Dynamic Symmetry Breaking Constraints

George Katsirelos' and Toby Walsh?

Abstract. We present a general method for dynamically posting
symmetry breaking constraints during search. The basic idea is very
simple. Given any set of symmetry breaking constraints, if during
search a symmetry of one of these constraints is entailed and this
is consistent with previously posted symmetry breaking constraints,
then we post this constraint. We illustrate the method with two exam-
ples where a polynomial number of symmetry breaking constraints
break an exponential number of symmetries. Like existing static
methods for symmetry breaking, this symmetry breaking method
benefits from fast and effective constraint propagation. In addition,
like existing dynamic methods for symmetry breaking, this symme-
try breaking methods does not conflict with the branching heuristic.
Initial experimental results appear promising.

1 INTRODUCTION

Many search problems contain symmetries. For example, in schedul-
ing problems, we can have identical orders or machines. As a second
example, in workforce rostering problems, we can have equivalently
skilled personnel. As a third example, in bin packing problems, we
can have equal sized bins. Unless we take care, such symmetries will
increase the size of the search space. In some cases, symmetries in-
crease the size of the search space dramatically. For example, if we
have n identical machines, then every schedule can be permuted into
one of n! symmetric schedules. If this symmetry is not factored out of
search, we will waste a lot of time visiting symmetric search states.

There are a number of different methods commonly used to deal
with symmetry. For example, we can statically add constraints be-
fore search which eliminate some or all of the symmetric solutions,
or we can modify the search method so that it dynamically avoids
symmetric solutions. Static symmetry breaking methods are simple
to implement, work with any type of symmetry and tend to be highly
effective. A small number of constraints can often quickly eliminate
many symmetries. However, static methods have one disadvantage
compared to dynamic methods: we fix in advance which solutions
in each symmetry class are permitted, and branching heuristics may
conflict with this choice.

In this paper, we propose a general method for posting static sym-
metry breaking constraints dynamically and incrementally during
search. The posted symmetry breaking constraints are chosen to be
consistent with the initial choices of the branching heuristic. This
hybrid approach inherits good properties of both static and dynamic
methods for symmetry breaking: we profit from fast propagation of
the static symmetry breaking constraints, yet do not conflict with the
branching heuristic.

L NICTA, Sydney, Australia, email: george.katsirelos@nicta.com.au.
2 NICTA and UNSW, Sydney, Australia, email: tw @cse.unsw.edu.au.

2 BACKGROUND

A constraint satisfaction problem consists of a set of variables, each
with a domain of values, and a set of constraints specifying allowed
combinations of values for given subsets of variables. A solution
is an assignment of values to variables satisfying the constraints. A
common method to find a solution is backtracking search. Constraint
solvers typically prune their search space by enforcing a local consis-
tency property like domain consistency. A constraint is domain con-
sistent iff for each variable, every value in its domain can be extended
to an assignment that satisfies the constraint. We make a constraint
domain consistent by pruning values for variables which cannot be
in any solution. During the search for a solution, a constraint can
become entailed. A constraint is entailed when any assignment of
values left in the domain of the variables is a solution. For instance,
X1 < Xy is entailed if and only if the largest value in the domain of
X is smaller than the smallest value in the domain of Xg.

Constraint satisfaction problems can contain symmetry. We will
consider two special types of symmetry. A variable symmetry is a
permutation of the variables that preserves solutions. Formally, a
variable symmetry is a bijective mapping, o of the indices of vari-
ables such that if X; = di,...,X, = d, is a solution then
Xoqy = di,...,Xom) = dn is also. A value symmetry, on
the other hand, is a permutation of the values that preserves solu-
tions. Formally, a value symmetry is a bijective mapping, 6 of the
values such that if X; = di,...,X, = d, is a solution then
X1 =0(d1),...,Xn = 0(dy) is also. More generally, symmetries
can act simultaneously on variables and values. Our methods work
with such general types of symmetry.

3 AN EXAMPLE
The basic idea is as follows:

Given any set of symmetry breaking constraints, if during
search a symmetry of one of these constraints is entailed and
this is consistent with previously posted symmetry breaking
constraints, then we post this constraint so it holds also down
all future branches.

We illustrate this with a simple example involving just 8 symmetries.
The magic squares problem is to label a n by n square so that the sum
of every row, column and diagonal are equal (prob019 in CSPLib). A
normal magic square contains the integers 1 to n2. The problem has
8 symmetries corresponding to the rotations and reflections of the
square. “Lo Shu”, the unique normal magic square up to symmetry
for n = 3, is an important object in ancient Chinese mathematics:

8|16
31517
41912

Consider a model with one variable for each label, an all-different
constraint over all variag)les, and constraints that each row, column
or diagonal adds up to 2* 2. We can rotate the solution given earlier
so that the smallest corner label is at top left, and then reflect in the
NW-SE diagonal so that the bottom left corner label is smaller than
the top right. This eliminates all degrees of freedom.

21716
915 |1
4138

We can therefore break all symmetry with the following constraints:

X[1,1) < X[L,n), X[1,1] < X[n,1], X[1,1] < X[n,n],

Xn,1] < X[1,n] (1)

Where X1, 1] is the top left corner label, X[1, n] is the top right,
X|[n, 1] is the bottom left and X [n, n] is the bottom right.

Any of the 8 symmetries of these ordering constraints would break
all symmetry. For instance, consider the variable symmetry that ro-
tates the magic square 90° clockwise and reflects in the NW-SE diag-
onal. This maps X [1, 1] onto X [n, 1], X[1, n] onto X [n,n], X[n, 1]
onto X1, 1], and X[n, n] onto X[1, n]. Applying this variable sym-
metry to (1) gives:

X[n,1] < X[n,n], X[n,1] < X[1,1],

X[1,1] < X[n,n]

X[n,1] < X[1,n],

That is, the smallest corner label is now at bottom left, and the top
left is smaller than the bottom right. This set of constraints would
also break all symmetry.

We choose which of the 8 symmetries of (1) to use incrementally
during search. For example, suppose we begin search by assigning 1
to the bottom left corner:

717?
?717?
1| ?2(7?

As the variables take all different values, X[1,1] > 1, X[1,n] > 1,
X[n,1] = 1 and X[n,n] > 1. Hence, at this point in search, the
following ordering constraints are entailed:

X[n,1] < X[1,n], Xn,1] < X[1,1], Xn,1] < X[1,n]

That is, the smallest corner label is at bottom left. This is a 90° rota-
tion anti-clockwise of the first three symmetry breaking constraints
given in (1). It is also a reflection in the NW-SE diagonal followed
by a 90° rotation anti-clockwise of (1). At this point, we do not need
to choose between these two symmetries. We simply post the three
entailed ordering constraints so that they hold on all future branches.
Note that the top left and bottom right corners are not yet ordered.
The branching heuristic is free to choose which is smaller.

Suppose, the branching heuristics instantiates the bottom row as
follows:

?
20?707
11519

Now X|[1,1] < 9 as variables take all-different values and
X[n,mn] = 9. Hence, at this point, the following ordering constraint
is entailed:

X[1,1] < X[n,n]

That is, the top left corner is smaller than the bottom right. This or-
dering constraint is consistent with the three ordering constraints al-
ready posted; the four ordering constraints can be obtained by reflect-
ing (1) in the NW-SE diagonal and then rotating 90° anti-clockwise.
We therefore post this fourth ordering constraint so that it holds on
all future branches. All 8 symmetries are now broken in line with the
choices of the branching heuristic. Backtracking will find the unique
solution with the bottom left corner smallest, and the top left smaller
than the bottom right:

41318
915 |1
21716

In the rest of the paper, we describe two instances of this dynamic
method. In each, we post symmetry breaking constraints incremen-
tally during search that are consistent with the choices made by the
branching heuristic. Whilst we give specific examples, the method is
general and can be applied to all types of symmetry breaking con-
straints. For instance, the method works with specialized symmetry
breaking constraints like those used for breaking row or column sym-
metries [3]. It also works with general purpose symmetry breaking
constraints like the “lex-leader” constraints [1].

4 INTERCHANGEABLE VALUES

We consider an example where dynamically posting symmetry
breaking constraints during search is especially simple. A common
type of value symmetry is when values are interchangeable. For ex-
ample, when coloring the vertices in a graph, the colors (values) are
interchangeable. Suppose we have n variables, X; to X, taking in-
terchangeable values from 1 to m. Based on [7], we can statically
break such symmetry by converting it into variable symmetry and
ordering the introduced variables. We begin by channelling into vari-
ables, Z; representing the indices at which values first occur:

X, =
Zy=i

= ZjS’L'

Where 1 <i<n,1<j<m,and Z; € [1,n+ m). We then break
all symmetry by posting the ordering constraints:

Zl<Z2<Z3<...<Zm (2)

These ordering constraints enforce “value precedence” [5]. That is,
they ensure that the first occurrence of j is before that of £ for j < k.

Example 1 Consider the following assignment:

X1,Xo,...,Xe = 1,1,2,1,3,2

In this case, Z1 = 1, Za = 3 and Zs = 5. Thus (2) is satisfied and
the assignment obeys value precedence.

Consider, on the other hand, the symmetric assignment in which
we interchange 2 and 3:

X1, Xo,...,Xe = 1,1,3,1,2,3

In this case, Z> = 5 and Z3 = 3 so (2) is not satisfied. This assign-
ment therefore does not satisfy value precedence.

As an alternative to posting (2), we can break symmetry by posting
any symmetry of (2). To be precise, if ¢ is any permutation of 1 to
m, we can break all symmetry by posting:

Za(l) < ZO-(Q) < Zo<3) < ... < Za(m)

That is, the first occurrence of o (j) is before that of o (k) for j < k.
For instance, we could post the following symmetry of (2):

IV < Ly < Lo < L1 < ...

This ensures 1 first occurs before m, which itself first occurs before
2, etc. It is simple to post incrementally a symmetry of (2) during
search. We post the channelling constraints at the start of search as
they are invariant to symmetry. Then, if at any point during search
Z; < Zy is entailed, we post Z; < Zj so it holds on all future
branches. To ensure transitivity of the Z; variables, we maintain do-
main consistency on the channelling and ordering constraints. We
call this DynamicV alOrder.

Example 2 Consider a constraint satisfaction problem with 4 in-
terchangeable values. Suppose the branching heuristic first assigns
X1 = 3. The channelling constraints ensure Zs = 1, Z1 > 1,
Zo > land Zy > 1. Hence Zs < Z1, Z3 < Zs and Z3 < Z4 are
entailed. We therefore post these symmetry breaking ordering con-
straints so they hold on all future branches. These ensure that 3 is
the first value used in any assignment.

Suppose the branching heuristic next assigns Xo = 3 and X3 =
1. The channelling constraints ensure Z1 = 3, Zs > 3 and Zs > 3.
Hence Z1 < Zs and Z1 < Z4 are entailed. We therefore post these
ordering constraints so they hold on all future branches. At this point:

Zg<Z1<Z2, 71 < Zy

These constraints ensure that we only consider assignments in which
3 is used before 1, and 1 before 2 and 4. Note that values 2 and 4 are
still interchangeable. The branching heuristic is free to choose which
occurs fist.

Suppose we now backtrack. The channelling and symmetry break-
ing constraints leave no other choices for X1, and just one other
choice for X, namely X2 = 1. Other assignments are symmetric to
previously considered assignments (e.g. X1 = 3, Xo = 2 is symmet-
ric to X1 = 3, Xo = 1, whilst X1 = 1, X2 = 1 is symmetric to
X1 =3 X2 =3).

We prove that the DynamicV alOrder method breaks all sym-
metry. A symmetry breaking method is sound if it leaves at least one
solution in each symmetry class, and complete if it leaves at most
one solution.

Theorem 1 DynamicV alOrder is a sound and complete symme-
try breaking method for interchangeable values.

Proof: Soundness follows quickly from the soundness of the under-
lying static symmetry breaking method. We have a relaxation that
can only permit more assignments. Note that by maintaining domain
consistency on the symmetry breaking constraints, we can always ex-
tend to a total ordering. Completeness also follows quickly from the
completeness of the underlying static symmetry breaking method.
Suppose we visit a complete assignment. Then we post ordering con-
straints for all used values. Suppose we now visit a second complete
assignment that is in the same symmetry class. This contradicts one
of the symmetry breaking constraints fixed by the first complete as-
signment. Hence, we cannot visit more than one complete assign-
ment in each symmetry class. O

The method easily extends to partial interchangeability where val-
ues partition into equivalence classes, and values within each equiv-
alence class are freely interchangeable. If at any point during search,
Z; < Zy, is entailed where j and k are in the same equivalence class,
then we post Z; < Zj, so it holds on all future branches.

5 VALUE PRECEDENCE

Our second example is more complex but provides additional prop-
agation. Suppose we again have n variables, X; to X, taking in-
terchangeable values from 1 to m. As in the last section, we shall
eliminate value interchangeability by enforcing a symmetry of value
precedence. In [13], a global value propagator is proposed for the
precedence constraint. Unlike the static method used in the last sec-
tion, this propagator enforces domain consistency so prunes all pos-
sible symmetric values (see Theorem 5 in [14] for an example of
symmetric values which are not pruned by the static method). The
propagator in [13] uses a simple decomposition that we adapt to post
symmetry breaking constraints incrementally.

We introduces n + 1 variables, Q; for ¢ € [0, n] that record the
largest value used up to the index ¢. We set (); by posting:

Q0207

We then ensure value precedence by posting:

Qi = max(Qi—1, X;) 3)
Qi1 < 1+Qi C))
(3) and (4) break all symmetry due to interchangeable values.
Example 3 Consider again:

X1,X2,...,Xe = 1,1,2,1,3,2
Then, by (3):
Qo,Q1,...,Q¢ = 0,1,1,2,2,3,3

This satisfies (4). On the other hand, consider again the symmetric
assignment in which we interchange 2 and 3:

Xi,X2,..., X6 = 1,1,3,1,2,3
Then, by (3):

Qo0,Q1,...,Qs = 0,1,1,3,3,3,3
This does not satisfy (4).

To post such symmetry breaking constraints incrementally during
search, we take the somewhat counter-intuitive step of introducing
more symmetry into the problem. We observe that value precedence
can use any ordering on the values. For example, it could insist that
the first occurrence of 3 is before that of 1, and that of 1 before that
of 2. We introduce an ordering on values incrementally during search
that is consistent with the branching heuristic. To define this new
ordering, we introduce m variables, P;. The constraints will ensure
P; = k if and only if the value j is in the kth position in the value
precedence ordering. To break all symmetry, we post:

Qo =0, Q;=max(Qi—1,Px;), Qiy1 <1+Qs,
Ql =1, ALLDIFF(Pl,...,Pm), Pxi < 1+Q7;71 %)

(; now contains the maximum position in the ordering defined by
P; of all the values used up to index <.

These constraints introduces m! variable symmetries into the
problem since the total order defined by P; can correspond to any
of the m! permutations of 1 to m. For instance, one total ordering is
given by:

P1:17P2:2,P3:3...7Pm:m (6)

This will ensure 1 is the first value to occur (P; = 1), then 2 (P> =
2), then 3 (P3 = 3), etc. Alternatively, we might have one of the m!
symmetries of (6) like:

Pi=1,P,=3P;=5,...,Pp =2

This symmetry ensures 1 is the first value to occur (P; = 1), then m
(P = 2), then 2 (P> = 3), etc.

We choose which symmetry of (6) to post incrementally dur-
ing search. To do this, we maintain domain consistency on (5) and
keep any prunings on the P; when backtracking. We call this the
DynamicPrecedence method. The method again easily extends
to partial interchangeability where values partition into equivalence
classes.

Example 4 Consider a constraint satisfaction problem with 4 in-
terchangeable values. Suppose the branching heuristic first assigns
X1 = 3. From (5), we have Q1 = land P3 = 1. As P3 = 1, and P;
take all-different values, P1 > 1, P > 1 and Py > 1. Value prece-
dence thus ensures that 3 is the first value used in any assignment.
Suppose the branching heuristic next assigns Xz = 1. From (5), we
have Q2 < 2, and thus 2 < Py < 3. That is, the value 1 occurs 2nd
or 3rd in the precedence ordering. This is to be expected. If X2 = 1
or 3 then it occurs 2nd, whilst if Xo = 2 or 4 then it occurs 3rd.

Suppose we backtrack and next try Xs = 2 instead. From (5), we
have 2 < Py < 3. That is, the value 2 also occurs 2nd or 3rd in the
precedence ordering. Since we kept all prunings on P; from the first
branch, we still have 2 < Py < 3. Thus Py and P> have two values
between them. Propagating the all-different constraint then ensures
P € {2,3}, P, € {2,3}, Ps = 1, Py = 4. At this point in search,
value precedence ensures the value 3 occurs first, then 1 and 2 in
either order, and the value 4 is the last of the interchangeable values
to occur.

We prove that the DynamicPrecedence method breaks all sym-
metry.

Theorem 2 DynamicPrecedence is a sound and complete sym-
metry breaking method for interchangeable values.

Proof: Similar to DynamicV alOrder. Note that by maintaining
domain consistency on ALLDIFF(P4, ..., Py,), we can always con-
struct a solution for the P;. O

6 EXPERIMENTS

We implemented the symmetry breaking methods described in this
paper in Gecode 2.0.1 and evaluated them on two problems: Schur
numbers and graph coloring problems. Experiments were run on an
2-way Intel Xeon with 6MB of cache and 4 cores in each proces-
sor, running at 2GHz. Our hypothesis was that dynamic symmetry
breaking methods would be less sensitive to the branching heuristic
compared to static methods.

In our first experiments, we used graph coloring. Given a graph
G = (V,E), we want to label each vertex v € V with a color
c(v), such that if (u,v) € E then c¢(u) # c(v), using the smallest
possible number of colors. We model this as an optimization prob-
lem with a variable for each vertex. The value of a variable is its
assigned color. We post not-equals constraints among variables cor-
responding to neighboring vertices. All values in this problem are in-
terchangeable. We break symmetry either with a static value prece-
dence constraint [13] or with the DynamicPrecedence method.

The DynamicV alOrder method proved significantly slower espe-
cially on the harder problems. The results for two different value
orderings, lexicographic and inverse lexicographic, are shown in the
top of Table 1. All methods use the fail-first variable ordering heuris-
tic.

We notice that the static symmetry breaking method is affected
significantly by the value ordering. When using an inverse lexico-
graphic value ordering, the static method performs uniformly worse
than when using a lexicographic value ordering. The only exceptions
to this are very easy instances and the instance school1, in which
it finds a better solution. On the other hand, the dynamic method
is largely unaffected by the value ordering and performs approxi-
mately the same with both branching heuristics. It is the best method
in some cases, sometimes by a significant factor (e.g. dsjc1251gb
and school1l). In addition, it is never significantly slower that the
best performing method. As predicted, the pruning from static sym-
metry breaking constraints can interfere with the fail first heuristic,
guiding search away from easy to find solutions. In contrast, dynamic
methods impose no symmetry breaking at the start of search, and thus
do not prevent the branching from finding a good coloring quickly.

In our second experiment, we used problems based on Schur num-
bers. The Schur number S(k) is the largest integer n such that [1, n]
can be partitioned into £ sets with a, b and ¢ placed in the same par-
tition only if a + b # c¢. We turn this into a hyper-graph coloring
problem by fixing n and minimizing k. We use a variable X, for
each integer 1 < ¢ < n, and assign X; = j iff 4 is placed in the
jt* partition. Each variable’s domain is therefore [1, k]. We post not-
all-equals constraints for each triplet X,, X3, X. where a + b = c.
Clearly all values are interchangeable, as we can swap two partitions
of any solution without violating any constraints. We again break
symmetry either with a static value precedence constraint or with the
DynamicPrecedence method. Results are shown at the bottom of
Table 1. As hypothesized, the performance of the dynamic method
is more robust to changes in the branching heuristic than the static
method. Irrespective of the branching heuristic, the dynamic method
explores an almost identical search tree to the lexicographic heuristic
with static symmetry breaking. By comparison, with static symmetry
breaking, the inverse lexicographic heuristic is faster on schur-30
and schur-40, but is less successful on schur-35.

7 RELATED WORK

Puget proved that symmetric solutions can be eliminated by the addi-
tion of static constraints [6]. Crawford et al. presented the first gen-
eral method for constructing static constraints for breaking variable
symmetries [1]. Their “lex-leader” method constructs a symmetry
breaking constraint for each symmetry which ensures that any solu-
tion found is lexicographically less than any of its symmetries. Craw-
ford et al. also argued that it is NP-hard to eliminate all symmet-
ric solutions in general. There are two weaknesses to the lex-leader
method. First, it requires as many symmetry breaking constraints
as symmetries. Second, it may conflict with the branching heuris-
tic. Puget and Walsh independently extended the lex-leader method
to value symmetries [9, 12]. The full set of lex-leader constraints can
often be simplified. For example, if we have an array of decision vari-
ables with row symmetry (that is, the rows can be permuted), the ex-
ponential number of lex-leader constraints simplifies to a linear num-
ber of lexicographical ordering constraints between rows [11, 3]. As
a second example, for problems where variables are symmetric and
must take all different values, Puget has shown that the lex-leader
constraints simplify to a linear number of ordering constraints [8].

Problem Static symmetry breaking Dynamic symmetry breaking
Lex Inverse Lex Inverse Lex
kK tdlp b (/p) |k tdlp b (/p) kKt b (t/p) |k tdlp b (t/p)
david 10 0.09/- 135/- 10 044/- 667/ - 10 042/- 0/- 10 043/- 0/-
dsjc1251gb | 4 222.02/ 533031/ 4 328.59 / 808114 / 4 29.97/ 65776 / 4 33.27/ 65776 /
223.41 536151 329.75 810870 31.88 69766 35.39 69766
fullins3 5 0.08 / - 96/ - 5 0.28 /- 520/ - 5 0.18/- 0/- 5 0.17/- 0/-
geom50a 8 1.25/9.18 15726 /77246 | 8 0.06/8.55 176 /61755 8 0.08 /1.32 0/6721 8 0.07/132 0/6721
miles250 7 0.31/- 242/ - 7 1.29/- 1151/- 7 1.41/- 0/- 7 1.36/- 0/-
myciel4 4 0.01/0.02 0/202 4 0.01/0.02 38/162 4 0.01/0.02 0/188 4 0.01/0.02 0/188
myciel5 5 0.01/23.21 0/287203 5 0.05/23.12 1777287252 | § 0.06/29.22 0/288622 5 0.06/29.3 0/288622
r501g 2 0.02/0.02 7/10 2 0.07/0.07 199 /201 2 0.07/0.07 12/15 2 0.07/0.07 12/15
r505gb 9 0.29/13.53 2196/100199 | 9 0.08/13.98 349/98586 9 0.06/0.12 6/257 9 0.07/012 6/257
schooll 39 551/- 590/ - 27 221.33/- 37886/ - 21 56.41/- 0/- 21 62.36/- 0/-
zeroinil 48 0.75/- 0/- 50 8.01/- 2921/ - 48 13.26/- 0/- 48 11.46/- 0/-
schur-30 4 2.24/2.38 20432/21091 | 4 0.69/0.83 5024 /5691 4 2.50/2.64 20433/21095 | 4 2.51/2.66 20433/21095
schur-35 4 14.58 / 137197 / 4 163.36 / 1039774/ 4 16.75/ 137198 / 4 17.42/ 137198 /
14.77 137859 163.55 1040443 16.95 137863 17.62 137863
schur-40 6 0.05/- 38/- 5 0.11/- 328/ - 6 0.05/- 38/- 6 0.05/- 38/-
Table 1. Static versus dynamic symmetry breaking. The table has four sections: static symmetry breaking constraints with lexicographic value ordering, static

symmetry breaking constraints with inverse lexicographic value ordering, dynamic symmetry breaking constraints with lexicographic value ordering, and
dynamic symmetry breaking constraints with inverse lexicographic value ordering. Each of the sections shows the number of colors k in the best solution found

within the timeout, the time and the number of branches needed to find the best solution and to prove optimality.

o

indicates that no solution was found (resp.

optimality was not proven) within the timeout. The best results for each instance are in bold.

A number of dynamic methods have been proposed to deal with
symmetry. For instance, SBDS posts symmetry breaking constraints
dynamically during search [4]. SBDS can be seen as instance of the
more general method proposed here. A limitation of SBDS is that it
adds a symmetry breaking constraint for each unbroken symmetry.
As there can be an exponential number of symmetries, this can be
prohibitive. One of our main insights is that we can post other types
of symmetry breaking constraint dynamically during search. A small
number of symmetry breaking constraints may be adequate for spe-
cial symmetries (e.g. those due to interchangeable values) or special
classes of problems (e.g. problems where variables are all-different).
Another dynamic method for breaking symmetry is SBDD [2]. This
checks if a node of the search tree is symmetric to some previously
explored node. Finally, Roney-Dougal et al. gave a dynamic method
to construct a GE-tree, a search tree without value symmetry [10]. A
weakness of both these dynamic methods is that they do not prop-
agate their symmetry breaking constraints. It has been shown that
propagation between the problem constraints and the static symme-
try breaking constraints can reduce search exponentially [14].

8 CONCLUSIONS

We have presented a general method for dynamically and incremen-
tally posting symmetry breaking constraints during search. The basic
idea is very simple. Given any set of symmetry breaking constraints,
if during search a symmetry of one of these constraints is entailed
and this is consistent with previously posted symmetry breaking con-
straints, then we post this symmetry breaking constraint so it holds
on all future branches. We illustrated the method with two examples
where a polynomial number of symmetry breaking constraints can
break an exponential number of symmetries. Both examples elimi-
nate all symmetry due to interchangeable values. The first is simpler
whilst the second is more complex but provides more propagation.
This hybrid approach inherits good properties of both dynamic and
static symmetry breaking methods: we have fast and efficient prop-
agation of the posted symmetry breaking constraints, yet we do not
conflict with the branching heuristic. Initial experimental results ap-
pear promising. In future work, we intend to develop such hybrid
methods for other types of symmetry.

REFERENCES

[1] J. Crawford, G. Luks, M. Ginsberg, and A. Roy, ‘Symmetry breaking
predicates for search problems’, in Proceedings of the 5th International
Conference on Knowledge Representation and Reasoning, (KR ’96),
pp. 148-159, (1996).

[2] T. Fahle, S. Schamberger, and M. Sellmann, ‘Symmetry breaking’, in
Proceedings of 7th International Conference on Principles and Prac-
tice of Constraint Programming (CP2001), ed., T. Walsh, pp. 93-107.
(2001).

[3] P. Flener, A. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, J. Pearson, and
T. Walsh, ‘Breaking row and column symmetry in matrix models’, in
8th International Conference on Principles and Practices of Constraint
Programming (CP-2002). (2002).

[4] LP. Gent and B.M. Smith, ‘Symmetry breaking in constraint program-
ming’, in Proceedings of ECAI-2000, ed., W. Horn, pp. 599-603. 10S
Press, (2000).

[5] Y.C.Law and J.H.M. Lee, ‘Global constraints for integer and set value
precedence’, in Proceedings of 10th International Conference on Prin-
ciples and Practice of Constraint Programming (CP2004), pp. 362—
376. (2004).

[6] J.-F. Puget, ‘On the satisfiability of symmetrical constrained satisfac-
tion problems’, in Proceedings of ISMIS’93, eds., J. Komorowski and
Z.W. Ras, LNAI 689, pp. 350-361. (1993).

[7]1 J-E. Puget, ‘Breaking all value symmetries in surjection problems’, in
Proceedings of 11th International Conference on Principles and Prac-
tice of Constraint Programming (CP2005), ed., P. van Beek. (2005).

[8] J-F. Puget, ‘Breaking symmetries in all different problems.’, in Pro-
ceedings of 19th IJCAI pp. 272-2717. (2005).

[9] J-E. Puget, ‘An efficient way of breaking value symmetries’, in Pro-

ceedings of the 21st National Conference on Al. AAAI (2006).

C. Roney-Dougal, 1. Gent, T. Kelsey, and S. Linton, ‘Tractable sym-

metry breaking using restricted search trees’, in Proceedings of ECAI-

2004. 10S Press, (2004).

1. Shlyakhter, ‘Generating effective symmetry-breaking predicates for

search problems’, in Proceedings of LICS workshop on Theory and Ap-

plications of Satisfiability Testing (SAT 2001), (2001).

T. Walsh, ‘General symmetry breaking constraints’, in 12th Interna-

tional Conference on Principles and Practices of Constraint Program-

ming (CP-2006). (2006).

T. Walsh, ‘Symmetry breaking using value precedence’, in Proceedings

of the 17th ECAI. 10S Press, (2006).

T. Walsh, ‘Breaking value symmetry’, in /3th International Conference

on Principles and Practices of Constraint Programming (CP-2007).

(2007).

[10]

[11]

[12]

[13]

[14]

