation. It would therefore be interesting to consider
similar studies of related topics like bribery and control.
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