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Abstract

Symmetry is an important factor in solving many constraint
satisfaction problems. One common type of symmetry is
when we have symmetric values. We can eliminate such
value symmetry either statically by adding constraints to
prune symmetric solutions or dynamically by modifying the
search procedure to avoid symmetric branches. We show
that either method has computational limitations. With static
methods, pruning all symmetric values is NP-hard in gen-
eral. With dynamic methods, we can take exponential time
on problems which static methods solve without search. Fi-
nally, we consider a common type of value symmetry, that
due to interchangeable values. We show that despite these
theoretical limitations, methods proposed to deal with inter-
changeable values are both effective in theory and in practice.

Introduction

Many search problems contain symmetries. Symmetry oc-
curs naturally in many problems (e.g. if we have identical
machines to schedule, or identical jobs to process). Symme-
try can also be introduced when we model a problem (e.g.
if we name the elements in a set, we introduce the possi-
bility of permuting their order). Unfortunately, symmetries
increases the size of the search space. We must therefore tr
to eliminate symmetry or we will waste much time visiting

symmetric solutions, as well as those parts of the search tree

which are symmetric to already visited states.

One common type of symmetry is when values are sym-
metric. For example, if we are assigning colors (values)
to nodes (variables) in a graph coloring problem, we can
uniformly swap the names of the colors throughout a color-
ing. With value symmetries, all symmetric solutions can be
eliminated in polynomial time (Roney-Douget al. 2004;
Puget 2005). However, as we show here, prurghgym-
metric values is NP-hard in general. Nevertheless, methods
that have been proposed, like those in (Law & Lee 2004;
Puget 2005), appear to be effective at dealing with common
types of value symmetry.
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Background

A constraint satisfaction problem consists of a set of vari-
ables, each with a domain of values, and a set of constraints
specifying allowed combinations of values for given subsets
of variables. A solution is an assignment of values to vari-
ables satisfying the constraints. Finite domain variables take
one value from a given finite set. Set variables take sets of
such values and are typically defined by a lower bound on
the definite elements in the set and an upper bound on the
definite and potential elements.

Many constraint solvers explore the space of partial as-
signments enforcing some local consistency. We consider
three local consistencies for finite domain variables as well
as the most common local consistency for set variables.
Given a constraint’ on finite domain variables, supportis
assignment to each variable of a value in its domain which
satisfiesC'. A constraint on finite domains variablesgen-
eralized arc consistenfGAC) iff for each variable, every
value in its domain belongs to a support. A set of constraints
is GAC iff each constraint is GAC. On binary constraints,
GAC is simply called arc consistency (AC). A set of binary
constraints isingleton arc consister{SAQ iff we can as-
sign every variable with each value in its domain and make
the resulting problem arc consistent (AC). Finally, a set of

ybinary constraint ig:-consisteniff each £ — 1 assignment

can be consistently extended téth variable. Given a con-
straintC on set variables, Aound supporbn C is an as-
signment of a set to each set variable between its lower and
upper bounds which satisfi€s A constraint isoound con-
sistent(BC) iff for each set variable5, the values in:b(.5)
belong toS in at least one bound support and the values in
Ib(S) belong toS in all bound supports. A set of constraints

is BC iff each constraint is BC.

Symmetry occurs in many constraint satisfaction prob-
lems. Avalue symmetrys a bijection on values that pre-
serves solutions. For example, suppose we wish to assign
colors (values) to nodes (variables) in a graph coloring prob-
lem. Value symmetry permits us to interchange any two col-
ors uniformly throughout a coloring. #ariable symmetry
on the other hand, is a bijection on variables that preserves
solutions. For example, suppose we wish to assign times
(values) to exams (variables) in an exam scheduling prob-
lem and we have two exams taken by the same set of stu-
dents. This variable symmetry permits us to interchange the



two exams. Symmetries are problematic as they increase thesupport for \AL SyM BREAK iff the original 3-SAT problem

size of the search space. For instance, if we havater- is satisfiable. By Theorem 8| can be linearly bound:

changeable values, symmetry increases the size of the search This is a somewhat surprising result. Whilst it is poly-

space by a factor of.!. nomial to eliminate all symmetric solutions either statically

(Puget 2005) or dynamically (Roney-Dougslal. 2004), it

Static methods is NP-hard to lookahead and prune all symmetric values.

One simple and common mechanism to deal with symmetry .

is to add constraints which eliminate symmetric solutions Dynamic methods

(Puget 1993). Suppose we have a Sedf value symme- An alternative to static methods which add constraints

tries. Based on (Crawfordt al. 1996), we can eliminate  to eliminate symmetric solutions are dynamic methods
all symmetric solutions by posting a global constraint which which modify the search procedure to ignore symmetric
ensures that the solution is ordered lexicographically before branches. For example, with value symmetries, the GE-tree
any of its symmetries. More precisely, we post the global method can dynamically eliminate all symmetric solutions
constraint ML SYMBREAK(X, [ X1, .., X,,]) which ensures in O(n*log(n)) time (Roney-Dougadt al. 2004). However,
(X1, Xn] <iex [0(X1), ., 0(X,,)] forallo € ¥ andX; to as we show now, such dynamic methods may not paihe
X, is afixed ordering on the variables. Unfortunately, prun- the symmetric values which static methods can do.
ing all values from such a symmetry breaking constraintis ~ Suppose we are at a particular node in the search tree ex-
NP-hard. plored by the GE-tree method. Consider the current and all
Theorem 1 Deciding if VAL SYMBREAK(S, [X1, .., X»]) past v?riablesfseen sdo fﬁr. I‘(fhe GE-tree _method can Se sEen
is GAC is NP-complete, even whigt] is linearly bounded. as performing forward checking on a static symmetry break-
ing constraint over this set of variables. This prunes sym-
Proof: Membership in NP follows by giving a support for ~ metric assignments from the domain of thext variable.
every possible assignment. To prove itis NP-hard, we give a Unlike static methods, the GE-tree method does not prune
reduction from a 3-SAT problem iV Boolean variables and deepervariables. By pruning the domains of deeper vari-
M clauses. We first construct a CSP with+ M + 1 vari- ables, static symmetry breaking methods can solve certain
ables over N possible values which partition infaV inter- problems exponentially quicker than dynamic methods.

changeable pairsli — 3 and4i — 2 are interchangeable, as  1heqrem 2 There exists a class of CSP problemivari-
g@”_l andZﬁ_lfot[ 1 Sll Sdilv.' 43 and4zb—2 re?rclasen%] ables andr + 1 interchangeable values such that, given any
eing true, whilstli — 1 andd: represent; being false. The variable and value ordering, the GE-tree method explores

first N CSP variables represent a “truth assignment”. We on) branches. but which static symmetrv breaking meth-
haveX; € {4i—3,4i—2,4i—1,4i} for1 <4 < N. The next oOd(s c)an solve in'ju;D\(I:ﬂl) time. c sy y ng

M CSP variables ensure at least one literal in each clause is

true. For example, if théth clause is:; v~z V z;, then the Proof: Then + 1 constraints in the CSP ak¢/_, X; = j
domain ofX v, is {4j —3,4j —2,4k—1,4k,41—3,41—2}, ~ forl <j <n+1, and the domains a&; € {1,..n + 1}
The final variableX y ;1741 has the domair{1,2}. Note for 1 < ¢ < n. The problem is unsatisfiable by a simple

that all variables have symmetric domains. If a value is in Pigeéonhole argument. Any of the static methods for break-
the domain of a variable then so are all its symmetries. We INg value symmetry presented iatgr in this paper will prune
next add two sets of constraints. First, we have the con- 7 + 1 from every domain irO(n") time. Eenforcing GAC
straintsodd(X na711) — odd(X;) andodd(X x4 ar41) — on the constraint/;_, X; = n + 1 then proves unsatisfia-
even(Xyy;) for1 <i < Nandl < j < M. Second, we bility. On the other hand, the GE-tree method irrespective
introduce constraints over fresh variables and values encod- ©f the variable and value ordering, will only terminate each
ing an unsatisfiable CSP (say, + 1 pigeons inN pigeon- branch .whem -1 varlable.s have been gsagned (and the
holes). Note that the constructed CSP is unsatisfiable. Thus, 'ast variable is forced). A simple calculation shows that the
it trivially has the property that any symmetry of a solution Siz€ Of the GE-tree more than doubles as we increasg

is also a solution. 1. Hence we will visitO(2™) branches before declaring the
Suppose our branching heuristic assighg, ;11 = 1. problem is unsatisfiable: ) )
Enforcing AC on the constraints prunes the domain&ef This theoretical result supports the experimental results in

to {4i —3,4i — 1} for 1 < i < N. Similarly, the domain (Puget 2005) showing that static methods for breaking value
of X, is reduced to{4j — 2, 4k, 41 — 2}. Consider now symmetry can outperform dynamic methods.

finding a support for WL SYMBREAK. X y; can only take Given the intractability of pruning all symmetric values in
the valuetj—2 if X; had previously been assignéf-3. In general, we focus in the rest of the paper on a common and
other words X 4 can only take the valugj — 2 if = is set useful type of value symmetry: we will suppose that values
to true in the “truth assignment”. Similarl§ x_; can only are ordered into partitions, and values within each partition
take the valugk if X, had previously been assignétd— 1. are uniformly interchangeable. We will consider three static
In other words X y; can only take the valuék if z;, is set methods proposed to break such symmetry.

to false in the “truth assignment”. FinallyX x; can only .

take the valuell — 2 if X; had previously been assigned Generator symmetries

41 — 3. In other words X y1; can only take the valu¢l — 2 One way to propagate A SYMBREAK is to decom-

if ; is set to true in the “truth assignment”. Thus, there isa pose it into individual lexicographical ordering constraints,



[X1, . Xn] <iex [0(X1), ., 0(X,,)] and use one of the prop-

into dual variablesZ; which record the first index using the

agators proposed in (Puget 2006) or (Walsh 2006a). Even valuej by posting the binary constraintX’; = j — Z; <

if we ignore the fact that such a decomposition may hinder

propagation (see, for instance, Theorem 2 in (Walsh 2006a)),

we have to cope with, the set of symmetries being expo-
nentially large in general. For instance, if we hawein-
terchangeable values, théhcontainsm! symmetries. To
deal with large number of symmetries, Alcetl al. suggest

andZ; =i — X; =jforalll <i<n,1<j5<m. We
can then eliminate all symmetric solutions by insisting that
interchangeable valudisst occur in some given order. That
is, we place strict ordering constraints on thewithin each
class of interchangeable values.

Puget notes that any problem can be made into a surjec-

breaking only those symmetries corresponding to generators tion by introducingm additional new variablesX,,, ;1 to

of the group (Aloulet al. 2002).

Consider the generators which interchange adjacent val-

ues within each partition. If the: values partition intck
classes of interchangeable values, there arenjustk such
generators. Breakingist these symmetries eliminated
symmetric solutions.

Theorem 3 If ¥ is a set of symmetries induced by
interchangeable values, and, is the set of gen-
erators interchanging adjacent values then posting
VALSYMBREAK(X,, [ X1, .., X,]) eliminates all symmetric
solutions.

Proof: Assume MLSYMBREAK(X,, [X1,.., X,]). Con-
sider any two interchangeable valugsndk wherej < k,
Leto; € 3, be the symmetry which swaps jystvith j + 1.
To ensurd Xy, .., X,,] <iex [0;(X1),..,0;(Xy)], 7 must oc-
cur beforej + 1 in X; to X,,. By transitivity, j therefore
occurs beforg:. Thus, for the symmetry’ which swaps
justj with k, [ X1, .., Xi] <iex [0/(X1),..,0'(X,)]. Con-
sider now any symmetry € 3. Suppos€Xy, .., X,] >lex
[0(X1),..,0(X,)]. Then there exists somgwith X, >
o(X;)andX; = o(X;) for all ¢ < j. Consider the sym-
metry o’ which swaps justX; with o(X;). As argued be-
fore, [X1, .., Xp] <iex [0'(X1), .., 0’ (X},)]. But this contra-
dicts [ X1, .., X»] >1ex [0(X1),.,0(X,)] aso and o’ act
identically on the firstj variables inX; to X,. Hence,
[X1, . Xn] <iex [0(X1), ., 0(X,)] foranyo € . ¢
Not surprisingly, reducing the number of symmetry

Xn1m WhereX,, ., = i. These variables ensure that each
value is used at least once. In fact, we don’t need addi-
tional variables. It is enough to ensure that eaghhas a
dummy value, which means thgatis not assigned, and to
order (dummy) values appropriately. Unfortunately, Puget’s
decomposition into binary constraints hinders propagation.

Theorem 5 Enforcing GAC
VALSYMBREAK(Y, [ X1, .., X,]) is strictly
than enforcing AC on Puget's decomposition.

on
stronger

Proof: It is not hard to show it as least as strong. To show
it is strictly stronger, suppose all values are interchange-
able with each other. Considef; = 1, X» € {1,2},
X3 € {1,3}, Xy € {3,4}, X5 =2, Xg =3, X7 =4,
Z1=1,7Zy € {2,5}, Z3 € {3,4,6},andZ, € {4,7}. Then
all Puget’'s symmetry breaking constraints are AC. How-
ever, enforcing GAC on M. SYMBREAK(X, [X1, .., X5])
will prune 1 fromXs. ¢

If all values are interchangeable with each other, we only
need to enforce a slightly stronger level of local consistency
to prune all symmetric values. More precisely, enforcing
SAC on Puget’s binary decomposition will prune all sym-
metric values. The argument is as follows. Enforcing AC
on Puget’s encoding ensures that there is at least one sup-
port for VAL SYMBREAK in the domain of every variable.
Hence enforcing SAC on Puget's decomposition ensures
that VAL SYMBREAK is GAC. More generally, if values par-
tition into j interchangeable classes, we may need to make

breaking constraints to linear comes at a cost. We may not the problemk-consistent for alk < j + 1 to prune all sym-

prune all symmetric values.

Theorem 4 If ¥ is a set of symmetries induced by in-
terchangeable values, anil, is the set of generators
interchanging adjacent values then enforcing GAC on
VALSYMBREAK(X, [X}, .., X,,]) is strictly stronger than
enforcing GAC on Xy, .., X;| <iex [0(X1),..,0(X,)] for
eacho € 3.

Proof: Suppose all values are interchangeable with each
other. ConsidetX; = 1, X, € {1,2}, X5 € {1,3},

X, € {1,4} and X5 = 5. Then enforcing GAC on
VALSYMBREAK(X, [ X7, .., X5]) prunes 1 fromX, to X,.
However, consider the generatoe X, which interchanges

i with ¢ + 1 wherel < ¢ < 5. Then[Xy,.., X5] <iex
[0(X1),..,0(X5)] is GAC without any domain pruning:

Puget’'s decomposition

With value symmetries, a second method that eliminates all
symmetric solutions is a decomposition due to (Puget 2005).

metric values. Ag may not be boundedgcal consistency
is not enough to prune all symmetric values.

Finally, we compare this method with the previous
method based on breaking the symmetries corresponding to
each generator. We can show that we may prune more sym-
metric values using Puget’'s decomposition.

Theorem 6 If X is a set of symmetries induced by inter-
changeable values, ang, is the set of generators inter-
changing adjacent values then enforcing AC on Puget’s
decomposition is strictly stronger than enforcing GAC on
(X1, . Xn] <iex [0(X1),..,0(X,,)] for eacho € 3.

Proof: Consider the example used in the proof of Theorem
4. Enforcing AC on Puget’'s decomposition prunes 1 from
X5 to X,. However, the lexicographical ordering constraint
for each generator is GAC without any domain prunisg.

Value precedence
A third method to eliminate all symmetric solutions stat-

Consider a surjection problem (where each value is used atically is based on globaprecedenceconstraints (Law &
least once) with interchangeable values. We can channel Lee 2004). Supposg& is the set of symmetries induced



by all values being interchangeable. The global constraint we post \ALSYMBREAK(X, [Sy, .., S»]) which ensures
PRECEDENCHE[X1, .., X,,]) holds iff min{i | X; = j Vi = [S1, - Sn] <iex [0(S1),..,0(Sy)] for all o € ¥ whereS;
n+1} <min{i | X; = kVi=n+2}foralj < k. to .S, is a fixed ordering on the set variables afg, is the
That is, the first time we usgis before the first time we use  lexicographical extension of the multiset ordering on sets.
k for all j < k. Posting such a precedence constraint elim- The multiset ordering on sets is identical to the lexicograph-
inates all symmetric solutions due to interchangeable val- ical ordering on the characteristic function of the sets.
ues. In (Walsh 2006b), a GAC propagator for such a prece-  For set variables taking interchangeable values, pruning
dence constraint is proposed which tak&sim) time. Itis all symmetric values is polynomial. In (Walsh 2006b), it is
not hard to show thatRECEDENCHE [ X1, .., X,,]) is equiva- shown that all symmetric solutions introduced by set vari-
lent to VARSYMBREAK(X, [ X1, .., X,,]). Hence, enforcing ables taking interchangeable values can be eliminated by
GAC on such a precedence constraint prunes all symmetric lexicographically ordering the columns of the 2-d matrix
values in polynomial time. constructed by mapping the sequence of set variables onto
Precedence constraints can also be defined when valuestheir characteristic functions. If values partition into inter-
partition into interchangeable classes. We just insist that changeable classes, we need merely to order lexicographi-
the values within each class first occur in a fixed order. In cally those pairs of columns which are interchangeable. We
(Walsh 2006b), a propagator for such a precedence con- can achieve BC on this representation (and thus prune all
straint is proposed which takéy(n [ ], m;) time wherem; symmetric values) in polynomial time. On the other hand,
is the size of théth class of interchangeable values. Whilst  with arbitrary value symmetries, pruning all symmetric val-
this prunes all symmetric values, it is only polynomial if we  ues is NP-hard.
can bound the number of classes of interchangeable values.
This complexity is now not surprising. We have shown that
pruning all symmetric values is NP-hard when the number

Theorem 7 For set variables taking symmetric values, en-
forcing BC onVAL SYMBREAK(X, [S1, .., Sy]) is NP-hard.

of classes of interchangeable values is unbounded. Proof: Consider finding an assignment to a single set vari-
able that is lexicographically smaller than or equal to any of
Breaking variable and value symmetry its symmetries. We give a reduction from 3-SAT. Given a

3-SAT problem inN variables;; to x y and M clauses, we
construct a set variablg with lower bound{4i — 1|1 <i <
N} U{4N + 2} and upper boundl4i, 4 — 1,4 —2 |1 <

i < N}U{4N + 1,4N + 2,4N + 3,4N + 4,4N + 5}.
The interpretation ofti € S for1 < i < N is thatz; is
true, and ofdi — 2 € Sfor1l < i < N is thatz; is false.
4i — 1for1 < i < N are “dummy” values used to ensure
that we don’t have bothi € S and4i — 2 € S (in other

to X, is a fixed ordering on the variables. Pruniaig val- words,_x_i IS nczt a55|grled to both true and falsé}y + 1 is
ues from such a symmetry breaking constraint is NP-hard 2" 2dditional “dummy” value used to ensure that at least one
(Crawfordet al. 1996; Bessieret al. 2004). IlteFraI N e\ge;y cIaTse ;\S; true. h |
Consider, for example, a model of the rehearsal problem h.orr] eac [ogm. tt% 43 W(la ans;rugttht4¢ vg ue Zylmmetry
(prob039 in CSPLib) where we have a variable for each time W" |cthperrn|u est Wi Zh_ : Zd_S'Ivz\;:z' i_ l'bag feavses
slot whose value is the piece to rehearse. This model has aﬁ) t?e |2:<i\gu$: izgaLI”;?n:Irllgreth.an Ior(: uae ( )4. oer g
variable symmetry as we can invert any rehearsal schedul- . lies 4i 92 P S anddi —2 € S i ? Z@)’SZTh t
ing without violating any constraints. This is equivalent to 'N'P!1€S42 — ¢ 5, anddi — 2 € S implies4; ¢ 5. Tha
swappingX; with X, ;.. We eliminate this symmetry by is, we cannot. have bothi'set to true and to false. It may
posting the constrainfXy, .., X,,] <jex [Xn, - X1]. be that br:)thﬁlz & S ang4l —2 ﬁ S'I In othe;fvvords, Wﬁ
Such variable symmetry breaking constraints are consis- {2 0 BV SR T O R SRS B
tent with the value symmetry breaking constraints discussed value forz. 9
here. We must, however, ensure that all are based on the T i hat th h , &b
same fixed variable ordering. Whilst we can consistently .of.ens?]re tl at the truth assignment Irepresente y
post both variable and value symmetry breaking constraints, satisfies the clauses, we construct a value symmetry cor-.
this may not eliminate all symmetric solutions resulting responding to each clause. Suppose we have the clause:

from the interaction of variable and value symmetry (see, iV, \/@k..Then we cqnstrupt the value symmetry which
for example, Theorem 3 in (Walsh 2006a)) permutesl; with 4N +3, 45 —2 with 4N +4, 4k with 4N +5,
' ' and4 N +1 with 4N + 2, leaving all other values unchanged.

SincedN + 2 € Ib(S5), S <jex o(S) ando swapsiN + 1

Variable symmetries can also be broken statically by posting
constraints. Following (Crawforet al. 1996), we can elim-
inate all symmetric solutions with a global constraint which
ensures that the solution is ordered lexicographically be-
fore any of the symmetries of the solution. More precisely,
give a set of variable symmetries, we post the global
constraint MVRSYMBREAK(X, [ X1, .., X;,]) which ensures
[Xl, ..,Xn] <lex [Xo(1)7 ..,Xg(n)] for all o € X whereX;

Set variables with 4N + 2 it follows that at least one ofi, 4j — 2 or 4k
Value symmetry can be eliminated from problems con- mustalso be ir. That s, at least one af;, ~x; or x;, must
taining set variables in similar ways. For exam- be setto true.

ple, we can post a (global) constraint which ensures  Thus, there is an assignment$owhich is lexicographi-
that the solution is ordered lexicographically before any cally smaller than or equal to any of its symmetries iff the
of the symmetries of the solution. More precisely, original 3SAT problem has a satisfying assignment. Hence,



finding a support (and thus enforcing BC on a complete sym-
metry breaking constraint) is NP-harel.

As the proof only used a single set variable, it also follows
that dynamic methods which do not assigh symmetric values
to set variables are NP-hard to compute in general.

Experimental results

We now compare these value symmetry breaking methods
experimentally. Puget has shown that his static symmetry
breaking method significantly outperforms the dynamic GE-
tree method. We therefore look at just the three static meth-
ods.

Generator symmetries: we post lexicographical ordering
constraints for the generators of the symmetry group that
interchange adjacent values and enforce GAC using a lin-
ear time propagator (Walsh 2006a).

Puget's decomposition: we enforce AC using the solver’s
built-in propagators.

Value precedence:we post a single global value prece-
dence constraint and enforce GAC using a linear time
propagator (Walsh 2006b).

We coded all problems in SICSTUS 3.12.7, and ran them
on a PowerPC 1GHz G4 processor with 1.25 GB RAM.

n by n queens

As in the first experiment in (Puget 2005), we used a simple
model of then by n queens problem. The aim is to color
each square in a by n chessboard with one of colors so
that no line (row, column or diagonal) has the same colour
twice. This is equivalent to finding non-intersecting solu-
tions to then-queens problems. This is a difficult combina-
torial problem. The existence of a solution for= 12 was
open until recently. We model this with? finite domain
variables, each with possible values, and an all different
constraint along each line. The model has 8 variable sym-
metries corresponding to the rotations and reflections of the
chessboard. We break these by posting the ordering con-
straints: X7 < X, Xi < X2 .41, X3 < X,z and
X5 < X,41. The model also has! value symmetries as
all colors are interchangeable. We break these with one of
the three methods mentioned above.

Results are given in Table 1. Far= 5 and 7, there is an
unique solution up to symmetry. Far= 6 and 8, there are
no solutions. Despite the theoretical differences between the
three static symmetric breaking methods identified in Theo-

rems 4 and 5, we see no difference in the size of the search

trees explored in practice on these problems. The special-
ized propagator for value precedence is, however, two or so
times faster than Puget’s method which itself is two or so
time faster than the generator symmetry method.

Schur numbers

We also ran experiments on the Schur numbers problem
(prob015 in CSPLib). This problem was used in previous

experimental studies of value precedence (Law & Lee 2004;
Walsh 2006b). The Schur numhg(k) is the largest integer

n for which the interva(l, n] can be partitioned intb sum-
free sets.S is sum-free iffVa,b,c € S . a # b+ ¢. Schur
numbers are related to Ramsey numb&§;) through the
identity: S(n) < R(n) — 2. Schur numbers were proposed
by the famous German mathematician Isaai Schur in 1918.
S(4) was open until 1961 when it was first calculated by
computer.S(3) is 13,5(4) is 44, and160 < S(5) < 315.
We consider the corresponding decision probleiy, k)
which asks if the intervall,n| can be partitioned intd
sum-free sets. A simple model of this usefinite domain
variables withk interchangeable values.

Results are given in Table 2. We now see slight differ-
ence in the size of the search trees explored using the differ-
ent static symmetry breaking methods. We conjecture that
these differences are probably a consequence of the fail first
heuristic deciding to branch on the dual variables.

To conclude, over the two problem sets, the specialized
propagator for value precedence is either as fast or faster
than Puget's method, and both are typically two or more
times faster than the generator symmetry method. It is an
interesting open question how the methods will compare on
problems with more classes of interchangeable values. We
conjecture that we may then see more significant differences
in the size of the search trees.

Related work

Puget proved that symmetric solutions can be eliminated
by the addition of suitable constraints (Puget 1993). Craw-

ford et al. presented the first general method for construct-

ing variable symmetry breaking constraints (Crawfetd

al. 1996). Petrie and Smith adapted this method to value
symmetries by posting a suitable lexicographical ordering

constraint for each value symmetry (Petrie & Smith 2003).

Puget and Walsh independently proposed propagators for
such value symmetry breaking constraints (Puget 2006;
Walsh 2006a). To deal with the exponential number of such

symmetry breaking constraints, Puget proposed a global
propagator which does forward checking (Puget 2006).

To eliminate symmetric solutions due to interchangeable
values, Law and Lee formally defined value precedence and
proposed a specialized propagator for a pair of interchange-
able values (Law & Lee 2004). Walsh extended this to a
propagator for any number of interchangeable values (Walsh
2006b). Finally, an alternative way to break value symme-
try statically is to convert it into a variable symmetry by
channelling into a dual viewpoint and using lexicographical
ordering constraints on this dual view (Fleregral. 2002;

Law & Lee 2006).

A number of dynamic methods have been proposed to
deal with value symmetry. Van Hentenryek al. gave
a labelling schema for eliminating all symmetric solutions
due to interchangeable values (Hentenrgtlkl. 2003). In-
spired by this method, Roney-Douggtlal. gave a polyno-
mial method to construct a GE-tree, a search tree without
value symmetry (Roney-Dougat al. 2004). Finally, Sell-
mann and van Hentenryck gaveCind®® 4 n2d?) domi-
nance detection algorithm for eliminating all symmetric so-
lutions when both variables and values are interchangeable
(Sellmann & Hentenryck 2005).



problem value symmetry breaking

n none generator symmetries Puget’s method value precedence
c b p t c b p t c b p t c b p t

4 22 7 219 0.01 444 1 628 0.02 399 1 591 0.02 | 156 1 317 0.00
5 28 59 2781 0.02 928 2 1651 0.02 782 2 1251 0.03 | 253 2 601 0.02
6 34 3949 200395 0.65| 1654 30 9624 0.07 | 1335 30 7245 0.07 | 358 30 3611 0.02
7 40 882813 53528368 170.7% 2686 838 278678 1.20| 2104 838 193901 0.67 | 481 838 103695 0.28
8 4078 148564 54091553 238.52| 3125 148564 36865615 119.83| 622 148564 19899573 50.12
9

Table 1:n by n queens problemconstraints postedyranches, domaiprunings andime to find all solutions in secs using a
fail first heuristic. Blank entries are problems not solved in 1 hour. Results are similar to find first solution.

problem value symmetry breaking

S(n, k) none generator symmetries Puget's method value precedence

c b p t c b p t [ b p t c b p t
S(13,3) 126 294 9253 0.04| 360 49 3435 0.04 | 362 49 2739 0.03 243 49 2449 0.03
S(13,4) 126 1331688 14584107 36.00 477 51099 1549607 3.52| 441 51099 955356 1.96 | 243 51099 805273 1.94
S(13,5) 594 691700 22014534 48.97| 520 691700 12518244 26.18| 243 691700 10901646 25.73
S(13,6) 599 2473322 46404167 98.51| 243 2474354 38681737 47.44
S(14,3) 147 456 15190 0.06] 399 76 5042 0.04 | 401 76 4108 0.05 | 273 76 3851 0.03
S(14,4) 147 2748840 35774652 84.42 525 103610 3321327 7.00 | 486 103610 2063297 4.24| 273 103610 1859627 4.20|
S(14,5) 651 2183885 74079956 160.32| 571 2183885 40990610 88.06| 273 2183885 37962162 86.85
S(14,6) 656 10437102 200486641 432.79| 273 10441664 183274168 424.49
S(15,3) 168 600 21287 0.08] 438 100 6652 0.05 | 440 100 5483 0.04 | 303 100 5305 0.05
S(15,4) 168 6976512 93094291 213.79 573 265060 8449402 17.70| 531 265060 5368238 10.89| 303 265060 4637648 10.29
S(15,5) 622 194209 159071864 238.33 | 303 194209 137221068 318.19
S(15,6)

Table 2: Schur numbers problemonstraints postedyranches, domaiprunings andime to find all solutions in secs using a
fail first heuristic. Blank entries are problems not solved in 1 hour. Results are similar to find first solution.

Conclusion
Value symmetries can be broken either statically (by adding
constraints to prune symmetric solutions) or dynamically
(by modifying the search procedure to avoid symmetric

branches). We have shown that both approaches have com-

putational limitations. With static methods, pruning all sym-
metric values is NP-hard in general. With dynamic methods,
we typically only perform forward checking and can take
exponential time on problems which static methods solve
without search. We have studied a common type of value

symmetry where values are interchangeable and static meth-

ods are polynomial. We considered three different sym-
metry breaking constraints: ordering constraints based on
generators of the symmetry group, constraints proposed in

(Puget 2005), and a specialized precedence constraint. We

have shown that despite theoretical differences in their abil-
ity to prune symmetric values, the three methods explore
very similar search spaces in practice. However, the special-

ized precedence constraint appears to offer a runtime advan-
tage. There are many open questions raised by this research.

For example, are there other types of symmetry where all
symmetric values can be pruned tractably? Are there other
types of symmetry where it is enough to use just generators?
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