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Abstract

Symmetry is an important factor in solving many constraint
satisfaction problems. One common type of symmetry is
when we have symmetric values. We can eliminate such
value symmetry either statically by adding constraints to
prune symmetric solutions or dynamically by modifying the
search procedure to avoid symmetric branches. We show
that either method has computational limitations. With static
methods, pruning all symmetric values is NP-hard in gen-
eral. With dynamic methods, we can take exponential time
on problems which static methods solve without search. Fi-
nally, we consider a common type of value symmetry, that
due to interchangeable values. We show that despite these
theoretical limitations, methods proposed to deal with inter-
changeable values are both effective in theory and in practice.

Introduction
Many search problems contain symmetries. Symmetry oc-
curs naturally in many problems (e.g. if we have identical
machines to schedule, or identical jobs to process). Symme-
try can also be introduced when we model a problem (e.g.
if we name the elements in a set, we introduce the possi-
bility of permuting their order). Unfortunately, symmetries
increases the size of the search space. We must therefore try
to eliminate symmetry or we will waste much time visiting
symmetric solutions, as well as those parts of the search tree
which are symmetric to already visited states.

One common type of symmetry is when values are sym-
metric. For example, if we are assigning colors (values)
to nodes (variables) in a graph coloring problem, we can
uniformly swap the names of the colors throughout a color-
ing. With value symmetries, all symmetric solutions can be
eliminated in polynomial time (Roney-Dougalet al. 2004;
Puget 2005). However, as we show here, pruningall sym-
metric values is NP-hard in general. Nevertheless, methods
that have been proposed, like those in (Law & Lee 2004;
Puget 2005), appear to be effective at dealing with common
types of value symmetry.
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Background
A constraint satisfaction problem consists of a set of vari-
ables, each with a domain of values, and a set of constraints
specifying allowed combinations of values for given subsets
of variables. A solution is an assignment of values to vari-
ables satisfying the constraints. Finite domain variables take
one value from a given finite set. Set variables take sets of
such values and are typically defined by a lower bound on
the definite elements in the set and an upper bound on the
definite and potential elements.

Many constraint solvers explore the space of partial as-
signments enforcing some local consistency. We consider
three local consistencies for finite domain variables as well
as the most common local consistency for set variables.
Given a constraintC on finite domain variables, asupportis
assignment to each variable of a value in its domain which
satisfiesC. A constraint on finite domains variables isgen-
eralized arc consistent(GAC) iff for each variable, every
value in its domain belongs to a support. A set of constraints
is GAC iff each constraint is GAC. On binary constraints,
GAC is simply called arc consistency (AC). A set of binary
constraints issingleton arc consistent(SAC) iff we can as-
sign every variable with each value in its domain and make
the resulting problem arc consistent (AC). Finally, a set of
binary constraint isk-consistentiff eachk − 1 assignment
can be consistently extended to akth variable. Given a con-
straintC on set variables, abound supporton C is an as-
signment of a set to each set variable between its lower and
upper bounds which satisfiesC. A constraint isbound con-
sistent(BC) iff for each set variableS, the values inub(S)
belong toS in at least one bound support and the values in
lb(S) belong toS in all bound supports. A set of constraints
is BC iff each constraint is BC.

Symmetry occurs in many constraint satisfaction prob-
lems. A value symmetryis a bijection on values that pre-
serves solutions. For example, suppose we wish to assign
colors (values) to nodes (variables) in a graph coloring prob-
lem. Value symmetry permits us to interchange any two col-
ors uniformly throughout a coloring. Avariable symmetry,
on the other hand, is a bijection on variables that preserves
solutions. For example, suppose we wish to assign times
(values) to exams (variables) in an exam scheduling prob-
lem and we have two exams taken by the same set of stu-
dents. This variable symmetry permits us to interchange the



two exams. Symmetries are problematic as they increase the
size of the search space. For instance, if we havem inter-
changeable values, symmetry increases the size of the search
space by a factor ofm!.

Static methods
One simple and common mechanism to deal with symmetry
is to add constraints which eliminate symmetric solutions
(Puget 1993). Suppose we have a setΣ of value symme-
tries. Based on (Crawfordet al. 1996), we can eliminate
all symmetric solutions by posting a global constraint which
ensures that the solution is ordered lexicographically before
any of its symmetries. More precisely, we post the global
constraint VAL SYM BREAK(Σ, [X1, .., Xn]) which ensures
[X1, .., Xn] ≤lex [σ(X1), .., σ(Xn)] for all σ ∈ Σ andX1 to
Xn is a fixed ordering on the variables. Unfortunately, prun-
ing all values from such a symmetry breaking constraint is
NP-hard.

Theorem 1 Deciding if VAL SYM BREAK(Σ, [X1, .., Xn])
is GAC is NP-complete, even when|Σ| is linearly bounded.

Proof: Membership in NP follows by giving a support for
every possible assignment. To prove it is NP-hard, we give a
reduction from a 3-SAT problem inN Boolean variables and
M clauses. We first construct a CSP withN + M + 1 vari-
ables over4N possible values which partition into2N inter-
changeable pairs.4i − 3 and4i − 2 are interchangeable, as
are4i−1 and4i for 1 ≤ i ≤ N . 4i−3 and4i−2 representxi

being true, whilst4i−1 and4i representxi being false. The
first N CSP variables represent a “truth assignment”. We
haveXi ∈ {4i−3, 4i−2, 4i−1, 4i} for 1 ≤ i ≤ N . The next
M CSP variables ensure at least one literal in each clause is
true. For example, if theith clause isxj ∨¬xk ∨xl, then the
domain ofXN+i is {4j−3, 4j−2, 4k−1, 4k, 4l−3, 4l−2}.
The final variableXN+M+1 has the domain{1, 2}. Note
that all variables have symmetric domains. If a value is in
the domain of a variable then so are all its symmetries. We
next add two sets of constraints. First, we have the con-
straintsodd(XN+M+1) → odd(Xi) andodd(XN+M+1) →
even(XN+j) for 1 ≤ i ≤ N and1 ≤ j ≤ M . Second, we
introduce constraints over fresh variables and values encod-
ing an unsatisfiable CSP (say,N + 1 pigeons inN pigeon-
holes). Note that the constructed CSP is unsatisfiable. Thus,
it trivially has the property that any symmetry of a solution
is also a solution.

Suppose our branching heuristic assignsXN+M+1 = 1.
Enforcing AC on the constraints prunes the domains ofXi

to {4i − 3, 4i − 1} for 1 ≤ i ≤ N . Similarly, the domain
of XN+i is reduced to{4j − 2, 4k, 4l − 2}. Consider now
finding a support for VAL SYM BREAK. XN+i can only take
the value4j−2 if Xj had previously been assigned4j−3. In
other words,XN+i can only take the value4j−2 if xj is set
to true in the “truth assignment”. Similarly,XN+i can only
take the value4k if Xk had previously been assigned4k−1.
In other words,XN+i can only take the value4k if xk is set
to false in the “truth assignment”. Finally,XN+i can only
take the value4l − 2 if Xj had previously been assigned
4l− 3. In other words,XN+i can only take the value4l− 2
if xl is set to true in the “truth assignment”. Thus, there is a

support for VAL SYM BREAK iff the original 3-SAT problem
is satisfiable. By Theorem 3,|Σ| can be linearly bound.�

This is a somewhat surprising result. Whilst it is poly-
nomial to eliminate all symmetric solutions either statically
(Puget 2005) or dynamically (Roney-Dougalet al. 2004), it
is NP-hard to lookahead and prune all symmetric values.

Dynamic methods
An alternative to static methods which add constraints
to eliminate symmetric solutions are dynamic methods
which modify the search procedure to ignore symmetric
branches. For example, with value symmetries, the GE-tree
method can dynamically eliminate all symmetric solutions
in O(n4 log(n)) time (Roney-Dougalet al. 2004). However,
as we show now, such dynamic methods may not pruneall
the symmetric values which static methods can do.

Suppose we are at a particular node in the search tree ex-
plored by the GE-tree method. Consider the current and all
past variables seen so far. The GE-tree method can be seen
as performing forward checking on a static symmetry break-
ing constraint over this set of variables. This prunes sym-
metric assignments from the domain of thenext variable.
Unlike static methods, the GE-tree method does not prune
deepervariables. By pruning the domains of deeper vari-
ables, static symmetry breaking methods can solve certain
problems exponentially quicker than dynamic methods.

Theorem 2 There exists a class of CSP problem inn vari-
ables andn + 1 interchangeable values such that, given any
variable and value ordering, the GE-tree method explores
O(2n) branches, but which static symmetry breaking meth-
ods can solve in justO(n2) time.

Proof: Then + 1 constraints in the CSP are
∨n

i=1 Xi = j
for 1 ≤ j ≤ n + 1, and the domains areXi ∈ {1, .., n + 1}
for 1 ≤ i ≤ n. The problem is unsatisfiable by a simple
pigeonhole argument. Any of the static methods for break-
ing value symmetry presented later in this paper will prune
n + 1 from every domain inO(n2) time. Eenforcing GAC
on the constraint

∨n
i=1 Xi = n + 1 then proves unsatisfia-

bility. On the other hand, the GE-tree method irrespective
of the variable and value ordering, will only terminate each
branch whenn − 1 variables have been assigned (and the
last variable is forced). A simple calculation shows that the
size of the GE-tree more than doubles as we increasen by
1. Hence we will visitO(2n) branches before declaring the
problem is unsatisfiable.�
This theoretical result supports the experimental results in
(Puget 2005) showing that static methods for breaking value
symmetry can outperform dynamic methods.

Given the intractability of pruning all symmetric values in
general, we focus in the rest of the paper on a common and
useful type of value symmetry: we will suppose that values
are ordered into partitions, and values within each partition
are uniformly interchangeable. We will consider three static
methods proposed to break such symmetry.

Generator symmetries
One way to propagate VAL SYM BREAK is to decom-
pose it into individual lexicographical ordering constraints,



[X1, .., Xn] ≤lex [σ(X1), .., σ(Xn)] and use one of the prop-
agators proposed in (Puget 2006) or (Walsh 2006a). Even
if we ignore the fact that such a decomposition may hinder
propagation (see, for instance, Theorem 2 in (Walsh 2006a)),
we have to cope withΣ, the set of symmetries being expo-
nentially large in general. For instance, if we havem in-
terchangeable values, thenΣ containsm! symmetries. To
deal with large number of symmetries, Aloulet al. suggest
breaking only those symmetries corresponding to generators
of the group (Aloulet al. 2002).

Consider the generators which interchange adjacent val-
ues within each partition. If them values partition intok
classes of interchangeable values, there are justm− k such
generators. Breakingjust these symmetries eliminatesall
symmetric solutions.

Theorem 3 If Σ is a set of symmetries induced by
interchangeable values, andΣg is the set of gen-
erators interchanging adjacent values then posting
VAL SYM BREAK(Σg, [X1, .., Xn]) eliminates all symmetric
solutions.

Proof: Assume VAL SYM BREAK(Σg, [X1, .., Xn]). Con-
sider any two interchangeable values,j andk wherej < k,
Let σj ∈ Σg be the symmetry which swaps justj with j +1.
To ensure[X1, .., Xn] ≤lex [σj(X1), .., σj(Xn)], j must oc-
cur beforej + 1 in X1 to Xn. By transitivity, j therefore
occurs beforek. Thus, for the symmetryσ′ which swaps
just j with k, [X1, .., Xn] ≤lex [σ′(X1), .., σ′(Xn)]. Con-
sider now any symmetryσ ∈ Σ. Suppose[X1, .., Xn] >lex

[σ(X1), .., σ(Xn)]. Then there exists somej with Xj >
σ(Xj) andXi = σ(Xi) for all i < j. Consider the sym-
metryσ′ which swaps justXj with σ(Xj). As argued be-
fore, [X1, .., Xn] ≤lex [σ′(X1), .., σ′(Xn)]. But this contra-
dicts [X1, .., Xn] >lex [σ(X1), .., σ(Xn)] as σ and σ′ act
identically on the firstj variables inX1 to Xn. Hence,
[X1, .., Xn] ≤lex [σ(X1), .., σ(Xn)] for anyσ ∈ Σ. �

Not surprisingly, reducing the number of symmetry
breaking constraints to linear comes at a cost. We may not
prune all symmetric values.

Theorem 4 If Σ is a set of symmetries induced by in-
terchangeable values, andΣg is the set of generators
interchanging adjacent values then enforcing GAC on
VAL SYM BREAK(Σ, [X1, .., Xn]) is strictly stronger than
enforcing GAC on[X1, .., Xn] ≤lex [σ(X1), .., σ(Xn)] for
eachσ ∈ Σg.

Proof: Suppose all values are interchangeable with each
other. ConsiderX1 = 1, X2 ∈ {1, 2}, X3 ∈ {1, 3},
X4 ∈ {1, 4} and X5 = 5. Then enforcing GAC on
VAL SYM BREAK(Σ, [X1, .., X5]) prunes 1 fromX2 to X4.
However, consider the generatorσ ∈ Σg which interchanges
i with i + 1 where1 ≤ i < 5. Then [X1, .., X5] ≤lex

[σ(X1), .., σ(X5)] is GAC without any domain pruning.�

Puget’s decomposition
With value symmetries, a second method that eliminates all
symmetric solutions is a decomposition due to (Puget 2005).
Consider a surjection problem (where each value is used at
least once) with interchangeable values. We can channel

into dual variables,Zj which record the first index using the
valuej by posting the binary constraints:Xi = j → Zj ≤ i
andZj = i → Xi = j for all 1 ≤ i ≤ n, 1 ≤ j ≤ m. We
can then eliminate all symmetric solutions by insisting that
interchangeable valuesfirst occur in some given order. That
is, we place strict ordering constraints on theZk within each
class of interchangeable values.

Puget notes that any problem can be made into a surjec-
tion by introducingm additional new variables,Xn+1 to
Xn+m whereXn+i = i. These variables ensure that each
value is used at least once. In fact, we don’t need addi-
tional variables. It is enough to ensure that eachZj has a
dummy value, which means thatj is not assigned, and to
order (dummy) values appropriately. Unfortunately, Puget’s
decomposition into binary constraints hinders propagation.

Theorem 5 Enforcing GAC on
VAL SYM BREAK(Σ, [X1, .., Xn]) is strictly stronger
than enforcing AC on Puget’s decomposition.

Proof: It is not hard to show it as least as strong. To show
it is strictly stronger, suppose all values are interchange-
able with each other. ConsiderX1 = 1, X2 ∈ {1, 2},
X3 ∈ {1, 3}, X4 ∈ {3, 4}, X5 = 2, X6 = 3, X7 = 4,
Z1 = 1, Z2 ∈ {2, 5}, Z3 ∈ {3, 4, 6}, andZ4 ∈ {4, 7}. Then
all Puget’s symmetry breaking constraints are AC. How-
ever, enforcing GAC on VAL SYM BREAK(Σ, [X1, .., X5])
will prune 1 fromX2. �

If all values are interchangeable with each other, we only
need to enforce a slightly stronger level of local consistency
to prune all symmetric values. More precisely, enforcing
SAC on Puget’s binary decomposition will prune all sym-
metric values. The argument is as follows. Enforcing AC
on Puget’s encoding ensures that there is at least one sup-
port for VAL SYM BREAK in the domain of every variable.
Hence enforcing SAC on Puget’s decomposition ensures
that VAL SYM BREAK is GAC. More generally, if values par-
tition into j interchangeable classes, we may need to make
the problemk-consistent for allk ≤ j + 1 to prune all sym-
metric values. Asj may not be bounded,local consistency
is not enough to prune all symmetric values.

Finally, we compare this method with the previous
method based on breaking the symmetries corresponding to
each generator. We can show that we may prune more sym-
metric values using Puget’s decomposition.

Theorem 6 If Σ is a set of symmetries induced by inter-
changeable values, andΣg is the set of generators inter-
changing adjacent values then enforcing AC on Puget’s
decomposition is strictly stronger than enforcing GAC on
[X1, .., Xn] ≤lex [σ(X1), .., σ(Xn)] for eachσ ∈ Σg.

Proof: Consider the example used in the proof of Theorem
4. Enforcing AC on Puget’s decomposition prunes 1 from
X2 to X4. However, the lexicographical ordering constraint
for each generator is GAC without any domain pruning.�

Value precedence
A third method to eliminate all symmetric solutions stat-
ically is based on globalprecedenceconstraints (Law &
Lee 2004). SupposeΣ is the set of symmetries induced



by all values being interchangeable. The global constraint
PRECEDENCE([X1, .., Xn]) holds iff min{i | Xi = j ∨ i =
n + 1} < min{i | Xi = k ∨ i = n + 2} for all j < k.
That is, the first time we usej is before the first time we use
k for all j < k. Posting such a precedence constraint elim-
inates all symmetric solutions due to interchangeable val-
ues. In (Walsh 2006b), a GAC propagator for such a prece-
dence constraint is proposed which takesO(nm) time. It is
not hard to show that PRECEDENCE([X1, .., Xn]) is equiva-
lent to VARSYM BREAK(Σ, [X1, .., Xn]). Hence, enforcing
GAC on such a precedence constraint prunes all symmetric
values in polynomial time.

Precedence constraints can also be defined when values
partition into interchangeable classes. We just insist that
the values within each class first occur in a fixed order. In
(Walsh 2006b), a propagator for such a precedence con-
straint is proposed which takesO(n

∏
i mi) time wheremi

is the size of theith class of interchangeable values. Whilst
this prunes all symmetric values, it is only polynomial if we
can bound the number of classes of interchangeable values.
This complexity is now not surprising. We have shown that
pruning all symmetric values is NP-hard when the number
of classes of interchangeable values is unbounded.

Breaking variable and value symmetry
Variable symmetries can also be broken statically by posting
constraints. Following (Crawfordet al. 1996), we can elim-
inate all symmetric solutions with a global constraint which
ensures that the solution is ordered lexicographically be-
fore any of the symmetries of the solution. More precisely,
give a set of variable symmetriesΣ, we post the global
constraint VARSYM BREAK(Σ, [X1, .., Xn]) which ensures
[X1, .., Xn] ≤lex [Xσ(1), .., Xσ(n)] for all σ ∈ Σ whereX1

to Xn is a fixed ordering on the variables. Pruningall val-
ues from such a symmetry breaking constraint is NP-hard
(Crawfordet al. 1996; Bessiereet al. 2004).

Consider, for example, a model of the rehearsal problem
(prob039 in CSPLib) where we have a variable for each time
slot whose value is the piece to rehearse. This model has a
variable symmetry as we can invert any rehearsal schedul-
ing without violating any constraints. This is equivalent to
swappingXi with Xn−i+1. We eliminate this symmetry by
posting the constraint:[X1, .., Xn] ≤lex [Xn, .., X1].

Such variable symmetry breaking constraints are consis-
tent with the value symmetry breaking constraints discussed
here. We must, however, ensure that all are based on the
same fixed variable ordering. Whilst we can consistently
post both variable and value symmetry breaking constraints,
this may not eliminate all symmetric solutions resulting
from the interaction of variable and value symmetry (see,
for example, Theorem 3 in (Walsh 2006a)).

Set variables
Value symmetry can be eliminated from problems con-
taining set variables in similar ways. For exam-
ple, we can post a (global) constraint which ensures
that the solution is ordered lexicographically before any
of the symmetries of the solution. More precisely,

we post VAL SYM BREAK(Σ, [S1, .., Sn]) which ensures
[S1, .., Sn] ≤lex [σ(S1), .., σ(Sn)] for all σ ∈ Σ whereS1

to Sn is a fixed ordering on the set variables and≤lex is the
lexicographical extension of the multiset ordering on sets.
The multiset ordering on sets is identical to the lexicograph-
ical ordering on the characteristic function of the sets.

For set variables taking interchangeable values, pruning
all symmetric values is polynomial. In (Walsh 2006b), it is
shown that all symmetric solutions introduced by set vari-
ables taking interchangeable values can be eliminated by
lexicographically ordering the columns of the 2-d matrix
constructed by mapping the sequence of set variables onto
their characteristic functions. If values partition into inter-
changeable classes, we need merely to order lexicographi-
cally those pairs of columns which are interchangeable. We
can achieve BC on this representation (and thus prune all
symmetric values) in polynomial time. On the other hand,
with arbitrary value symmetries, pruning all symmetric val-
ues is NP-hard.

Theorem 7 For set variables taking symmetric values, en-
forcing BC onVAL SYM BREAK(Σ, [S1, .., Sn]) is NP-hard.

Proof: Consider finding an assignment to a single set vari-
able that is lexicographically smaller than or equal to any of
its symmetries. We give a reduction from 3-SAT. Given a
3-SAT problem inN variables,xi to xN andM clauses, we
construct a set variableS with lower bound{4i− 1|1 ≤ i ≤
N} ∪ {4N + 2} and upper bound{4i, 4i − 1, 4i − 2 | 1 ≤
i ≤ N} ∪ {4N + 1, 4N + 2, 4N + 3, 4N + 4, 4N + 5}.
The interpretation of4i ∈ S for 1 ≤ i ≤ N is thatxi is
true, and of4i − 2 ∈ S for 1 ≤ i ≤ N is thatxi is false.
4i − 1 for 1 ≤ i ≤ N are “dummy” values used to ensure
that we don’t have both4i ∈ S and4i − 2 ∈ S (in other
words,xi is not assigned to both true and false).4N + 1 is
an additional “dummy” value used to ensure that at least one
literal in every clause is true.

For eachi from 1 toN , we construct the value symmetry
which permutes4i with 4i−1, 4i−2 with 4i−3, and leaves
all other values are unchanged. Since4i− 1 ∈ lb(S), for S
to be lexicographical smaller than or equal toσ(S), 4i ∈ S
implies4i − 2 6∈ S, and4i − 2 ∈ S implies4i 6∈ S. That
is, we cannot have bothxi set to true and to false. It may
be that both4i 6∈ S and4i − 2 6∈ S. In other words, we
may not have assigned any truth value toxi. In this case, all
clauses will be satisfied without us needing to chose a truth
value forxi.

To ensure that the truth assignment represented byS
satisfies the clauses, we construct a value symmetry cor-
responding to each clause. Suppose we have the clause:
xi∨¬xj∨xk. Then we construct the value symmetry which
permutes4i with 4N+3, 4j−2 with 4N+4, 4k with 4N+5,
and4N +1 with 4N +2, leaving all other values unchanged.
Since4N + 2 ∈ lb(S), S ≤lex σ(S) andσ swaps4N + 1
with 4N + 2 it follows that at least one of4i, 4j − 2 or 4k
must also be inS. That is, at least one ofxi, ¬xj or xk must
be set to true.

Thus, there is an assignment toS which is lexicographi-
cally smaller than or equal to any of its symmetries iff the
original 3SAT problem has a satisfying assignment. Hence,



finding a support (and thus enforcing BC on a complete sym-
metry breaking constraint) is NP-hard.�

As the proof only used a single set variable, it also follows
that dynamic methods which do not assign symmetric values
to set variables are NP-hard to compute in general.

Experimental results
We now compare these value symmetry breaking methods
experimentally. Puget has shown that his static symmetry
breaking method significantly outperforms the dynamic GE-
tree method. We therefore look at just the three static meth-
ods.

Generator symmetries: we post lexicographical ordering
constraints for the generators of the symmetry group that
interchange adjacent values and enforce GAC using a lin-
ear time propagator (Walsh 2006a).

Puget’s decomposition:we enforce AC using the solver’s
built-in propagators.

Value precedence:we post a single global value prece-
dence constraint and enforce GAC using a linear time
propagator (Walsh 2006b).

We coded all problems in SICSTUS 3.12.7, and ran them
on a PowerPC 1GHz G4 processor with 1.25 GB RAM.

n by n queens
As in the first experiment in (Puget 2005), we used a simple
model of then by n queens problem. The aim is to color
each square in an by n chessboard with one ofn colors so
that no line (row, column or diagonal) has the same colour
twice. This is equivalent to findingn non-intersecting solu-
tions to then-queens problems. This is a difficult combina-
torial problem. The existence of a solution forn = 12 was
open until recently. We model this withn2 finite domain
variables, each withn possible values, and an all different
constraint along each line. The model has 8 variable sym-
metries corresponding to the rotations and reflections of the
chessboard. We break these by posting the ordering con-
straints: X1 < Xn, X1 < Xn2−n+1, X1 < Xn2 and
X2 < Xn+1. The model also hasn! value symmetries as
all colors are interchangeable. We break these with one of
the three methods mentioned above.

Results are given in Table 1. Forn = 5 and 7, there is an
unique solution up to symmetry. Forn = 6 and 8, there are
no solutions. Despite the theoretical differences between the
three static symmetric breaking methods identified in Theo-
rems 4 and 5, we see no difference in the size of the search
trees explored in practice on these problems. The special-
ized propagator for value precedence is, however, two or so
times faster than Puget’s method which itself is two or so
time faster than the generator symmetry method.

Schur numbers
We also ran experiments on the Schur numbers problem
(prob015 in CSPLib). This problem was used in previous
experimental studies of value precedence (Law & Lee 2004;
Walsh 2006b). The Schur numberS(k) is the largest integer

n for which the interval[1, n] can be partitioned intok sum-
free sets.S is sum-free iff∀a, b, c ∈ S . a 6= b + c. Schur
numbers are related to Ramsey numbers,R(n) through the
identity: S(n) ≤ R(n) − 2. Schur numbers were proposed
by the famous German mathematician Isaai Schur in 1918.
S(4) was open until 1961 when it was first calculated by
computer.S(3) is 13,S(4) is 44, and160 ≤ S(5) ≤ 315.
We consider the corresponding decision problem,S(n, k)
which asks if the interval[1, n] can be partitioned intok
sum-free sets. A simple model of this usesn finite domain
variables withk interchangeable values.

Results are given in Table 2. We now see slight differ-
ence in the size of the search trees explored using the differ-
ent static symmetry breaking methods. We conjecture that
these differences are probably a consequence of the fail first
heuristic deciding to branch on the dual variables.

To conclude, over the two problem sets, the specialized
propagator for value precedence is either as fast or faster
than Puget’s method, and both are typically two or more
times faster than the generator symmetry method. It is an
interesting open question how the methods will compare on
problems with more classes of interchangeable values. We
conjecture that we may then see more significant differences
in the size of the search trees.

Related work
Puget proved that symmetric solutions can be eliminated
by the addition of suitable constraints (Puget 1993). Craw-
ford et al. presented the first general method for construct-
ing variable symmetry breaking constraints (Crawfordet
al. 1996). Petrie and Smith adapted this method to value
symmetries by posting a suitable lexicographical ordering
constraint for each value symmetry (Petrie & Smith 2003).
Puget and Walsh independently proposed propagators for
such value symmetry breaking constraints (Puget 2006;
Walsh 2006a). To deal with the exponential number of such
symmetry breaking constraints, Puget proposed a global
propagator which does forward checking (Puget 2006).

To eliminate symmetric solutions due to interchangeable
values, Law and Lee formally defined value precedence and
proposed a specialized propagator for a pair of interchange-
able values (Law & Lee 2004). Walsh extended this to a
propagator for any number of interchangeable values (Walsh
2006b). Finally, an alternative way to break value symme-
try statically is to convert it into a variable symmetry by
channelling into a dual viewpoint and using lexicographical
ordering constraints on this dual view (Fleneret al. 2002;
Law & Lee 2006).

A number of dynamic methods have been proposed to
deal with value symmetry. Van Hentenrycket al. gave
a labelling schema for eliminating all symmetric solutions
due to interchangeable values (Hentenrycket al. 2003). In-
spired by this method, Roney-Dougalet al. gave a polyno-
mial method to construct a GE-tree, a search tree without
value symmetry (Roney-Dougalet al. 2004). Finally, Sell-
mann and van Hentenryck gave aO(nd3.5 + n2d2) domi-
nance detection algorithm for eliminating all symmetric so-
lutions when both variables and values are interchangeable
(Sellmann & Hentenryck 2005).



problem value symmetry breaking
n none generator symmetries Puget’s method value precedence

c b p t c b p t c b p t c b p t
4 22 7 219 0.01 444 1 628 0.02 399 1 591 0.02 156 1 317 0.00
5 28 59 2781 0.02 928 2 1651 0.02 782 2 1251 0.03 253 2 601 0.02
6 34 3949 200395 0.65 1654 30 9624 0.07 1335 30 7245 0.07 358 30 3611 0.02
7 40 882813 53528368 170.75 2686 838 278678 1.20 2104 838 193901 0.67 481 838 103695 0.28
8 4078 148564 54091553 238.52 3125 148564 36865615 119.83 622 148564 19899573 50.12
9

Table 1:n by n queens problem:constraints posted,branches, domainprunings andtime to find all solutions in secs using a
fail first heuristic. Blank entries are problems not solved in 1 hour. Results are similar to find first solution.

problem value symmetry breaking
S(n, k) none generator symmetries Puget’s method value precedence

c b p t c b p t c b p t c b p t
S(13, 3) 126 294 9253 0.04 360 49 3435 0.04 362 49 2739 0.03 243 49 2449 0.03
S(13, 4) 126 1331688 14584107 36.00 477 51099 1549607 3.52 441 51099 955356 1.96 243 51099 805273 1.94
S(13, 5) 594 691700 22014534 48.97 520 691700 12518244 26.18 243 691700 10901646 25.73
S(13, 6) 599 2473322 46404167 98.51 243 2474354 38681737 47.44
S(14, 3) 147 456 15190 0.06 399 76 5042 0.04 401 76 4108 0.05 273 76 3851 0.03
S(14, 4) 147 2748840 35774652 84.42 525 103610 3321327 7.00 486 103610 2063297 4.24 273 103610 1859627 4.20
S(14, 5) 651 2183885 74079956 160.32 571 2183885 40990610 88.06 273 2183885 37962162 86.85
S(14, 6) 656 10437102 200486641 432.79 273 10441664 183274168 424.49
S(15, 3) 168 600 21287 0.08 438 100 6652 0.05 440 100 5483 0.04 303 100 5305 0.05
S(15, 4) 168 6976512 93094291 213.79 573 265060 8449402 17.70 531 265060 5368238 10.89 303 265060 4637648 10.29
S(15, 5) 622 194209 159071864 238.33 303 194209 137221068 318.19
S(15, 6)

Table 2: Schur numbers problem:constraints posted,branches, domainprunings andtime to find all solutions in secs using a
fail first heuristic. Blank entries are problems not solved in 1 hour. Results are similar to find first solution.

Conclusion
Value symmetries can be broken either statically (by adding
constraints to prune symmetric solutions) or dynamically
(by modifying the search procedure to avoid symmetric
branches). We have shown that both approaches have com-
putational limitations. With static methods, pruning all sym-
metric values is NP-hard in general. With dynamic methods,
we typically only perform forward checking and can take
exponential time on problems which static methods solve
without search. We have studied a common type of value
symmetry where values are interchangeable and static meth-
ods are polynomial. We considered three different sym-
metry breaking constraints: ordering constraints based on
generators of the symmetry group, constraints proposed in
(Puget 2005), and a specialized precedence constraint. We
have shown that despite theoretical differences in their abil-
ity to prune symmetric values, the three methods explore
very similar search spaces in practice. However, the special-
ized precedence constraint appears to offer a runtime advan-
tage. There are many open questions raised by this research.
For example, are there other types of symmetry where all
symmetric values can be pruned tractably? Are there other
types of symmetry where it is enough to use just generators?
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