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Abstract

We study the SLIDE meta-constraint. This slides
a constraint down one or more sequences of vari-
ables. We show that SLIDE can be used to encode
and propagate a wide range of global constraints.
We consider a number of extensions including slid-
ing down sequences of set variables, and combining
SLIDE with a global cardinality constraint. We also
show how to propagate SLIDE. Our experiments
demonstrate that using SLIDE to encode constraints
can be just as efficient and effective as using spe-
cialized propagators.

1 Introduction
In scheduling, rostering and related problems, we often have a
sequence of decision variables and a constraint which applies
down the sequence. For example, in the car sequencing prob-
lem (prob001 in CSPLib), we need to decide the sequence
of cars on the production line. We might have a constraint
on how often a particular option is met along each sequence
(e.g. only 1 out of 3 cars can have the sun-roof option). As
a second example, in a nurse rostering problems, we need
to decide the sequence of shifts worked by each nurse. We
might have a constraint on how many consecutive night shifts
any nurse can work. To model such problems, we consider
a meta-constraint, SLIDE which ensures that a constraint re-
peatedly holds down a sequence of variables. This is a spe-
cial case of the previously introduced CARDPATH constraint
[Beldiceanu and Carlsson, 2001]. Although SLIDE is very
simple, we demonstrate that it is surprisingly powerful. In
addition, we describe methods to propagate such constraints,
which unlike the previous methods proposed for CARDPATH,
can prune all possible values.

The rest of the paper is organised as follows. After pre-
senting the necessary formal background, we introduce the
simplest form of the SLIDE meta-constraint. In later sections,
we consider a number of generalizations and give examples
of global constraints that can be encoded using these various
forms of SLIDE. These encodings therefore provide a simple
and easy way to implement these global constraints. In most
cases, propagating our encoding is as efficient and as effective
as a specialized propagator.

2 Background
A constraint satisfaction problem consists of a set of vari-
ables, each with a finite domain of values, and a set of con-
straints specifying allowed combinations of values for some
subset of variables. We use capital letters for variables (e.g.
X , Y and S), and lower case for values (e.g. d and di). We
consider both finite domain and set variables. A set variable
can be represented by its lower bound which contains the
definite elements in the set and an upper bound which con-
tains the definite and potential elements. Constraint solvers
typically explore partial assignments enforcing a local con-
sistency property. A constraint is generalized arc consistent
(GAC) iff when a variable is assigned any of the values in its
domain, there exist compatible values in the domains of all
the other variables. For binary constraints, generalized arc
consistency is often called simply arc consistency (AC).

3 SLIDE constraint
We start with the simplest form of the SLIDE meta-constraint.
If C is a constraint of arity k then we consider the meta-
constraint:

SLIDE(C, [X1, . . . , Xn])

This holds iff C(Xi, . . . , Xi+k−1) itself holds for 1 ≤ i ≤
n − k + 1. That is, we slide the constraint C down the se-
quence of variables, X1 to Xn. This simple form of SLIDE is
a special case of the CARDPATH(N, [X1, . . . , Xn], C) meta-
constraint, which holds iff C holds N times on the sequence
[X1, . . . , Xn] [Beldiceanu and Carlsson, 2001]. As we shall
see, its simple structure will permit us to enforce GAC. Also,
we will consider more complex forms of SLIDE that, for in-
stance, slide over multiple sequences or over set variables.

We illustrate this simple form of SLIDE with an exam-
ple of a global constraint used in car sequencing prob-
lems. In Section 11, we discuss how to propagate such
encodings into SLIDE. The AMONGSEQ constraint en-
sures that values occur with some given frequency. For
instance, we might want that no more than 3 out of
every sequence of 7 shift variables be a “night shift”.
More precisely, AMONGSEQ(l, u, k, [X1, . . . , Xn], v) holds
iff between l and u values from the ground set v occur
in every k sequence of variables [Beldiceanu and Con-
tejean, 1994]. We can decompose this using a SLIDE;
AMONGSEQ(l, u, k, [X1, . . . , Xn], v) can be encoded as



SLIDE(Dk,v
l,u , [X1, . . . , Xn]) where D

k,v
l,u is an instance of the

AMONG constraint [Beldiceanu and Contejean, 1994]. That
is, D

k,v
l,u (Xi, . . . , Xi+k−1) holds iff l ≤

∑i+k−1
j=i (Xj ∈ v) ≤

u.
For example, suppose 2 of every 3 variables along a se-

quence X1 . . . X5 should take the value a, where X1 = a
and X2, . . . , X5 ∈ {a, b}. Then we can encode this as
SLIDE(E, [X1, X2, X3, X4, X5]) where E(Xi, Xi+1, Xi+2)
is an instance of the AMONG constraint that ensures two of
its three variables take a. This SLIDE constraint ensures
that the following three constraints hold: E(X1, X2, X3),
E(X2, X3, X4) and E(X3, X4, X5). Note that each ternary
constraint is GAC. However, enforcing GAC on the SLIDE
constraint will set X4 = a as there are only two satisfying
assignments for X1 to X5 and neither of them have X4 = b.

4 SLIDE over multiple sequences
We often wish to slide a constraint down two or more se-
quences of variables at once. We therefore consider a more
complex form of SLIDE. If F is a constraint of arity 2k then:

SLIDE(F, [X1, . . . , Xn], [Y1, . . . , Yn])

holds iff F (Xi, . . . , Xi+k−1, Yi, . . . , Yi+k−1) itself holds for
1 ≤ i ≤ n − k + 1. We can slide down three or more se-
quences of variables in a similar way. Note we could view
these as syntactic sugar for a SLIDE down a single sequence
of variables where the different sequences are interleaved
(e.g., [X1, Y1, X2 . . . , Yn−1, Xn, Yn]) , and the constraint is
loosened so it trivially holds if it is applied with the wrong
offset. This loosening is direct if all Xi and Yi have distinct
domains (the constraint is satisfied for all tuples starting by a
value from Yi). Otherwise an extra sequence of marking vari-
ables Si with a dummy value can be added, and the constraint
sliding on [S1, X1, Y1, S2, . . . , Yn] enforces E on the Xi and
the Yi only when its first argument takes the dummy value.

As an example of sliding down multiple sequences of vari-
ables, consider the constraint REGULAR(A, [X1, . . . , Xn]).
This ensures that the values taken by a sequence of variables
form a string accepted by a deterministic finite automaton
[Pesant, 2004]. This global constraint is useful in scheduling,
rostering and sequencing problems to ensure certain patterns
do (or do not) occur over time. It can be used to encode a
wide range of other global constraints including: AMONG
[Beldiceanu and Contejean, 1994], CONTIGUITY [Maher,
2002], LEX and PRECEDENCE [Law and Lee, 2004].

To encode the REGULAR constraint with SLIDE, we
introduce finite domain variables, Qi to record the
state of the automaton. We then post the constraint
SLIDE(F, [X1, . . . , Xn+1], [Q1, . . . , Qn+1]) where Xn+1 is
a “dummy” variable, Q1 is assigned to the starting state of the
automaton, Qn+1 is restricted to any of the accepting states,
and F (Xi, Xi+1, Qi, Qi+1) holds iff Qi+1 = δ(Xi, Qi)
where δ is the transition function of the finite automaton.
Note that F is independent of its second argument so is ef-
fectively ternary. Since the automaton is deterministic, F is
also functional on Xi and Qi. Enforcing GAC on this en-
coding takes O(ndQ) time where d is the number of values
for the Xi and Q is the number of states of the automaton.

This is identical to the specialized propagator for REGULAR
proposed in [Pesant, 2004].

One advantage of our encoding of the REGULAR constraint
it that it gives us explicit access to the states of the automa-
ton. Consider, for example, a rostering problem where work-
ers are allowed to work for up to three consecutive shifts and
then must take a break. This can be specified with a sim-
ple REGULAR language constraint. Suppose now we want to
minimize the number of times a worker has to work for three
consecutive shifts. To model this, we can post an AMONG
constraint on the state variables to count the number of times
we visit the state representing three consecutive shifts, and
minimize the value taken by this variable.

5 SLIDE with counters
We often wish to slide a constraint down one or more
sequences of variables computing some count. We can
use SLIDE to encode such constraints by incrementally
computing the count in an additional sequence of vari-
ables. As an example, consider the meta-constraint
CARDPATH(C, [X1, . . . , Xn], N) where C is any constraint
of arity k [Beldiceanu and Carlsson, 2001]. This holds iff
C(Xi, . . . , Xi+k−1) holds N times down the sequence of
variables. As we observed earlier, SLIDE is a special case
of CARDPATH where N = n − k + 1. However, as we show
here, CARDPATH can itself be encoded into a SLIDE con-
straint using a sequence of counters.

The CARDPATH constraint is useful in rostering problems.
For example, we can count the number of changes in the
type of shift given to a single worker using CARDPATH(6=
, [X1, . . . , Xn], N). CARDPATH can also be used to model a
range of Boolean connectives since N ≥ 1 gives disjunction,
N = 1 gives exclusive or, and N = 0 gives negation. For
notational simplicity, we will consider the case when k = 2
and C is a binary constraint. The generalization to other k
is straightforward. We introduce a sequence of integer vari-
ables Mi in which to accumulate the count. More precisely
we decompose a CARDPATH constraint on a binary con-
straint C into SLIDE(G, [X1, . . . , Xn+1], [M1, . . . , Mn+1])
where Xn+1 is a “dummy” variable, M1 = 0, Mn+1 = N ,
and G(Xi, Xi+1, Mi, Mi+1) holds iff C(Xi, Xi+1) implies
Mi+1 = Mi + 1 else Mi+1 = Mi.

6 SLIDE over sets
In some cases, we want to slide a constraint down one or more
sequences of set variables. We therefore consider SLIDE
meta-constraints which involve set variables. We give an ex-
ample useful for breaking symmetry in problems like the so-
cial golfer’s problem (prob010 in CSPLib).

Law and Lee have introduced the idea of value precedence
for breaking the symmetry of indistinguishable values [Law
and Lee, 2004]. They proposed a global constraint to deal
with set variables containing indistinguishable values. More
precisely, PRECEDENCE([v1, . . . , vm], [S1, . . . , Sn]) holds
iff min{i | (vj ∈ Si∧vk 6∈ Si)∨ i = n+1} ≤ min{i | (vk ∈
Si ∧ vj 6∈ Si) ∨ i = n + 2} for all 1 ≤ j < k ≤ m, where
[v1, . . . , vm] are the indistinguishable values. That is, the first
time we distinguish vj and vk (because both don’t occur in



a given set variable), we have vj occurring and not vk. For
example, the following sequence of sets satisfies value prece-
dence: {1, 2, 3}, {4, 5, 6}, {1, 4, 5}. The first two sets distin-
guish apart 1, 2, and 3 from 4, 5 and 6, whilst the third set dis-
tinguishes apart 1 from 2 and 3, and 4 and 5 from 6. However,
this next sequence of sets does not satisfy value precedence
as we distinguish apart 3 before 2: {1, 2, 3}, {1, 3, 4}.

We can encode such a symmetry breaking constraint us-
ing a SLIDE. For simplicity, we consider just two indistin-
guishable values, vj and vk. However, we can deal with mul-
tiple values using SLIDE but it is notationally more messy.
We introduce 0/1 variables, Bi to record whether the two
values have been distinguished apart so far. We then post
SLIDE(H, [S1, . . . , Sn+1], [B1, . . . , Bn+1]) where Sn+1 is a
“dummy” set variable, B1 = 0 and H(Si, Si+1, Bi, Bi+1)
holds iff Bi = Bi+1 = 1, or Bi = Bi+1 = 0 and vj ∈ Si

and vk ∈ Si, or Bi = Bi+1 = 0 and vj 6∈ Si and vk 6∈ Si, or
Bi = 0 and Bi+1 = 1 and vj ∈ Si and vk 6∈ Si. Note that H
is again independent of its second argument.

7 Other examples of SLIDE

There are many other examples of global constraints which
can be encoded using SLIDE. For example, we can encode
the lexicographical ordering constraint LEX using SLIDE.
LEX holds iff a vector of variables [X1..Xn] is lexico-
graphically smaller than a vector [Y1..Yn]. We introduce
a sequence of Boolean variables Bi to indicate if the vec-
tors have been ordered yet at position i − 1. Xn+1 and
Yn+1 are dummy variables and B1 = 0. We slide the
constraint U(Xi, Xi+1, Yi, Yi+1, Bi, Bi+1) which holds iff
(Bi = Bi+1 = 0 ∧ Xi = Yi) or (Bi = 0 ∧ Bi+1 =
1 ∧ Xi < Yi) or (Bi = Bi+1 = 1). This gives us a
linear time propagator as efficient and incremental as the
specialized algorithm in [Frisch et al., 2002]. As a sec-
ond example, we can encode many types of channeling con-
straints using SLIDE like the DOMAIN constraint [Refalo,
2000], the LINKSET2BOOLEANS constraint [Beldiceanu et
al., 2005] and the ELEMENT constraint [Hentenryck and Car-
illon, 1988]. As a final example, we can encode “optimiza-
tion” constraints like the soft form of the REGULAR con-
straint which measures the Hamming or edit distance to a
regular string [van Hoeve et al., 2006].

There are, however, global constraints that can be encoded
using SLIDE which do not give us as efficient and effec-
tive propagators as specialized algorithms. As an example,
the ALLDIFFERENT constraint can easily be specified using
SLIDE (we just need a SLIDE which accumulates in a se-
quence of set variables the values used so far and ensure the
final set variable has cardinality n). However, this is not as ef-
fective as a specialized flow-based propagator [Régin, 1994].
There are also global constraints like the inter-distance con-
straint [Régin, 1997] which SLIDE provides neither a good
propagator nor it seems even a simple encoding.

8 SLIDE with GCC

We often have a constraint on the values which should occur
across the whole sequence. For example, in car sequencing
problems, to ensure we build the correct orders, we have a

constraint on the total number of occurrences of each value
along the sequence. The global sequencing constraint (GSC)
[Régin and Puget, 1997] augments an AMONGSEQ con-
straint with a global cardinality constraint (GCC) on the total
number of occurrence of different values. More precisely,
GSC([X1, . . . , Xn], a, b, q, v, [l1, . . . , lm], [u1, . . . , um]) is
satisfied iff for each i ∈ [1..m], li ≤ |{j |Xj = i}| ≤ ui (that
is, the value i occurs between li and ui times in total), and for
each k ∈ [1..n], a ≤ |{j | Xj ∈ v & k ≤ j ≤ k+q−1}| ≤ b
(that is, values in v occur between a and b times in each
sequence of q consecutive variables). In [Régin and Puget,
1997], an algorithm that partially propagates GSC is pro-
posed. Another way to propagate GSC is to decompose it
into a separate SLIDE and GCC. Enforcing GAC on such a
decomposition hinders propagation and is incomparable to
the pruning of the algorithm in [Régin and Puget, 1997].

We prove here that adding cardinality constraints to a
SLIDE makes propagation intractable. In fact, we shall prove
that enforcing GAC on the GSC constraint is intractable. As
GSC can easily be encoded into a SLIDE and a GCC, the re-
sult follows immediately. This also settles the open question
of the complexity of propagating GSC.

Theorem 1 Enforcing GAC on GSC is NP-hard.

Proof: We reduce the 1in3-SAT problem on positive clauses
to finding support for a particular GSC. Consider a 1in3-
SAT problem in N variables and M positive clauses in which
the Boolean variables are numbered from 1 to N . We let
n = 2NM . The basic idea of the reduction is that each con-
secutive block of 2N CSP variables represents a given truth
assignment. The even numbered CSP variables will represent
the truth assignment. The odd numbered CSP variables will
essentially be “junk” and serve only to ensure we have ex-
actly N non-zero values in each 2N block. That is, X2jN+2i

will be non-zero iff the ith Boolean variable is true in the
given truth assignment. To achieve this, we set a = b = N ,
q = 2N and v = {1, . . . , M + 1}. Each 2N block thus
contains the same pattern of N zeroes and N non-zeroes.

The jth block of 2N CSP variables will ensure that the
jth clause is satisfied by the truth assignment. That is, just
one of its positive literals is true. Suppose the jth clause is
r ∨ s ∨ t. Then we let X2jN+2r , X2jN+2s and X2jN+2t

have the domain {0, j + 1}. All other CSP variables in the
block have 0/1 domains. We set lj+1 = uj+1 = 1 to ensure
only one of X2jN+2r , X2jN+2s and X2jN+2t is set to j + 1.
Finally, we let l0 = u0 = NM , and l1 = u1 = NM −
M . An assignment for Xi then corresponds to a satisfying
assignment for the original 1in3-SAT problem. Deciding if
the GSC has support is thus NP-hard. 2

The proof can be generalized to show that enforcing
bounds consistency on such a constraint is NP-hard, as well
as to the case where ui = 1 (in other words, when we have
an AMONGSEQ with an ALLDIFFERENT constraint).

9 Circular SLIDE

Another generalization of SLIDE is when we wish to ensure
that a constraint applies at any point round a cycle of vari-
ables. Such a meta-constraint is useful in scheduling and ros-
tering problems where we need to ensure the schedule can be



repeated, say, every two weeks. If C is a constraint of arity k
then we consider the meta-constraint:

SLIDEO(C, [X1, . . . , Xn])

This holds iff C(Xi, . . . , X1+(i+k−1modn)) itself holds for
1 ≤ i ≤ n.

As an example, we encode the circular form of the
STRETCH constraint [Hellsten et al., 2004]. First, let us con-
sider the non-cyclic STRETCH constraint. In a STRETCH con-
straint, we are given a sequence of shift variables X1 to Xn,
each having domain a set of shift types τ , a set π ⊂ τ × τ of
ordered pairs (called patterns), and the function shortest(t)
(resp. longest(t)) denoting the minimum (resp. maximum)
length of any stretch of type t. STRETCH([X1, . . . , Xn])
holds iff (1) each stretch (i.e., a sequence of variables hav-
ing the same type) of type t is feasible, i.e., each stretch
has length between shortest(t) and longest(t); and (2)
each pair of consecutive types of stretches is in π. We can
encode STRETCH as SLIDE(C, [X1, . . . , Xn], [Q1, . . . , Qn])
where Q1 = 1 and C[Xi, Xi+1, Qi, Qi+1) holds iff
(1) Xi = Xi+1, Qi+1 = 1 + Qi, and Qi+1 ≤
longest(Xi); or (2) Xi 6= Xi+1, 〈Xi, Xi+1〉 ∈ π, Qi ≥
shortest(Xi) and Qi+1 = 1. Circular STRETCH is simply
SLIDEO(C, [X1, . . . , Xn], [Q1, . . . , Qn]) in which we do not
force Q1 = 1.

10 A SLIDE algebra
When we negate a SLIDE, we get a disjunctive sequence
of constraints. We therefore propose the SLIDEOR meta-
constraint. More precisely, if C is a constraint of arity k then:

SLIDEOR(C, [X1, . . . , Xn])

holds iff one or more of C(Xi, . . . , Xi+k−1) holds. We
can also slide down multiple sequences simultaneously
as with SLIDE. SLIDEOR can itself be encoded using
SLIDE since SLIDEOR(C, [X1, . . . , Xn]) is equivalent to
CARDPATH(C, [X1, . . . , Xn], N) where 1 ≤ N ≤ n, and
CARDPATH can itself be encoded into SLIDE. One applica-
tion of the SLIDEOR meta-constraint is to encode the global
not all equals constraint, NOTALLEQUAL([X1, . . . , Xn]).
This holds iff Xi 6= Xj for some 1 < j ≤ n.

In fact, we can build up more complex sliding constraints
using Boolean operators. We can simplify such complex con-
straint expressions by exploiting associativity, commutativity
and De Morgan’s identities. For example:

¬SLIDE(C1, [X1, ., Xn]) ↔ SLIDEOR(¬C1, [X1, ., Xn])

¬SLIDEOR(C1, [X1, ., Xn]) ↔ SLIDE(¬C1, [X1, ., Xn])

SLIDE(C1, [X1, ., Xn])∧

∧SLIDE(C2, [X1, ., Xn]) ↔ SLIDE(C1 ∧ C2, [X1, ., Xn])

11 Propagating SLIDE

A meta-constraint like SLIDE is only really useful if we can
propagate it easily. The simplest possible way to propagate
SLIDE(C, [X1, . . . , Xn]) is to decompose it into the sequence
of constraints, C(Xi, . . . , Xi+k−1) for 1 ≤ i ≤ n−k+1 and
let the constraint solver propagate the decomposition. Sur-
prisingly, this is enough to achieve GAC in many cases. For

example, we can achieve GAC this way using our SLIDE en-
coding of the REGULAR constraint. In such a case, propagat-
ing the decomposition is also an efficient means to achieve
GAC. Only those constraints in the decomposition which
have variables whose domains change need wake up. It thus
provides an efficient incremental propagator for SLIDE.

Theorem 2 Enforcing GAC on the decomposition of SLIDE
achieves GAC on SLIDE if the slide constraints overlap on
just one variable.

Proof: The constraint graph of the decomposition is Berge-
acyclic [Dechter and Pearl, 1989]. 2

Similarly, enforcing GAC on the decomposition achieves
GAC on SLIDE if the constraints being slide are monotone.
A constraint C is monotone iff there exists a total ordering
≺ of the domain values such that for any two values v, w, if
v ≺ w then v is substitutable to w in any support for C. For
instance, the constraints AMONG and SUM are monotone if
either no upper bound, or no lower bound is given.

Theorem 3 Enforcing GAC on the decomposition of SLIDE
achieves GAC on SLIDE if the slide constraints are monotone.

Proof: For an arbitrary value v ∈ D(X), we show that if ev-
ery constraint is GAC, then we can build a support for (X, v)
on SLIDE. For any variable other than X , we choose the first
value in the total order, that is, the value which can be sub-
stituted to any other value in the same domain. The tuple
built this way satisfies all the constraints being slide since we
know that there exists a support for each (they are GAC), and
the values we chose can be substituted to this support. 2

On the other hand, in the general case, if constraints over-
lap on more than one variable (e.g. in the SLIDE encoding
of AMONGSEQ). we need to do more work to achieve GAC.
For reasons of space, we only have room here to outline how
to propagate SLIDE in these circumstances. We consider two
cases. If the arity of the constraint being slide is fixed, then
we show that propagation is polynomial. On the other hand,
if the arity of the constraint is not fixed, then propagation is
intractable even if the constraint being slide is itself polyno-
mial to propagate. In other words, enforcing GAC on SLIDE
is fixed parameter tractable.

When the arity of the constraint being slide is fixed, we
can use dynamic programming to compute support along the
SLIDE. This is similar to the propagators for the REGULAR
and STRETCH constraints [Pesant, 2004; Hellsten et al.,
2004]. Alternatively, we can use a dual encoding [Dechter
and Pearl, 1989]. We sketch how such a dual encoding works,
but lack space to describe improvements that can be made to
improve the overall efficiency. We introduce dual variables to
contain the supports for each constraint in the decomposition
of the SLIDE. Between consecutive dual variables, we have
binary compatability constraints to ensure the supports agree
on overlapping dual variables. As the constraint graph of the
dual variables is Berge-acyclic, enforcing AC on these dual
variables, achieves GAC on the original SLIDE constraint.
Using such a dual encoding, SLIDE can be easily added to
any constraint solver. In general, enforcing GAC on a SLIDE
constraint takes in O(ndk+1) time and O(ndk) space where
k is the overlap between successive constraints in the decom-
position of SLIDE and d is the maximum domain size.



When the arity of the constraint being slide is not fixed,
enforcing GAC is NP-hard.

Theorem 4 Enforcing GAC on SLIDE(C, [X1, . . . , Xn]) is
NP-hard when the arity of C is not fixed even if enforcing
GAC on C is itself polynomial.

Proof: A simple reduction from 3-SAT in N variables and
M clauses. We let n = (N + 1)M . Each block of N +
1 variables represents a clause and a truth assignment. We
will have Xj(N+1)+i+1 = 1 iff the Boolean variable xi is
true (1 ≤ i ≤ N ). If the k + 1th clause is xa ∨ ¬xb ∨ xc

then Xk(N+1) ∈ {xa,¬xb, xc}. Finally C(Xi, . . . , Xi+N+1)
holds iff Xi 6∈ {0, 1} and Xi+N+1 = Xi, or Xi = xd and
Xi+d = 1, or Xi = ¬xd and Xi+d = 0. An assignment
for Xi then corresponds to a satisfying assignment for the
original 3-SAT problem. 2

12 Experiments
We wish to show that encoding problems using the SLIDE
meta constraint can be just as efficient and effective as using
specialized propagators. Experiments are done using ILOG
Solver 5.3.

12.1 Balanced Incomplete Block Design
Generation

Balanced Incomplete Block Design (BIBD) generation is a
standard combinatorial problem from design theory with ap-
plications in cryptography and experimental design. A BIBD
is specified by a binary matrix of b columns and v rows, with
exactly r ones per row, k ones per column, and a scalar prod-
uct of λ between any pair of distinct rows. Our model con-
sists of sum constraints on each row and each column as well
as the scalar product constraint between every pair of rows.
Any pair of rows and any pair of columns of a solution can
be exchanged to obtain another symmetrical solution. We
therefore impose lexicographic ordering constraints on rows
and columns and look for a solution, following the details in
[Kiziltan, 2004]. We propagate the LEX constraints either us-
ing the specialised algorithm GACLex given in [Frisch et al.,
2002] or the SLIDE encoding described in Section 7.

Table 1 shows the results on some large instances described
as v, b, r, k, λ. As both propagators maintain GAC, we report
the runtime results. We observe that the SLIDE encoding of
LEX is as efficient (and sometimes even slightly more effi-
cient than) the specialised algorithm.

12.2 Nurses Scheduling Problem
We consider a variant of the Nurse Scheduling Problem
[Burke et al., 2004] that consists of generating a schedule for
each nurse of shifts duties and days off within a short-term
planning period. There are three types of shifts (day, evening,
and night). We ensure that (1) each nurse should take a day
off or be assigned to an available shift; (2) each shift has a
minimum required number of nurses; (3) each nurse work
load should be between specific lower and upper bounds; (4)
each nurse can work at most 5 consecutive days; (5) each
nurse must have at least 12 hours of break between two shifts;
(6) each nurse should have at least two consecutive days on

GACLex algorithm Slide encoding
Instance time (s) time (s)
7,91,39,3,13 0.59 0.55
9,72,24,3,6 0.57 0.53
9,96,32,3,8 2.20 2.16
9,108,36,3,9 2.13 2.11
10,90,27,3,6 1.26 1.28
10,120,36,3,8 3.38 3.50
11,110,30,3,6 2.55 2.65
12,88,22,3,4 1.28 1.25
13,78,18,3,3 0.98 1.00
13,104,24,3,4 2.15 2.13
15,21,7,5,2 26.78 26.60
15,70,14,3,2 0.97 0.91
16,32,12,6,4 452.25 450.96
16,80,15,3,2 1.49 1.39
19,57,9,3,1 2.70 2.63
22,22,7,7,2 73.97 71.81

Table 1: BIBD generation.

Slide encoding No Slide encoding
Instance time (s) backtracks time (s) backtracks
10×14 82.32 271,348 133.44 776,019
12×14 4.52 13,484 11.57 58,709
14×14 0.37 1,356 0.29 1,877
10×16 0.83 4,116 1.35 10,017

Table 2: Nurse Schedule generation.

any shift. We wrote two models to solve this problem. In
both models, we introduce one variable for each nurse and
each day, indicating to what type of shift, if any, this nurse
is affected on this day. The constraints (1)-(3) are enforced
using a set of global cardinality constraints. Constraints (4),
(5) and (6) form sequences of respectively 6-ary, binary and
ternary constraints. Notice that (4) is monotone, hence we
simply posted these constraints in both models. However, the
conjunction of constraints (4) and (5) is slide in the first model
whilst it is decomposed in the second.

To test the two models, we generated by hand four in-
stances respecting common sense criteria, such as lower de-
mand during evening and night shifts. We observe that in the
four instances the slide model outperforms the other model in
terms either of backtracks or both cpu time and backtracks.
It manages to solve the four instances in less time (cpu time
ratio of 1.37 in average) and with fewer backtracks (back-
track ratio of 2.75 in average). This shows the effectiveness
of SLIDE both as a modelling construct and as well as a spe-
cialised propagator.

13 Related work
Beldiceanu and Carlsson introduced the CARDPATH meta-
constraint [Beldiceanu and Carlsson, 2001]. They showed
that it can be used to encode a wide range of constraints
like CHANGE, SMOOTH, AMONGSEQ and SLIDINGSUM.
They provided a propagator for CARDPATH that greedily con-



structs upper and lower bounds on the number of (un)satisfied
constraints by posting and retracting (the negation of) each of
the constraints. This propagator does not achieve GAC.

Pesant introduced the REGULAR constraint, and gave a
propagation algorithm based on dynamic programming that
enforces GAC [Pesant, 2004]. As we saw, the REGULAR
constraint can be encoded using a simple SLIDE. There are,
however, a number of important differences between the two.
First, REGULAR only slides a ternary constraint down a se-
quence of variables. SLIDE, however, can slide a constraint
of any arity. This permits us to deal with constraints like
AMONGSEQ. Second, Pesant proposed a specialized propa-
gator for REGULAR based on dynamic programming. This is
unnecessary as we can achieve GAC by simply decomposing
the SLIDE constraint into a sequence of ternary constraints.
Third, as we described earlier, our encoding introduces vari-
ables for representing the states and access to these state vari-
ables can be useful (e.g. for expressing objective functions).

Beldiceanu, Carlsson and Petit have also proposed speci-
fying global constraints by means of deterministic finite au-
tomata augmented with counters [Beldiceanu et al., 2004].
Propagators for such automata are constructed automatically
by decomposing the specification into a sequence of signature
and transition constraints. If the automaton uses counters,
this decomposition hinders propagation so pairwise consis-
tency is needed in general to guarantee GAC. We can encode
such automata using a SLIDE where we introduce an addi-
tional sequence of variables for each counter. Our methods
thus provide a GAC propagator for such automata.

Hellsten, Pesant and van Beek proposed a propagator for
the STRETCH constraint that achieves GAC based on dy-
namic programming similar to that for the REGULAR con-
straint [Hellsten et al., 2004]. We can again encode the
STRETCH constraint using a simple SLIDE.

14 Conclusions
We have studied the SLIDE meta-constraint. This slides a
constraint down one or more sequences of variables. We
have shown that SLIDE can be used to encode and propagate
a wide range of global constraints including AMONGSEQ,
CARDPATH, PRECEDENCE, and REGULAR. We have also
considered a number of extensions including sliding down se-
quences of set variables, and combining SLIDE with a global
cardinality constraint. When the constraint being slide over-
lap on just one variable, we argued that decomposition does
not hinder propagation and SLIDE can be propagated sim-
ply by posting the sequence of constraints. Our experiments
demonstrated that using SLIDE to encode constraints can
be just as efficient and effective as specialized propagators.
There are many directions for future work. One promising
direction is to use binary decision diagrams to store the sup-
ports for the constraints being slide when they have many sat-
isfying tuples. We believe this could improve the efficiency
of our propagator in many cases.
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[Régin, 1997] J-C. Régin. The global minimum distance
constraint. Technical report, ILOG Inc, 1997.

[van Hoeve et al., 2006] W-J. van Hoeve, G. Pesant, and L-
M. Rousseau. On global warming : Flow-based soft global
constaints. To appear in Journal of Heuristics.


