
Decomposing Global Grammar Constraints

Claude-Guy Quimper1 and Toby Walsh2

1 Omega Optimisation
Montréal, Canada

quimper@alumni.uwaterloo.ca
2 Toby Walsh

NICTA and UNSW
Sydney, Australia

tw@cse.unsw.edu.au

Abstract. A wide range of constraints can be specified using automata or formal
languages. The GRAMMAR constraint restricts the values taken by a sequence of
variables to be a string from a given context-free language. Based on an AND/OR
decomposition, we show that this constraint can be converted into clauses in con-
junctive normal form without hindering propagation. Using this decomposition,
we can propagate the GRAMMAR constraint inO(n3) time. The decomposition
also provides an efficient incremental propagator. Down a branch of the search
tree of lengthk, we can enforce GACk times in the sameO(n3) time. On spe-
cialized languages, running time can be even better. For example, propagation of
the decomposition requires justO(n|δ|) time for regular languages where|δ| is
the size of the transition table of the automaton recognizing the regular language.
Experiments on a shift scheduling problem with a constraint solver and a state
of the art SAT solver show that we can solve problems using this decomposition
that defeat existing constraint solvers.

1 Introduction

Many problems in areas like planning, scheduling, routing, and configuration can be
naturally expressed and efficiently solved using constraint programming (CP). One rea-
son for the success of CP is that it provides a simple and declarative method for solving
a wide range of difficult combinatorial problems. However, we are still some way from
the “model and run” capability of solvers for mixed integer programming (MIP) and
propositional satisfiability (SAT). A major direction of research in CP is therefore di-
rected towards developing new ways for the user to state their problem constraints that
can then be efficiently reasoned about.

One very promising method for rostering and other domains is to specify constraints
via grammars or automata that accept some language. With the REGULAR constraint
[1], we can specify the acceptable assignments to a sequence of variables by means of
a deterministic finite automaton. For instance, we might want no more than two con-
secutive shift variables to be assigned to night shifts. One limitation of the REGULAR

constraint is that we cannot compactly specify everything we might like using just de-
terministic finite automaton. For example, there are regular languages which can only
be defined by a deterministic finite automaton with an exponential number of states.

One extension is to consider regular languages specified by non-deterministic finite au-
tomata, as such automata can be exponentially smaller than the smallest deterministic
finite automata [2].

Researchers have considered moving above regular languages in the Chomsky hi-
erarchy. For example, the GRAMMAR constraint [3, 2] permits us to specify constraints
using any context-free grammar. However, this generalization has appeared till now to
be mostly of theoretical interest, given the high cost of propagating the GRAMMAR

constraint. The aim of this paper is to show that the global GRAMMAR constraint has
practical promise. Context-free grammars can provide compact specifications for com-
plex constraints, making it easier both to specify the problem as well as to reason with
the constraints. For example, in the shift-scheduling benchmarks reported in this paper,
we used a grammar with a dozen or so productions, whilst the corresponding automaton
has thousand of states. The grammar is thus arguably much simpler to specify than the
automaton. In addition, we argue that, using a simple decomposition of the GRAMMAR

constraint, we can propagate such a specification efficiently and effectively.
We will show that the global GRAMMAR constraints be implemented using a sim-

ple AND/OR decomposition based on the well known CYK parser. We prove that this
decomposition does not hinder propagation. To be more precise, unit propagation on
this decomposition will prune all possible values. Decomposing global constraints in
this way brings several advantages. First, we can easily add this global constraint to any
constraint solver. Here, for example, we use the decomposition to add the GRAMMAR

constraint to both a standard constraint toolkit and a state of the art SAT solver. Second,
decomposition gives an efficient incremental propagator. The solver can simply wake
up just those constraints containing variables whose domains have changed, ignoring
those parts of the decomposition that do not need to be propagated. Here, for example,
we get a propagator whose worst case cost down a whole branch of the search tree is
just the same as calling it once. Third, decomposition gives an propagator which we
can backtrack over efficiently. Modern SAT and CP solvers use watch literals so that
we can backtrack one level up the search tree in constant time. This decomposition
provides us with this efficiency. Fourth, decomposition opens up a number of other
possibilities which we are only starting to explore. For example, it may make it easier
to construct no-goods, as well as cost measures for over-constrained problems. Finally,
a decomposition may make it easier to construct constraint based branching heuristics.

2 Background

A constraint satisfaction problem (CSP) consists of a set of variables, each with a finite
domain of values, and a set of constraints. The domain of the variableX will be written
dom(X). A constraint restricts values taken by some subset of variables to a subset of
the Cartesian product of their domains. A solution is an assignment of one value to each
variable satisfying all the constraints. Systematic constraint solvers typically construct
partial assignments using backtracking search, enforcing a local consistency to prune
values for variables which cannot be in any solution. We consider one of the most
common local consistencies: generalized arc consistency. Asupportfor a constraintC
is an assignment to each variable of a value in its domain which satisfiesC. A constraint

C is generalized arc consistent(GAC) iff for each variable, every value in its domain
belongs to a support. Finally, a CSP is GAC iff each constraint is GAC.

We will consider global constraints which are specified in terms of a grammar or
automaton which accepts just valid assignments for a sequence ofn variables. Such
constraints are useful in a wide range of scheduling, rostering and sequencing prob-
lems to ensure certain patterns do or do not occur over time. For example, we may
wish to ensure that anyone working three night shifts then has two or more days off.
Such a constraint can easily be expressed using a context-free language. Context-free
languages are exactly those accepted by non-deterministic push-down automaton. A
context-free language can be specified by a set of productions in Chomsky normal form
in which the left-hand side have just one non-terminal, and the right-hand have just one
terminal or two non-terminals. We will use capital letters for non-terminals and lower-
case letters for terminals. We shall also assume thatS is the unique non-terminal start
symbol.

A sequence belongs to a context-free language iff there exists a parsing tree whose
root is the start symbolS, and whose leaves in order reproduce the sequence. A parsing
tree for a non-terminal is a tree whose root is labelled with the given non-terminal,
whose leaves are labelled with terminals and whose inner-nodes are labelled with other
non-terminals. When the productions are in the Chomsky normal form, a nodeA in
the parsing tree either has two childrenB andC whereA → BC is a production in
the grammar, or has one childt whereA → t is again a production in the grammar
andt is a terminal. Given a grammar defining a context-free language, the GRAMMAR

constraint accepts just those assignments to a sequence ofn variables which are strings
in the given context-free language [2, 3].

Example 1.Consider the context-free grammar,G presented in [4].

A→ aA | a B → bB | b S → AB

This context-free grammar specifies some (non-empty) sequence ofas followed by
a (non-empty) sequence ofbs. SupposeX1, X2 andX4 ∈ {a, b}. Then enforcing GAC
on GRAMMAR(G, [X1, X2, X3]) prunesb from X1 anda from X3 as the only supports
are the sequencesaab andabb.

The REGULAR constraint [1] is a special case of the GRAMMAR constraint. This
accepts just those assignments which come from a regular language. Regular languages
are strictly contained with context-free languages. A regular language can be specified
by productions in which the left-hand side has just one non-terminal, and the right-
hand has just one terminal, or one terminal and one non-terminal. Alternatively, it can
be specified by means of a (non-)deterministic finite automaton.

3 Decomposition of theGRAMMAR constraint

We show here how to propagate the GRAMMAR constraint using a simple AND/OR
decomposition based on the well known CYK parser. This parser uses dynamic pro-
gramming bottom up to construct all possible parsings for all possible sub-strings. We

backtrack over the table constructed by the parser to decompose the constraint into a
Boolean formulae. We introduce two types of Boolean variables: the variablesx(t, i, 1)
which aretrue iff Xi, the ith CSP variable, has the terminal symbolt in its domain,
and the variablesx(A, i, j) which aretrue iff the ith to i + j − 1th symbols can be
parsed as the non-terminalA. The truth ofx(A, i, j) can be expressed in terms of the
truth of other variables based on the CYK update rule:A is parsing for symbolsi to
i + j − 1 iff there is some productionA → BC in the grammar,B is a parsing for
symbolsi to i + k − 1, andC is a parsing for symbolsi + k to i + j − 1. Algorithm
1 gives anO(|G|n3) time procedure for constructing the decomposition. The algorithm
first creates a tableV where each entry contains a set of non-terminals such that the
non-terminalA belongs toV [i, j] if A can parse the symbolsi to i + j − 1. In the
second phase, the algorithm backtacks in the tableV to create a variablex(A, i, j) for
each non-terminalA ∈ V [i, j] that can contribute to the production of the non-terminal
S at the top of the parsing tree.

for i = 1 to n do1

V [i, 1]← {A | A→ a ∈ G, a ∈ dom(Xi)} ∪ dom(Xi)2

for j = 2 to n do3

for i = 1 to n− j + 1 do4

// Store inV [i, j] all the non-terminals that can generate the sequence5

// Xi . . . Xi+j−16

V [i, j]← {A | A→ BC ∈ G, k ∈ [1, j), B ∈ V [i, k], C ∈ V [i + k, j − k]}7

if S 6∈ V [1, n] then8

return “Unsatisfiable”9

N ← {x(1, n, S)} // Set of variables10

Y ← ∅ // Set of equivalences11

for j = n downto 2 do12

for i = 1 to n− j + 1 do13

for x(A, i, j) ∈ N do14

// Store inD the pairs of variables on which the CYK rule applies15

D ← {〈x(B, i, k), x(C, i + k, j − k)〉 | k ∈ [1, j), A→ BC ∈ G,16

B ∈ V [i, k], C ∈ V [i + k, j − k]}17

for 〈a, b〉 ∈ D do18

N ← N ∪ {a, b} // Add nodes to the decomposition19

Y ← Y ∪ {x(A, i, j) ≡
W
〈a,b〉∈D a ∧ b} // Add relation20

for i = 1 to n do21

N ← N ∪ {x(a, i, 1) | a ∈ dom(Xi), A→ a ∈ G, x(A, i, 1) ∈ N}22

Y ← Y ∪{x(A, i, 1) ≡ x(a, i, 1) | A→ a ∈ G, x(A, i, 1) ∈ nodes, a ∈ dom(Xi)}23

dom(Xi)← {a | x(a, i, 1) ∈ N}24

return “Satisfiable”25

Algorithm 1 : CYK-prop(G, [X1, . . . , Xn])

Example 2.Consider again the context-free grammar,G from Example 1, again applied
to a sequence of length 3.

A→ aA | a B → bB | b S → AB

Algorithm 1 constructs the following formulae:

x(A, 1, 1) ≡ x(a, 1, 1)
x(A, 2, 1) ≡ x(a, 2, 1)
x(B, 3, 1) ≡ x(b, 3, 1)

x(A, 1, 2) ≡ x(a, 1, 1) ∧ x(A, 2, 1)
x(B, 2, 2) ≡ x(b, 2, 1) ∧ x(B, 3, 1)

x(S, 1, 3) ≡ (x(A, 1, 1) ∧ x(B, 2, 2)) ∨ (x(A, 1, 2) ∧ x(B, 3, 1))

∧

∨

x(a, 1, 1) x(a, 2, 1) x(b, 2, 1) x(b, 3, 1)

∧

∨

∧ ∧

∨

x(A, 1, 2) ≡ ≡ x(B, 2, 2)

x(A, 2, 1) x(B, 3, 1)

x(S, 1, 3) ≡

x(A, 1, 1)

Fig. 1.DAG corresponding to the example grammar.

The formulae created by Algorithm 1 can be represented with a rooted DAG. Every
leaf is labelled with a variablex(t, i, 1) wheret is a terminal symbol andi is an integer
between 1 andn. Every inner-node is either a conjunction or a disjunction. Formulae
of the formx ≡ b are represented by a single leaf node with two labels:x andb. For
formulae of the formx ≡ (a1 ∧ b1) ∨ . . . ∨ (ak ∧ bk), we createk and-nodes with
two children each,ai andbi. We label each and-node with the expressionai ∧ bi. The
k and-nodes have the or-node labelled withx as common parent. Figure 1 shows the
DAG of Example 1.

Based on this DAG, we propose the following CNF decomposition. For every or-
nodex with childrenc1, . . . , ck, we post the following constraint forcing at least one

child to betruewhen the or-nodex is true.

¬x ∨ ci ∨ . . . ∨ ck (1)

For every and-nodex with childrenc1 andc2, we post the following constraints to
enforce all children to betruewhenever the and-nodex is true.

¬x ∨ c1 (2)

¬x ∨ c2 (3)

For every nodex, except the rootx(S, 1, n), we post the following constraint on its
ancestorsa1, . . . , ak, to force the nodex to betrueonly if one of its ancestors istrue.

¬x ∨ a1 ∨ . . . ∨ ak (4)

We force the root nodex(S, 1, n) to betrue. Finally, for every position1 ≤ i ≤ n,
we force one and only one terminal to betrue.∨

t

x(t, i, 1) ∀ 1 ≤ i ≤ n (5)

¬x(t, i, 1) ∨ ¬x(u, i, 1) ∀ i ∀ t 6= u (6)

Note that constraints (4) are redundant as they are logically implied by the others.
However, they are added to the encoding to ensure that unit propagation on the decom-
position prunes all possible values.

Example 3.Letw be the nodex(b, 2, 1)∧x(B, 3, 1), y be the nodex(A, 1, 2)∧x(B, 3, 1),
andz be the nodex(A, 1, 1) ∧ x(B, 2, 2) in the DAG of Figure 1. We show the CNF
clauses constraining the variabley.

Clause (1) applied onx(S, 1, 3) becomes¬x(S, 1, 3) ∨ y ∨ z. This ensures that
if x(S, 1, 3) is true, one of its children is alsotrue. Clauses (2) and (3) applied ony
become¬y ∨ x(A, 1, 2) and¬y ∨ x(B, 3, 1). If the and-nodey is true, both of its
children are alsotrue. Clause (4) constrains the variabley in three different ways. When
the clause is directly applied ony, it becomes¬y ∨ x(S, 1, 3) forcingy to betrue only
if it producesx(S, 1, 3). Similarly, the nodex(A, 1, 2) belongs to a parsing tree only if
y is true. We therefore have¬x(A, 1, 2) ∨ y. Finally, the nodex(B, 3, 1) is trueonly if
either of its parentsy or w is true. We therefore have¬x(B, 3, 1)∨w ∨ y. There are no
other constraints on variabley.

4 Theoretical properties

We first prove that this decomposition of the global GRAMMAR constraint is correct.
The correctness follows quite quickly from the proof of the correctness of the CYK
parser, and is similar to the correctness proofs for the previous propagators for the
GRAMMAR constraint [3, 2].

Theorem 1 TheGRAMMAR constraint is satisfiable iffx(S, 1, n) can betrue.

Proof: Suppose the GRAMMAR constraint is satisfiable. There exists a parsing treeT
proving that the sequenceX1, . . . , Xn belongs to the language. We first prove that for
every node in the parsing tree, there is a corresponding variable created by Algorithm 1.
We then show that all these variables can be set totrue. The first phase of the algorithm
(line 1 to line 7) stores inV [i, j] every non-terminal that can produce the symbols forXi

toXi+j−1. The second phase of the algorithm (line 8 to line 25) creates a nodex(A, i, j)
for every terminalA that can produce the symbols forXi to Xi+j−1 and participates to
the production of the non-terminalS at the root of the parsing tree. The correctness of
this statement follows from [3, 2]. Therefore, for every node in the parsing treeT , we
have a corresponding variablex(X, i, j).

We prove by induction on the depth of the parsing tree that every variable corre-
sponding to a node in the parsing tree can be set totrue. As a base case, the leaves of
the parsing tree correspond to the nodesx(Xi, i, 1) in the DAG that we set totrue.
The other leaves of the DAG are set tofalse. The clauses (5) and (6) are satisfied
since there is one and only one leaf set totrue at each position. LetA be a node in
the parsing tree with childrenB andC whereA generates a sequence of lengthj at
position i andB generates a sequence of lengthk. Consequently, there exists a pro-
duction A → BC ∈ G, a variablex(A, i, j), a variablex(B, i, k), and a variable
x(C, i + k, j − k). On line 18, Algorithm 1 has made the nodex(A, i, j) the parent
of the pairx(B, i, k) ∧ x(C, i + k, j − k) since the productionA → BC and both
nodesx(B, i, k) andx(C, i + k, j − k) exist. By our induction hypothesis, we assume
that the variablesx(B, i, k) andx(C, i + k, j − k) are true. The and-node can be set
to true while satisfying the clauses (2) and (3). Since the and-node istrue, we can set
the variablex(A, i, j) to true and satisfy clause (1). Finally, the clause (4) is satisfied
for the variablesx(B, i, k) andx(C, i+k, j−k) and the and-node. When applying the
induction step to all nodes in the parsing tree in post-order, we obtain that the root node
x(S, 1, n) can be set totrue.

Suppose there exists a solution to the CNF clauses wherex(S, 1, n) is true. Clause 1
guarantees that at least one child is alsotrue. This child is an and-node with two children
that are alsotrue thanks to the clauses (2) and (3). We continue this reasoning until
reaching the leaf nodes. All the visited nodes form a parsing tree whose leaves, when
listed from left to right, are a sequence satisfying the GRAMMAR constraint.

Notice that the constraint (4) was not used in the second part of proof of Theo-
rem 1. This constraint is not necessary to detect the satisfiability of the constraint. Con-
straint (4) is in fact redundant. It is however essential to prove our next result.

We show that the decomposition of the GRAMMAR constraint does not hinder prop-
agation. This is less immediate than the previous result. In particular, we find it surpris-
ing that unit propagation alone is enough to achieve GAC here. This does not follow
directly from the completeness proofs for previous GAC propagators [3, 2]. Indeed, we
had to add redundant constraints to the decomposition to give this property.

Theorem 2 Unit propagation on the CNF clauses achieves GAC on theGRAMMAR

constraint.

Proof: We assume that all CNF clauses are consistent. The constraint (4) guarantees
that every node that can betrue has an ancestor that can also betrue. By successively

applying the argument from a leaf nodex, we obtain a path connecting the leafx to
the root nodex(S, 1, n) such that every variable on this path can be set totrue. Let
x(A, i, j) be a variable on the path. Letc1, . . . , cn be the child variables ofx(A, i, j) in
the DAG. From the constraint (1), we conclude that there exists at least one and-node
among the children that can betrue. Let ci be one such child that hasb1 and b2 as
children. The constraints (2) and (3) guarantee that both children can betrue. We repeat
this argument until reaching the leaves. Every node thus explored form a parsing tree
whose leaves are a support for the variablex. Therefore, one can build a support for
every node in the DAG that can be set totrue.

The constraint (5) ensures that if a character belongs to all supports, its correspond-
ing leaf is fixed totrue. Finally, the constraint (6) ensures that a character fixed totrue
removes all supports for the other characters at the same position.

Finally, we show that we can propagate this decomposition efficiently. The run-time
complexity of Algorithm 1 is the same as that of the CYK parser, i.e.Θ(n3|G|) where
|G| is the size of the grammar.

Theorem 3 The running time complexity of Algorithm 1 isO(|G|n3) wheren is the
length of the sequence and|G| is the number of productions in the grammar.

Proof: Line 2 iteratesn times over theO(|G|) productions resulting in a time complex-
ity of O(|G|n). The setV [i, j] created on line 7 tests all combinations of productions
and integers between 1 andj for a total number ofO(|G|n) tests. Since there areO(n2)
setsV [i, j], the complexity sums up toO(|G|n3). The running time of thefor loop on
line 12 is dominated by the computation on line 15. LetZ be the set of non-terminals
in the grammar. Letf(A) be the number of productions in the grammarG whose left
hand side is the non-terminalA. We have

∑
A∈Z f(A) = |G|. Line 15 takesO(nf(A))

time to execute as we test for each production that generatesA and every integerk. The
cummulative time spent on this line is therefore given by the following expression.

O(
n∑

j=2

n−j+1∑
i=1

∑
A∈Z

nf(A)) = O(n
n∑

j=1

n∑
i=1

∑
A∈Z

f(A)) (7)

= O(|G|n3) (8)

Therefore, the total running time of Algorithm 1 isO(|G|n)+O(|G|n3)+O(|G|n3) =
O(|G|n3).

The size of the graph and the number of CNF clauses are bounded by the number
of and-nodes in the DAG which isO(n3|G|). Notice that whilst Algorithm 1 performs
Θ(n3|G|) tests on line 7, not all these tests add a non-terminal to the setV [i, j]. More-
over, not all the non-terminals inV [i, j] lead to the creation of a node on lines 15 to 18.

Theorem 4 Amortised over a branch of the search tree of lengthk, we can enforce
GACk times on theGRAMMAR constraint using the decomposition inO(n3|G|) time.

Proof: There areO(n3G) CNF clauses that require constant time to propagate.
This improves upon theΘ(n3|G|) time complexity of the monolithic propagators

for the GRAMMAR constraint given in [2, 3]. We note that our decomposition is the first
incremental propagator proposed in the literature.

5 Regular languages

In some cases, we can specify problem constraints using a simple grammar. For in-
stance, we often only need a regular language [1]. Regular languages are strictly con-
tained within context-free languages. They can be specified with productions of the
form of A→ aB or A→ a. We show that for regular languages, Algorithm 1 creates a
smaller DAG, resulting in faster propagation.

Theorem 5 Unit propagation on the CNF decomposition enforces GAC on theREGULAR

constraint inO(n|G|) time.

Proof: If all productions are of the form ofA → aB or A → a, a nodex(A, i, j) can
belong to a parsing tree only ifi = n−j+1. The size of the graph is therefore bounded
by O(n|G|) and-nodes which limits the number of CNF clauses toO(n|G|).

The running time complexity for pruning regular languages using this decompo-
sition matches the complexity of the propagator for the REGULAR constraint based
on dynamic programming [1]. In fact, the clauses constructed by Algorithm 1 are es-
sentially the hidden variable encoding of the ternary decomposition of the REGULAR

constraint given in [2].

Example 4.The languageanbm used in Example 1 can be recognized by the automaton
of Figure 2.

S A B
a

a

b

b

Fig. 2.Automaton recognizing the languageanbm for n, m ≥ 1.

This automaton can be translated to a regular grammar as follows.

S → aA A→ aA | bB | b B → bB | b

Algorithm 1 constructs the graph depicted in Figure 3 over a sequence of three
variables.

From this graph, we construct clauses representing the Boolean formulae:

x(a, 1, 1) ∧ (x(a, 2, 1) ∧ x(b, 3, 1)) ∨ (x(b, 2, 1) ∧ x(b, 3, 1))

This gives constraints logically equivalent to:

X1 = a, (X2 = a ∧X3 = b) ∨ (X2 = b ∧X3 = b)

x(a, 1, 1) x(a, 2, 1) x(b, 2, 1)
x(A, 3, 1)

∧

∨

∧

∧

∨

≡ x(A, 2, 2)

x(B, 3, 1)

x(S, 1, 3) ≡

x(b, 3, 1)

Fig. 3.DAG corresponding to the regular grammar of Example 4.

6 Conditional productions

We have also found it useful in practice to go slightly outside context-free grammars.
These extensions permit us to specify in a simple manner that, for instance, a work day
must have a span of between 6 to 8 hours, or that a certain activity can only be executed
after 2pm. To specify such conditions, we make productions in the grammar conditional
on Boolean functions of the relevant indices.

This can be quickly incorporated into our decomposition. We attach the Boolean
functionsfA(i, j), fB(i, j), andfC(i, j) to every productionA → BC ∈ G. These
functions restrict where the production can be applied in a sequence. For instance, the
non-terminalA can only be produced by the productionA→ BC if A generates a sub-
string of lengthj starting at positioni wherefA(i, j) is true. Similarly, the production
can be applied only ifB generates a sub-string of lengthj starting at positioni where
fB(i, j) is true.

To support these constrained productions, we change line 7 in Algorithm 1 with the
following one.

V [i, j]← {A | A→ BC ∈ G, k ∈ [1, j), B ∈ V [i, k], C ∈ V [i + k, j − k],
fA(i, j) ∧ fB(i, k) ∧ fC(i + k, j − k)}

We also replace line 15 with the following one.

D ← {〈x(B, i, k), x(C, i + k, j − k)〉 | k ∈ [1, j), A→ BC ∈ G,

B ∈ V [i, k], C ∈ V [i + k, j − k], fA(i, j) ∧ fB(i, k) ∧ fC(i + k, j − k))}

Productions of the formA → a only require a functionfA(i) as they necessarily
produce sequences of length one. Moreover, the production of a terminal can be con-
trolled by removing the terminal from the domain of the variablesXi. We therefore
replace line 2 with the following one.

V [i, 1]← {A | A→ a ∈ G, a ∈ dom(Xi), fA(i)} ∪ dom(Xi)

We also replace line 23 with the following one.

Y ← Y ∪ {x(A, i, 1) ≡ x(a, i, 1) | A→ a ∈ G, x(A, i, 1) ∈ nodes, a ∈ dom(Xi), fA(i)}

7 Experimental results

To test the practical utility of this decomposition of the GRAMMAR constraint, we ran
some experiments using the shift-scheduling benchmark introduced in [5]. The schedule
of an employee in a company is subject to the following rules. An employee either
works on an activityai, has a break (b), has lunch (l), or rests (r). When working on an
activity, the employee works on that activity for a minimum of one hour. An employee
can change activities after a break or a lunch. A break is fifteen minutes long and a
lunch is one hour long. Lunches and breaks are scheduled between periods of work. A
part-time employee works at least three hours but less than six hours a day and has one
break. A full-time employee works between six and eight hours a day and have a break,
a lunch, and a break in that order. Employees rest at the beginning and the end of the
day. At some time of the day, the business is closed and employees must either rest,
break, or have lunch. We divide a day into 96 time slots of 15 minutes. During time slot
t, at leastd(t, ai) employees must be assigned to activityai. Our goal is to minimize
first the number of employees and then the number of hours worked.

We model the schedule of an employee with a sequence of 96 characters (one per
time slot) that must be accepted by the following grammarG.

R→ rR | r L→ lL | l Ai → aiAi | ai

W → Ai P →WbW F → PLP

S → RPR | RFR

We add some restrictions on some productions. ForW → Ai, we havefW (i, j) ≡
j ≥ 4 since an employee works on an activity for at least one continuous hour. In
F → PLP , we havefL(i, j) ≡ (j = 4) since a lunch is one hour long. InS →
RPR, we havefP (i, j) ≡ 13 ≤ j ≤ 24 since a part-time employee works at least
three hours and at most six hours plus a fifteen minute break. InS → RFR, we have
fF (i, j) ≡ 30 ≤ j ≤ 38 which represents between six and eight hours of work plus
an hour and a half of idle time for the lunch and the breaks. Finally, the productions

Ak → akAk | ak are constrained withfAk
(i, j) ≡ open(i) whereopen(t) returnstrue

if t is within business hours.

When solving the problem withm employees, the model consists ofm sequences
S1, . . . , Sm subject to this GRAMMAR constraint. The 0/1 variablex(j, t, c) is set to 1
if the tth character of sequenceSj is c. We post the constraint

∑
j x(j, t, ai) ≥ d(t, ai)

in order to satisfy the demand for each activityai at timet. To break the symmetries,
we force the sequences to be listed in lexicographic order.

We implemented a program that takes as input a benchmark instance and the gram-
marG and prepares the input for the MiniSat+ solver [6]. MiniSat+ is a pseudo-Boolean
solver that allows constraints of the formx1 + . . . + xn ≥ k wherexi is a Boolean
variable. Such inequality constraints are useful to make sure that the demandd(t, ai) is
satisfied. CNF clauses are encoded with linear equations where the sum of the literals in
a clause must be equal to or greater than one. The negation of a variablex is expressed
with 1− x. We tested two CNF encodings of the GRAMMAR constraint: one encoding
that includes the redundant clause (4) allowing unit propagation to achieve GAC as well
as one encoding where the clauses (4) are omitted and GAG is not maintained.

We also implemented a CP model in ILog Solver 6.2 using either this decomposition
of the GRAMMAR or the previous monolithic propagator for the GRAMMAR constraint
[2, 3]. The model has a matrix of variables where each row corresponds to the schedule
of an employee and is therefore subject to the GRAMMAR constraint. Each column is
subject to a global cardinality constraint (GCC) to ensure the number of occurrences
of an activity satisfy the demand at this point in the schedule. We added lexicographic
constraints between the rows of the column to break symmetries. We used a static vari-
able that was essential to the success of the experiment: we filled in the table from left
to right, and assigned variables to the valuesr, b, l, a1 anda2 in that order.

We used MiniSat+ on a Intel Dual Core 2.0 GHz with 1 Gb of RAM using Mac OS
X 10.4.8 and ILog Solver on a AMD Dual Core Opteron 2.2 GHz with 4 Gb of RAM.
The reader should be careful when comparing the times as the clock speeds of the
computers are slightly different. Table 1 presents the results for 17 satisfiable instances
of the benchmark involving one or two activities.

The CP model performed very well at finding a good solution. Many solutions were
returned after a few hundreds of backtracks. However, no solutions were proved optimal
after one hour of computation. Notice that the decomposition performs significantly
better than the monolithic propagator as it explores many more backtracks within the
same period of time. The decomposition therefore explores a larger portion of the search
tree. For some instances, it finds some satisfiable solutions within one hour whereas the
monolithic propagator does not.

The MiniSat+ solver returned a feasible solution for all instances regardless of the
encoding. For 8 instances, the solver also proved optimality of the solutions. However,
the two encodings we used did not prove optimality for the same instances. The main
weakness of the MiniSat+ solver was its memory consumption as 9 times out of 17, the
search was stopped by the lack of memory. Notice that the encoding that omits clauses
of the form (4) is often faster than the encoding achieving GAC. We conjecture that, in
this case, MiniSat is finding itself the redundant constraints using no-good learning.

|A| # m GAC SAT SAT Mono Decomp
sol time bt opt sol time bt opt sol bt sol bt

1 2 4 26.02666 507215
√

26.01998 443546
√

26.75 2807226.25 625683
1 3 6 37.25 1128199 36.75 1953562 37.0 34788 37.0 4771577
1 4 6 38.0 256 84999

√
38.0 287 91151

√
- 15539 38.0 56488

1 5 5 24.0 153 67376
√

24.0 60 40008
√

24.040163 24.07914413
1 6 6 33.0 98 48638

√
33.0 70 40361

√
- 11537 33.0 33405

1 7 8 49.5 236066 49.5 682715 49.027635 49.02663721
1 8 3 20.5 80 36348

√
20.5 44 25502

√
21.0 24343 20.5 635589

1 10 9 54.0 202699 54.25 507749 - 9365 - 519446
2 1 5 25.0 453 146234 25.0 301 103918

√
25.0 1180 25.03828461

2 2 10 58.75 313644 59.0 151076 58.014887 58.02116602
2 3 6 38.25 236850 38.25 214203 41.0 1419 41.0 214201
2 4 11 71.25 230777 69.75 239519 - 9983 - 774942
2 5 4 23.752945 644496

√
23.751876 522780

√
26.5 2557326.25 117105

2 6 5 26.754831 777572
√

27.25 2162816 26.751068126.751054531
2 8 5 31.5 244837 31.75 391858 32.0 218 31.53771831
2 9 3 19.02283 701474

√
19.01227 481395

√
19.25 20473 19.0 45516

2 10 8 55.0 372870 55.0 333520 - 9968 - 909857
Table 1. Benchmark problems solved by MiniSat+.GAC SAT: results from MiniSat+ with all
CNF clauses;SAT: results from MiniSat+ with all CNF clauses but clause (4); Mono: results
from a CP solver using the monolithic propagator; Decomp: results from a CP solver using the
decomposition;|A|: number of activities; #: problem number;m: number of employees; sol:
number of worked hours (boldfonted if best solution found amongst the different methods); time
(s): CPU time in seconds. Times are omitted when the search is suspended by a lack of memory;
bt: number of backtracks (boldfonted if least backtracks amongst methods that prove optimality);
opt: solution was proved optimal. ILog solver did not prove any problems optimal within one
hour of computation.

Even though Algorithm 1 can produce a graph with up toO(n3|G|) nodes, we
noticed that in practice many nodes are never created. The size of the resulting DAG
is much smaller in practice than the theoretical bound ofO(n3|G|). For instance, the
grammarG for problems with one activity can be written in Chomsky normal form in
15 productions. The upper bound on the number of and-nodes in the DAG is15 963

2 =
6635520 nodes whilst there were 71796 nodes on average with these instances.

We also tried modelled the schedule of an employee using an automaton. Due to
the constraints on the number of hours a full-time and a part-time employee must work,
many states in the automaton needed to be duplicated resulting in an automaton with
several thousands of states. Moreover, patterns such as those produced by the non-
terminalsP andW cannot be reused in an automaton without further duplicating states.
The DAG based on the regular language ended up much larger than the one produced
by the context-free grammar.

8 Related work

Vempaty introduced the idea of representing the solutions of a CSP by a deterministic
finite automaton [7]. Such automaton can be used to answer questions about satisfiabil-
ity, validity and equivalence. Amilhastre generalized these ideas to non-deterministic
automata, and proposed heuristics to minimize the size of the automata [8]. This ap-
proach was then applied to configuration problems [9]. Boigelot and Wolper developed
decision procedures for arithmetic constraints based on automata [10].

Pesant introduced the REGULAR constraint and gave a complete propagation algo-
rithm based on dynamic programming [1]. Coincidently Beldiceanu, Carlsson and Petit
proposed specifying global constraints by means of finite automaton augmented with
counters [11]. Propagators for such automaton are constructed automatically from the
specification of the automaton by means of a decomposition into simpler constraints.
Quimper and Walsh proposed a closely related decomposition of the REGULAR con-
straint and showed that it was effective and efficient in practice [2]. Demassay et al. [5]
used a column generation technique to solve a shift scheduling problem. The columns
are generated with a CP solver using the COST-REGULAR constraint, a variation of the
REGULAR constraint while the optimization process is driven by the simplex method.
Côté et al. [12] encoded the REGULAR constraint into a MIP and efficiently solved some
instances of the shift scheduling problem using the same automaton as Demassay et al.
This encoding takes the modeling of constraints using formal languages beyond the
scope of contraint programming. One of our contributions is to continue this theme by
taking constraints specified using formal languages into the domain of SAT solvers.

Quimper and Walsh proposed the GRAMMAR constraint and gave two different
propagators, one based on the CYK and the other on the Earley parser [2]. Coinci-
dently, Sellmann also proposed the GRAMMAR constraint and gave another propagator
based on the CYK parser [3]. Finally Golden and Pang proposed the use of string vari-
ables which are specified using regular expressions or finite automata and show how
to propagate matching, containment, cardinality and other constraints on such string
variables [13].

9 Conclusion

We have studied the global GRAMMAR constraint. This restricts a sequence of vari-
ables to belong to a context-free language. Such a constraint is useful for a wide range
of problems in scheduling, rostering and related domains. Based on an AND/OR de-
composition, we showed how the GRAMMAR constraint can be converted into clauses
in conjunctive normal form. This decomposition does not hinder propagation since unit
propagation on the decomposition achieves GAC on the original GRAMMAR constraint.
Using this decomposition, we can enforce GAC on the GRAMMAR constraint inO(n3)
time. By using the decomposition, we also improve upon existing propagators by being
incremental. On specialized languages, running time can be even better. In particular,
on regular languages we require justO(n|δ|) time where|δ| is the size of the transition
table of the automaton recognizing the language. Experiments on a shift scheduling
problem with a state of the art SAT solver demonstrated that we can solve problems this

way that defeat existing constraint solvers. There are many questions raised by this re-
search. For example, can we exploit other properties of the grammar to improve speed?
As a second example, are there other global constraints which can be decomposed into
clauses and solved using a SAT engine? As a third example, can we use other techniques
like the support encoding to produce even more compact decompositions?

Acknowledgements

The second author is funded by the Australian Government’s Department of Commu-
nications, Information Technology and the Arts and the Australian Research Council.

References

1. Pesant, G.: A regular language membership constraint for finite sequences of variables. In
Wallace, M., ed.: Proceedings of 10th International Conference on Principles and Practice of
Constraint Programming (CP2004), Springer (2004) 482–295

2. Quimper, C.G., Walsh, T.: Global grammar constraints. In: 12th International Conference
on Principles and Practices of Constraint Programming (CP-2006), Springer-Verlag (2006)

3. Sellmann, M.: The theory of grammar constraints. In: Proceedings of 12th International Con-
ference on Principles and Practice of Constraint Programming (CP2006), Springer (2006)
530–544

4. Quimper, C.G., Rousseau, L.M.: Language based operators for solving shift scheduling
problems. In: Proceedings of the 4th International Conference on Integration of AI and OR
Techniques in Constraint Programming (CP-AI-OR), Springer-Verlag (2007) Under review.

5. Demassey, S., Pesant, G., Rousseau, L.: A cost-regular based hybrid column generation
approach. Constraints11 (2006) 315–333

6. Eén, N., S̈orensso, N.: Translating pseudo-Boolean constraints into SAT. Journal on Satisfi-
ability, Boolean Modeling and Computation2 (2006) 1–26

7. Vempaty, N.R.: Solving constraint satisfaction problems using finite state automata. In:
Proceedings of the 10th National Conference on AI, American Association for Artificial
Intelligence (1992) 453–458

8. Amilhastre, J.: Representation par automate d’ensemble de solutions de problèmes de satsi-
faction de contraintes. PhD thesis, Universite Montpellier II / CNRS, LIRMM (1999)

9. Amilhastre, J., Fargier, H., Marquis, P.: Consistency restoration and explanations in dynamic
CSPs - application to configuration. Artificial Intelligence135(2002) 199–234

10. Boigelot, B., Wolper, P.: Representing arithmetic constraints with finite automata: An
overview. In Stuckey, P., ed.: Proceedings of the International Conference on Logic Pro-
gramming (ICLP 2002), Springer Verlag (2002) 1–19

11. Beldiceanu, N., Carlsson, M., Petit, T.: Deriving filtering algorithms from constraint check-
ers. In Wallace, M., ed.: Proceedings of 10th International Conference on Principles and
Practice of Constraint Programming (CP2004), Springer (2004) 107–122

12. Ĉoté, M.C., Gendron, B., Rousseau, L.M.: The regular constraint for integer programming
modeling. In: Proceedings of the Fourth International Conference on Integration of AI and
OR Techniques in Constraint Programming (CP-AI-OR 07). (2007)

13. Golden, K., Pang, W.: Constraint reasoning over strings. In Rossi, F., ed.: Proceedings
of Ninth International Conference on Principles and Practice of Constraint Programming
(CP2003), Springer (2003) 377–391

