
General Symmetry Breaking Constraints

Toby Walsh1

National ICT Australia and School of CSE, University of New South Wales, Sydney,
Australia, tw@cse.unsw.edu.au

Abstract. We present some general constraints for breaking symmetries
in constraint satisfaction problems. These constraints can be used to
break symmetries acting on variables, values, or both. We also consider
symmetry breaking constraints to deal with conditional symmetries, and
symmetries acting on set and other types of variables.

1 Introduction

Symmetry occurs in many constraint satisfaction problems. We must deal with
symmetry or we will waste much time visiting symmetric solutions, as well as
parts of the search tree which are symmetric to already visited parts. One mech-
anism to deal with symmetry is to add constraints which eliminate symmetric
solutions [1]. Crawford et al. have presented [2] a simple method for breaking
any type of symmetry between variables. We pick an ordering on the variables,
and then post symmetry breaking constraints to ensure that the final solution
is lexicographically less than any symmetric re-ordering of the variables. Whilst
this method was defined for symmetries of Boolean variables, it lifts immediately
to symmetries of non-Boolean variables. In this paper, we show how this basic
method can be extended further to value symmetries, to symmetries involving
both variables and values, and to symmetries acting on set and other types of
variables. This provides what we believe is the first generic method for con-
structing symmetry breaking constraints that works with any type of symmetry.

2 Background

A constraint satisfaction problem consists of a set of variables, each with a
domain of values, and a set of constraints specifying allowed combinations of
values for given subsets of variables. A solution is an assignment of values to
variables satisfying the constraints. Finite domain variables take one value from
a given finite set. Set variables take sets of such values and are typically defined
by a lower bound on the definite elements and an upper bound on the definite
and potential elements. Systematic constraint solvers explore partial assignments
enforcing some level of local consistency property. We consider two of the most
common local consistencies: arc consistency and bound consistency. Given a
constraint C on finite domain variables, a support is assignment to each variable
of a value in its domain which satisfies C. A constraint C on finite domains
variables is generalized arc consistent (GAC) iff for each variable, every value in

its domain belongs to a support. Given a constraint C on set variables, a bound

support on C is an assignment of a set to each set variable between its lower
and upper bounds which satisfies C. A constraint C is bound consistent (BC)
iff for each set variable S, the values in ub(S) belong to S in at least one bound
support and the values in lb(S) belong to S in all bound supports.

3 Variable symmetry breaking

A variable symmetry σ is a bijection on variables that preserves solutions. That
is, if {Xi = vi | 1 ≤ i ≤ n} is a solution, then {Xσ(i) = vi | 1 ≤ i ≤ n} is
also. Crawford et al. [2] show how to break all variable symmetry by posting
the constraint LexLeader(σ, [X1, . . . , Xn]) for each variable symmetry σ. This
ensures:

[X1, . . . , Xn] ≤lex [Xσ(1), . . . , Xσ(n)]

Where X1 to Xn is any fixed ordering on the variables. To enforce GAC on such
a constraint, we can use the lex propagator described in [3] which copes with
repeated variables. This takes O(nm) time where m is the maximum domain
size. In general, this decomposition into a set of LexLeader constraints hinders
propagation. There may be values which can be pruned because they do not
occur in all lex leaders which we will not identify by looking at the lex leader
constraints individually.

Theorem 1 GAC(
∧

σ∈Σ LexLeader(σ, [X1, . . . , Xn])) is strictly stronger than

GAC(LexLeader(σ, [X1, . . . , Xn])) for all σ ∈ Σ.

Proof: Clearly it is at least as strong. We show strictness with just two sym-
metries and four variables. Consider X1, X2, X4 ∈ {0, 1}, X3 = 1 and two sym-
metries defined by the cycles (1 4 2 3) and (1 2 4 3). Then [X1, X2, X3, X4] ≤lex

[X4, X3, X1, X2] and [X1, X2, X3, X4] ≤lex [X2, X4, X1, X3]) are GAC. However,
enforcing GAC on their conjunction prunes 0 from X4 as the only support for
X3 = 1 and X4 = 0 that satisfies [X1, X2, X3, X4] ≤lex [X4, X3, X1, X2] is
X1 = X2 = 0, whilst the only support for X3 = 1 and X4 = 0 that satisfies
[X1, X2, X3, X4] ≤lex [X2, X4, X1, X3]) is X1 = 0 and X2 = 1. �

Breaking all symmetry may require an exponential number of LexLeader

constraints (e.g. the n! symmetries of n indistinguishable variables). It may
therefore be worth developing a global constraint that combines together sev-
eral LexLeader constraints. For example, the lex chain constraint [4] breaks
all row symmetries of a matrix model. This would require an exponential num-
ber of LexLeader constraints. Unfortunately, there are also cases where such
a combined symmetry breaking constraint is intractable. For example, a global
constraint that combines together all the LexLeader constraints for row and
column symmetries of a matrix model is NP-hard to propagate completely [5].

4 Value symmetry breaking

A value symmetry σ is a bijection on values that preserves solutions. That is,
if {Xi = vi | 1 ≤ i ≤ n} is a solution, then {Xi = σ(vi) | 1 ≤ i ≤ n} is also.

Inspired by [2], we now propose a generic method to break all value symmetry.
We simply post the constraint ValLexLeader(σ, [X1, . . . , Xn]) for each value
symmetry σ. This holds iff:

[X1, . . . , Xn] ≤lex [σ(X1), . . . , σ(Xn)]

Again X1 to Xn is any fixed ordering on the variables. For example, suppose we
have a reflection symmetry on the values 1 to m defined by σr(i) = m − i + 1.
This value symmetry holds for the Golomb ruler problem (prob006 in CSPLib).
We can break this symmetry with a single ValLexLeader constraint. If m

is even, ValLexLeader(σr , [X1, . . . , Xn]) simplifies to the logically equivalent
constraint: X1 ≤ m

2 . If m is odd, it simplifies into the constraints: X1 ≤ m+1
2 ,

if X1 = m+1
2 then X2 ≤ m+1

2 , if X1 = X2 = m+1
2 then X3 ≤ m+1

2 , . . ., and if
X1 = . . . = Xn−1 = m+1

2 then Xn ≤ m+1
2 .

It is an interesting open question how to simplify ValLexLeader constraints
for other types of value symmetries. We conjecture that we may be able to apply
some of Puget’s ideas from [6]. Even without simplification, we can enforce GAC
on a ValLexLeader constraint in O(nm) time for any value symmetry. One
possibility is to adapt the lex propagator from [7]. Alternatively, we can decom-
pose ValLexLeader into ternary constraints and a set of Boolean variables,
Bi which play the role of α in the lex propagator. We identify two important
sets of values: L are those values for which v < σ(v), whilst E are those values
for which v = σ(v). We post the sequence of constraints, C(Xi, Bi, Bi+1) for
1 ≤ i ≤ n, where B1 = 0 and C(Xi, Bi, Bi+1) holds iff Bi = Bi+1 = 0 and
Xi ∈ E , or Bi = 0, Bi+1 = 1 and Xi ∈ L, or Bi = Bi+1 = 1. We can enforce
GAC on the ternary constraint C using a table constraint, GAC-schema or log-
ical primitives like implication. As the constraint graph of the decomposition is
Berge-acyclic, enforcing GAC on each ternary constraint achieves GAC on the
whole ValLexLeader constraint.

As with variable symmetry, decomposition into individual symmetry break-
ing constraints may hinder propagation.

Theorem 2 GAC(
∧

σ∈Σ ValLexLeader(σ, [X1, . . . , Xn])) is strictly stronger

than GAC(ValLexLeader(σ, [X1, . . . , Xn])) for all σ ∈ Σ.

Proof: Clearly it is at least as strong. We show strictness with just two symme-
tries and two variables. Suppose X1 ∈ {0, 1} and X2 ∈ {0, 2}. Consider a value
symmetry σ defined by the cycle (0 2). Then ValLexLeader(σ, [X1, X2])) is
GAC. Consider a second value symmetry σ′ defined by the cycle (1 2). Then
ValLexLeader(σ′, [X1, X2])) is GAC. However, enforcing GAC on the con-
junction of these two symmetry breaking constraints prunes 2 from X2. �

Breaking all value symmetry may again introduce an exponential number
of symmetry breaking constraints (e.g. the n! symmetries of n indistinguishable
values). It may therefore be worth developing a specialized global constraint
that combines together several ValLexLeader constraints. For example, as
we discuss later, the global precedence constraint [11] combines together all the
ValLexLeader constraints for indistinguishable values.

5 Variable and value symmetry breaking

We may have both variable and value symmetries. Consider, for example, a model
of the rehearsal problem (prob039 in CSPLib) in which variables represent time
slots and values are the pieces practised in each time slot. This model has variable
symmetry since any rehearsal can be reversed, as well as value symmetry since
any piece requiring the same players is indistinguishable. Can we simply combine
the appropriate LexLeader and ValLexLeader constraints?

If each symmetry breaking constraint considers the variables in different or-
ders, it may not be safe to combine them. For example, if σ reflects 1 and 2, and
X1, X2 ∈ {1, 2} then LexLeader(σ, [X1, X2]) and ValLexLeader(σ, [X2, X1])
eliminate the assignment X1 = 1 and X2 = 2, as well as all its symmetries. We
assume therefore in what follows that the lexicographical ordering within each
symmetry breaking constraint considers the variables X1 to Xn in the same or-
dering, and is the lifting of the same ordering on values to an ordering on tuples.
Variable and value symmetry breaking constraints can then be combined safely.

Theorem 3 If X1 to Xn have a set of variable symmetries Σ and a set of

value symmetries Σ ′ then posting LexLeader(σ, [X1, . . . , Xn]) for all σ ∈ Σ

and ValLexLeader(σ′, [X1, . . . , Xn]) for all σ′ ∈ Σ′ leaves one or more as-

signments in each equivalence class.

Proof: Consider any assignment. Pick the lex leader under Σ of this assignment.
By construction, this satisfies LexLeader(σ, [X1, . . . , Xn]) for all σ ∈ Σ. Now
consider the lex leader under Σ ′ of this current assignment. By construction,
this satisfies ValLexLeader(σ′, [X1, . . . , Xn]) for all σ′ ∈ Σ′. This also moves
us down the lexicographical order on tuples. However, we may no longer satisfy
LexLeader(σ, [X1, . . . , Xn]). We therefore pick the lex leader under Σ of our
current assignment. We again must move down the lexicographical order on
tuples. This process terminates as the lexicographical order is well founded and
bounded by [0, . . . , 0] where 0 is the least value. We terminate with an assignment
that satisfies both the LexLeader and ValLexLeader constraints. �

Such symmetry breaking may leave one or more assignments in each equiva-
lence class. Consider, for example, a Boolean problem in which both variables and
values have reflection symmetry. Then the assignments [0, 1, 1] and [0, 0, 1] are
symmetric, and both satisfy the appropriate LexLeader and ValLexLeader

constraints. Thus, whilst we can post variable symmetry breaking constraints
and value symmetry breaking constraints separately, they may not break all
symmetry. We need to consider symmetry breaking constraints for the combined
variable and value symmetries. We give such constraints in the next section.

6 Variable/value symmetry breaking

In general, a symmetry σ is a bijection on assignments that preserves solutions
[8]. We call this a variable/value symmetry to distinguish it from symmetries
that act just on the variables or just on the values. Consider, for example, a

model for the n-queens problem in which we have one variable for each row. This
problem has a rotational symmetry r90 that maps Xi = j onto Xj = n − i + 1.
This is neither a variable nor a value symmetry as it acts on both variables and
values together. With variable/value symmetries, we need to be careful that the
image of an assignment is itself a proper assignment. We say that a complete
assignment [X1, . . . , Xn] is admissible for σ if the image under σ is also a complete
assignment. In particular, the image should assign one value to each variable.
Thus [X1, . . . , Xn] is admissible iff |{k | Xi = j, σ(i× j) = k× l}| = n. To return
to the 3-queens example, the assignment [2, 3, 1] for [X1, X2, X3] is admissible for
r90 as its image under r90 is [1, 3, 2] which is a complete assignment. However,
the assignment [2, 3, 3] is not as its image tries to assign both 1 and 2 to X3.
If [X1, . . . , Xn] is admissible for σ we write σ([X1, . . . , Xn]) for its image under
σ. More precisely, σ([X1, . . . , Xn]) is the sequence [Y1, . . . , Yn] where for each
Xi = j and σ(i × j) = k × l, we have Yk = l.

We now propose a generic method to break all variable/value symmetry.
We simply post the constraint GenLexLeader(σ, [X1, . . . , Xn]) for each vari-
able/value symmetry σ. This holds iff:

admissible(σ, [X1, . . . , Xn]) & [X1, . . . , Xn] ≤lex σ([X1, . . . , Xn])

Again X1 to Xn is any fixed ordering on the variables. If σ is a variable sym-
metry or a value symmetry, all assignments are admissible and we get the same
symmetry breaking constraint as before. Consider the 3-queens problem and the
r90 rotational symmetry. Suppose X1 = 2, X2 ∈ {1, 3} and X3 ∈ {1, 2, 3}. Then
enforcing GAC on GenLexLeader(r90, [X1, X2, X3]) prunes X3 = 2 as this
does not extend to an admissible assignment, as well as X2 = 3 and X3 = 1
as the image under r90 of any admissible assignment with X2 = 3 or X3 = 1
is smaller in the lexicographical order. As before, decomposition into individ-
ual symmetry breaking constraints may hinder propagation so it may be worth
developing a specialized global constraint that combines several together.

One way to propagate an individual GenLexLeader constraint is to in-
troduce variables Y1 to Yn for the image of X1 to Xn. We post channelling
constraints of the form Xi = j iff Yk = l for each i, j where σ(i× j) = k × l. Fi-
nally, we post a lexicographical ordering constraint of the form [X1, . . . , Xn] ≤lex

[Y1, . . . , Yn]). Enforcing GAC on this decomposition takes just O(nm) time. Un-
fortunately, this decomposition may hinder propagation.

Theorem 4 GAC(GenLexLeader(σ, [X1, . . . , Xn])) is strictly stronger than

GAC([X1, . . . , Xn] ≤lex [Y1, . . . , Yn]) and GAC(Xi = j iff Yk = l) for each i, j

where σ(i × j) = k × l.

Proof: Clearly it is at least as strong. To show strictness, consider the 3-queens
problem and the symmetry r90. Suppose X1 ∈ {1, 3}, X2 = 2 and X3 ∈ {1, 3}.
Then enforcing GAC on GenLexLeader(r90, [X1, X2, X3]) prunes X1 = 3 and
X3 = 1 as these are not lex leaders. However, the decomposition is GAC. �

To enforce GAC on a GenLexLeader constraint, we can adapt the lex
propagator with repeated variables [3]. This give an O(n2) time propagator.

The basic idea is simple but unfortunately we lack space to give full details. The
propagator focuses on the first position in the lex constraint where the variables
are not ground and equal. We need to test if the variables at this position can
be strictly ordered or made equal consistent with admissibility, As in the lex
propagator with repeated variables, they can only be made equal if admissibility
does not then require the rest of the vector to be ordered the wrong way.

7 Conditional symmetry breaking

A conditional symmetry σ is a symmetry that preserves solutions subject to
some condition [9]. This condition might be a partial assignment (e.g. that X1 =
X2 = 1) or, more generally, an arbitrary constraint (e.g. that X1 6= Xn). More
precisely, a conditional symmetry σ is a bijection on assignments such that if A is
an admissible solution and A satisfies Cσ then σ(A) is also a solution. Consider,
for example, the all interval series problem (prob007 in CSPLib) in which we
wish to find a permutation of the integers from 0 to n, such that the difference
between adjacent numbers is itself a permutation from 1 to n. One model of this
problem is a sequence of integer variables where Xi represents the number in
position i. The problem has a variable reflection symmetry since we can invert
any sequence. The problem also has a value reflection symmetry since we can
map any value j to n− j. Finally, the problem has a conditional symmetry since
we can cycle a solution about a pivot to generate a new solution. Consider n = 4
and the solution [3, 2, 0, 4, 1]. The difference between first and last numbers in
the sequence is 2. However, this is also the difference between the 2nd and 3rd
numbers in the sequence. We can therefore rotate round to this point to give the
new solution [0, 4, 1, 3, 2]. This symmetry is conditional since it depends on the
values taken by neighbouring variables.

To break such conditional symmetry, we simply need to post a constraint:

Cσ(X1, . . . , Xn) implies GenLexLeader(σ, [X1, . . . , Xn])

Consider again the all interval series problem. We can break the conditional
symmetries in this problem by posting the constraints:

|X1 − Xn+1| = |Xi − Xi+1| implies LexLeader(roti, [X1, . . . , Xn+1])

Where 1 ≤ i ≤ n and roti is the symmetry that rotates a sequence by i elements.
One way to propagate such conditional symmetry breaking constraints is

to compute the (maximal) set of valid assignments for Cσ and the (maximal)
set of inconsistent assignments for GenLexLeader. Those assignments in the
intersection of these two sets can be pruned. By Theorem 3 in [10], this achieves
GAC on the conditional symmetry breaking constraint.

8 Indistinguishable values

A common type of value symmetry in which symmetry breaking constraints are
effective is when values are interchangeable. For example, in a model of the social

golfer problem (prob010 in CSPLib) in which we assign groups to golfers in each
week, all values are interchangeable. To break all such symmetry, Law and Lee
[11] propose the value precedence constraint:

Precedence([v1, . . . , vm], [X1, . . . , Xn])

This holds iff min{i | Xi = vi∨i = n+1} < min{i | Xi = vj∨i = n+2} for all 1 ≤
i < j < m. To propagate this constraint, Law and Lee decompose it into pairwise
value precedence constraints, and give a specialized algorithm for enforcing GAC
on each pairwise constraint [11]. In [12], we show that this decomposition hinders
propagation and give a simple ternary encoding which permits us to achieve GAC
in linear time. It is not hard to show that a value precedence constraint combines
together the exponential number of ValLexLeader constraints which break the
symmetry of indistinguishable values.

9 All different problems

Another class of problems on which symmetry breaking constraints are espe-
cially effective are those like the all interval series problem in which variables
must all take different values. On such problems, Puget has shown that the
LexLeader constraints for any (possibly exponentially large) set of variable
symmetries simplify down to a linear number of binary inequalities [13]. These
can be determined by computing stabilizer chains and coset representatives. For
example, on the all interval series problem, the variable reflection symmetry
breaking constraint simplifies to X1 < Xn+1.

Puget has also shown how to use this method to break value symmetries [6].
We assume we have a surjection problem in which each value is used at least
once. (If this is not the case, we introduce “dummy” variables to take the unused
values.) We then introduce index variables, Zi where Zj = min{i | Xi = j}.
These variables are by construction all-different and have a variable symmetry.
We can thus break the original value symmetry by adding just a linear number of
binary inequalities to break this variable symmetry. For interchangeable values,
Puget’s method gives the binary symmetry breaking constraints: Xi = j → Zj ≤
i, Zj = i → Xi = j, and Zk < Zk+1 for all 1 ≤ i ≤ n, 1 ≤ j ≤ m and 1 ≤ k < m.
We observe that these constraints break all value symmetries by ensuring value
precedence [11]. However, this decomposition into binary constraints hinders
propagation. Consider X1 = 1, X2 ∈ {1, 2}, X3 ∈ {1, 3}, X4 ∈ {3, 4}, X5 = 2,
X6 = 3, X7 = 4, Z1 = 1, Z2 ∈ {2, 5}, Z3 ∈ {3, 4, 6}, and Z4 ∈ {4, 7}. Now all
the binary implications are arc consistent. However, we can prune X2 = 1 as
this violates value precedence.

If we have both variable and value symmetries and an all different problem,
we can break variable symmetry with O(n) binary inequalities on the primal
model, and break value symmetry with O(m) binary inequalities on the dual.
This symmetry breaking on the dual is compatible with symmetry breaking on
the primal [6]. However, as in the general case, this may not break all symmetry.
Consider an all different problem with 3 variables and 3 values with variable

rotation symmetry and value reflection symmetry. Then [1, 2, 3] and [1, 3, 2] are
symmetric, but both satisfy the (simplified) variable symmetry breaking con-
straints that X1 < X2 and X1 < X3, and the (simplified) value symmetry
breaking constraint (on the dual) that Y1 < Y3.

10 Set variable symmetry breaking

There are many problems involving symmetry which are naturally modelled and
effectively solved using set variables. Set variables can themselves eliminate some
symmetry (in particular, the ordering between elements). However, we may still
be left with symmetry. For example, another model of the social golfers problem
introduces a 2 dimensional matrix of set variables, one for each group and each
week. As groups and weeks are indistinguishable, these set variables have row and
column symmetry. More generally, a set variable symmetry σ is a bijection on
set variables, S1 to Sn that preserves solutions. To break all such symmetry, we
simply post the constraint SetLexLeader(σ, [S1, . . . , Sn]) for each set variable
symmetry σ. This ensures:

[S1, . . . , Sn] ≤lex [Sσ(1), . . . , Sσ(n)]

Again, S1 to Sn is any fixed ordering on the set variables. The lexicographical
ordering, ≤lex is the standard lifting of the multiset ordering on set variables to
an ordering on tuples of set variables. Note that the multiset ordering on sets is
equivalent to the lexicographical ordering on the characteristic function.

We can propagate the SetLexLeader constraint by adapting the propaga-
tor for the the lex constraint on finite domain variables described in [3] which
copes with repeated variables. Alternatively, we can post a SetLexLeader

constraint by means of the following decomposition: D(Si, Sσ(i), Bi, Bi+1) for
1 ≤ i ≤ n where Bi are Booleans playing the role of α in the lex propagator,
B1 = 0, and D(Si, Sσ(i), Bi, Bi+1) holds iff Bi = Bi+1 = 0 and Si = Sσ(i), or
Bi = 0, Bi+1 = 1 and Si <mset Sσ(i), or Bi = Bi+1 = 1, and <mset is the
multiset ordering on sets.

We still need to provide a propagator for each quaternary constraint, D. This
is not trivial as the quaternary constraint is over both set and Boolean variables,
and involves notions like whether the sets are multiset ordered. We suppose the
set variables are represented by their characteristic function using an m-tuple
of Boolean variables. We will use the notation Si,k for the Boolean indicating
whether k ∈ Si. If i = σ(i) then D(Si, Sσ(i), Bi, Bi+1) simplifies to the equality
constraint: Bi = Bi+1. If i 6= σ(i) then we give a further decomposition. This
decomposition exploits the property that the multiset ordering on sets is identical
to the lexicographical ordering on the characteristic function. More precisely, we
decompose D(Si, Sj , Bi, Bi+1) into E(Si,k, Sj,k, Bi, Bi+1, Ai,k, Ai,k+1) for 1 ≤
k ≤ m, and two implication constraints, Ai,m+1 = 0 implies Bi = Bi+1 and
Ai,m+1 = 1 implies Bi+1 = 1, where Ai,k are Booleans (again playing a role
similar to α in the lex propagator), and E(Si,k, Sj,k, Bi, Bi+1, Ai,k, Ai,k+1) holds
iff Bi = Ai,k = 0 implies Si,k ≤ Sj,k and Si,k < Sj,k implies Ai,k+1 = 1.

Our decomposition is a simple logical combinations of Booleans which is
readily propagated by most solvers. As this decomposition of D(Si, Sj , Bi, Bi+1)
is Berge-acyclic, enforcing BC (=GAC) on the decomposition enforces BC on
the original quaternary constraint. This takes O(m) time as we can enforce BC
on each of the O(m) Boolean constraints in constant time. Enforcing BC on the
decomposition of SetLexLeader thus takes O(nm) time.

As with finite domain variables, the decomposition into a set of SetLexLeader

constraints hinders propagation.

Theorem 5 BC(
∧

σ∈Σ SetLexLeader(σ, [S1, . . . , Sn])) is strictly stronger than

BC(SetLexLeader(σ, [S1, . . . , Sn])) for all σ ∈ Σ.

Proof: Clearly it is at least as strong. We show strictness with just two
symmetries and purely Boolean domains. Consider S1, S2 ⊆ {0, 1}, S3 = {0},
S4 = {0} and two symmetries defined by the cycles (1 2)(3 4) and (1 3 2 4). Then
[S1, S2, S3, S4] ≤lex [S2, S1, S4, S3] and [S1, S2, S3, S4] ≤lex [S4, S3, S1, S2]) are
BC. However, enforcing BC on their conjunction prunes 1 from X1. �

Decomposition may also introduce an exponential number of SetLexLeader

constraints (e.g. the n! symmetries of n indistinguishable set variables). It may
therefore be worth developing specialized global constraints that combine to-
gether several SetLexLeader constraints.

11 Set value symmetry breaking

The values used by some set variables might also be symmetric. Consider again
the model of the social golfers problem with a 2 dimensional matrix of set vari-
ables, each containing the set of golfers playing in particular group in a given
week. As the golfers are indistinguishable, any permutation of the values is also
a solution. More precisely, a set value symmetry σ is a bijection on values that
preserves solutions. That is, if {Si = {vij | 1 ≤ j ≤ mi} | 1 ≤ i ≤ n} is a solu-
tion, then {Si = {σ(vij) | 1 ≤ j ≤ mi} | 1 ≤ i ≤ n} is also. An even more general
definition of symmetry would be a bijection on sets of values that preserves so-
lutions. However, we focus here on what appears to be the more common case
of a bijection on values. To break all such set value symmetry, we simply post
the constraint SetValLexLeader(σ, [S1, . . . , Sn]) for each value symmetry σ.
This constraint ensures:

[S1, . . . , Sn] ≤lex [σ(S1), . . . , σ(Sn)]

Again, S1 to Sn is any fixed ordering on the set variables, and ≤lex is the stan-
dard lifting of the multiset ordering on set variables to an ordering on tuples
of set variables. To propagate SetValLexLeader we can adapt the lex prop-
agator from [7]. Alternatively, we can use a simple decomposition somewhat
similar to that used for ValLexLeader on finite domain variables. We decom-
pose SetValLexLeader(σ, [S1, . . . , Sn]) into F (Si, Bi, Bi+1) for 1 ≤ i ≤ n

where Bi are Booleans playing the role of α in the lex propagator, B1 = 0, and
F (Xi, Bi, Bi+1) holds iff Bi = Bi+1 = 0 and Si = σ(Si), or Bi = 0, Bi+1 = 1

and Si <mset σ(Si), or Bi = Bi+1 = 1. Enforcing BC on this decomposition
achieves BC on the SetValLexLeader constraint.

We still need to provide a propagator for each ternary constraint, F . This
is again not trivial as it involves a set variable and notions like strict multi-
set ordering. We can again decompose it into some simple Boolean constraints
on the characteristic function representation of the set variable. We identify
two important sets of values: L are those values for which v < σ(v), whilst E
are those value for which v = σ(v). We then decompose F (Si, Bi, Bi+1) into
G(Si,k , Bi, Bi+1, Ai,k, Ai,k+1) for 1 ≤ k ≤ m, and two implication constraints,
Ai,m+1 = 0 implies Bi = Bi+1 and Ai,m+1 = 1 implies Bi+1 = 1, where Ai,k

are Booleans (again playing a role similar to α in the lex propagator), and
G(Si,k , Bi, Bi+1, Ai,k, Ai,k+1) holds iff (Bi = Ai,k = 0 and k 6∈ L ∪ E) implies
Si,k = 0 and (k ∈ L and Si,k = 1) implies Ai,k+1 = 1. Our decomposition is
a simple logical combination of Booleans which is readily propagated by most
solvers. As this decomposition is Berge-acyclic, enforcing BC (=GAC) on the
decomposition enforces BC on the original ternary constraint, F (Si, Bi, Bi+1).
This takes O(m) time as we can enforce BC on the O(m) Boolean implication
constraints in constant time. Hence, enforcing BC on SetValLexLeader takes
O(nm) time. This is optimal. Nevertheless, it may be worth developing a spe-
cialized global constraint that combines together several SetValLexLeader

constraints as decomposition into individual constraints may hinder propaga-
tion, and as there may be an exponential number of SetValLexLeader con-
straints. For example, the precedence constraint for set variables [11] combines
together all the SetValLexLeader constraints for breaking the symmetry of
indistinguishable set values.

12 Set variable and value symmetry breaking

Problems can contain both set variable and set value symmetry. Consider again
the model of the social golfers problem with a 2 dimensional matrix of set vari-
ables, each containing the set of golfers playing in particular group in a given
week. As the weeks, groups and golfers are all interchangeable, the set variables
in this model have row and column symmetry, and their values have permutation
symmetry. As with finite domain variables, we can combine together symmetry
breaking constraints for set variables and set values, provided all the symmetry
breaking constraints use the same ordering of set variables.

Theorem 6 Suppose S1 to Sn have set variable symmetries Σ and value sym-

metries Σ′. Then posting SetLexLeader(σ, [S1, . . . , Sn]) for all σ ∈ Σ and

SetValLexLeader(σ′, [S1, . . . , Sn]) for all σ′ ∈ Σ′ leaves one or more assign-

ments in each equivalence class.

Proof: Similar to the proof with finite domain variables. The only difference
is that we now consider moving down the lexicographical order on tuples of
sets. This is well founded and bounded by [{}, . . . , {}] where {} is the empty
set. To see that we may not break all symmetry, consider a problem in which

set variables and values both have reflection symmetry. Then the assignments
[{0}, {1}, {1}] and [{0}, {0}, {1}] are symmetric, and both satisfy the appropriate
SetLexLeader and SetValLexLeader constraints. �

In fact, complete symmetry breaking in this case is intractable in general
(assuming P6=NP). For instance, if we have set variables and values that are
indistinguishable, then the problem is isomorphic to breaking all row and column
symmetries of an 0/1 matrix model, and this is NP-hard [5].

13 Set variable/value symmetry breaking

Symmetries can act on set variables and their values simultaneously. Consider
a model of the peaceable coexisting armies of queens problem [14] in which we
have a set variable for each row of the chessboard containing the positions of the
white queens along the row. As in [14], we do not place the black queens and
just keep a count on the number of squares not attacked by white queens. This
model has a rotational symmetry r90′ that maps i ∈ Sj onto n − i + 1 ∈ Si.
This symmetry acts on both set variables and values together. More generally,
we will consider a set variable/value symmetry to be a bijection on set variable
membership constraints that preserves solutions. That is, if {i ∈ Sj | 1 ≤ j ≤ n}
is a solution then {k ∈ Sl | i ∈ Sj , σ(i×j) = k×l} is also. Note that the mapping
of a value just depends on the set variable to which it is assigned. An even more
general definition would be when the mapping depends on both the value, the
set variable, and the other values assigned to the set variable.

Given a complete assignment to the sequence of set variables, [S1 . . . , Sn]
we write σ([S1, . . . , Sn]) for its image under σ. More precisely, σ([S1, . . . , Sn])
is the sequence [T1, . . . , Tn] where for each σ(i × j) = k × l, we have i ∈ Sj iff
k ∈ Tl. To break all set variable/value symmetries, we simply post the constraint
SetGenLexLeader(σ, [S1, . . . , Sn]) for each such symmetry σ. This ensures:

[S1, . . . , Sn] ≤lex σ([S1, . . . , Sn])

Consider the 5 by 5 peaceable armies of queens problem in which {1, 4} ⊆
S1 ⊆ {1, 4, 5}, S2 = {2}, S3 = {}, {} ⊆ S4 ⊆ {1} and {1} ⊆ S5 ⊆ {1, 2, 3, 4}.
Enforcing BC on SetGenLexLeader(r90′, [S1, S2, S3, S4, S5]) will reduce the
upper bound on S1 to its lower bound, {1, 4} to ensure that the placement of
white queens is ordered less than its rotation.

As set variable/value symmetry generalizes both set variable and set value
symmetry, decomposition into individual symmetry breaking constraints may
hinder propagation. We observe, however, that breaking all such symmetry is
intractable in general. To propagate an individual SetGenLexLeader con-
straint, we introduce variables T1 to Tn for the image of S1 to Sn. We post
channelling constraints of the form i ∈ Sj iff k ∈ Tl for each i and j, where
σ(i× j) = k× l. Finally we post a lexicographical ordering constraint on the set
variables: [S1, . . . , Sn] ≤lex [T1, . . . , Tn]. We can again propagate this by adapt-
ing the propagator for the lex constraint on finite domain variables to set vari-
ables [3]. Alternatively, we can use a decomposition similar to that used for the

SetLexLeader constraint. Enforcing BC on this decomposition takes O(nm).
Unfortunately, decomposition hinders propagation as it ignores the repeated
variables in the lexicographical ordering constraint.

Theorem 7 BC(SetGenLexLeader(σ, [S1, . . . , Sn])) is strictly stronger than

BC(i ∈ Sj iff k ∈ Tl) for each i, j where σ(i×j) = k×l, and BC([S1, . . . , Sn] ≤lex

[T1, . . . , Tn]).

Proof: Clearly it is at least as strong. To show strictness, consider {} ⊆ S1, S3 ⊆
{1}, S2 = {1} and the rotational set variable symmetry, rot which maps S1 to S3,
S2 to S1 and S3 to S2. Enforcing BC on SetGenLexLeader(rot, [S1, S2, S3])
reduces the upper bound on S3 to {}. However, if we let T1 = {1} {} ⊆ T2, T3 ⊆
{1} then the decomposition is BC. �

14 Symmetry breaking for other representations of sets

We can represent other information about a set variable besides the possible
and necessary elements in the set. For example, many solvers include an integer
variable to record the cardinality of the set. Such cardinality information can
be used when symmetry breaking to permit additional pruning. For instance,
suppose we have a set variable, {} ⊆ S1 ⊆ {3, 4} with a cardinality of 1 and
the permutation set value symmetry, σ34 that swaps the values 3 and 4. If we
post the symmetry breaking constraint, SetValLexLeader(σ34, [S1]) then a
propagator can exploit the cardinality information to prune the upper and lower
bounds on S1 to give S1 the unique assignment up to set value symmetry of {3}.

Sadler and Gervet have proposed maintaining upper and lower bounds on a
set variable according to the lexicographical ordering [15]. That is, they main-
tain a set which is lexicographically larger than all possible assignments, as well
as one which is lexicographically smaller than all possible assignments. Such
lexicographical bounds fit well with the symmetry breaking methods proposed
here. For example, suppose we have a pair of set variables, S1 and S2 and the
permutation set variable symmetry, σ12 that swaps S1 and S2. Then the symme-
try breaking constraint, SetLexLeader(σ12, [S1, S2]) simplifies to S1 ≤lex S2.
We can enforce lexicographical bounds consistency on this ordering constraint
simply by making the lexicographical upper bound on S1 equal to the smaller of
the two upper bounds, and the lexicographical lower bound on S2 equal to the
larger of the two lower bounds.

Another representation used for a set variable is a binary decision diagram
[16]. Whilst such a representation requires exponential space in the worst case,
it is often manageable in practice and permits the maximum possible pruning.
Whilst set variable symmetry breaking constraints fit well with such a decision
diagram representation, set value symmetry breaking constraints do not. For set
variable symmetry, we can use the same ordering for values within the decision
diagram as within the symmetry breaking constraint. This will lead to a compact
representation for the symmetry broken set variables. For set value symmetry,
different symmetries can map values far apart in the ordering used in the decision

diagram. Adding set value symmetry breaking constraints may therefore give
exponentially large decision diagrams.

15 Symmetry breaking on other variable types

These symmetry breaking methods lift to other types of variables. We consider
here multiset variables [17]. Multiset (or bag) variables are useful to model a
range of problems. As with set variables, their use can eliminate some but not
necessarily all symmetry in the model of a problem. Thus, we may need to break
symmetries in models involving multiset variables. For example, one model of
the template design problem (prob002 in CSPLib) introduces a multiset variable
for each template containing the number of each design. Such multiset variables
allow us to ignore the ordering of designs on the template. However, as templates
with the same production run length are indistinguishable, certain multiset vari-
ables can still be permuted. We thus may have a permutation symmetry, σ over
some of the multiset variables. To break all such symmetry, we simply post the
constraint MSetLexLeader(σ, [M1, . . . , Mn]) for each multiset variable sym-
metry σ. This constraint ensures:

[M1, . . . , Mn] ≤lex [Mσ(1), . . . , Mσ(n)]

Again, M1 to Mn is any fixed ordering on the multiset variables. The lexico-
graphical ordering, ≤lex is the lifting of the multiset ordering on multiset vari-
ables to an ordering on tuples of set variables. Note that the multiset ordering
is equivalent to the lexicographical ordering on the occurrence representation of
the multiset. We can propagate the MSetLexLeader constraint by adapting
the propagator for the lex constraint on finite domain variables [3] or with an
encoding similar to that proposed for the SetLexLeader constraint. The ex-
tensions to multiset value and multiset variable/value symmetries are similar.
Another promising computation domain for constraint programming is the do-
main of graphs. Graph variables can be used in domains like bioinformatics to
represent combinatorial graph problems [18]. These symmetry breaking methods
also lift to deal with symmetries of such graph variables.

16 Related work

Puget proved that symmetries can always be eliminated by the additional of
suitable constraints [1]. Crawford et al. presented the first general method for
constructing such symmetry breaking constraints [2]. However, their lex-leader
method was restricted to variable symmetries. In their recent survey chapter
on symmetry in constraint programming for the Handbook of Constraint Pro-
gramming, Gent, Petrie and Puget write that “. . . generalization of lex-leader to
deal with value symmetries would be valuable, even if restricted to some special
cases . . . ” [19]. We provide here this generalization for arbitrary value symme-
tries (as well as generalizations in several other directions like symmetries acting
simultaneously on variables and values, and symmetries acting on set variables).

To reduce the number of lex-leader constraints used, Aloul et al. suggest break-
ing only those symmetries corresponding to generators of the group [20]. Aloul,
Sakallah and Markov exploit the cyclic structure of generators to reduce the size
of lex-leader constraints from quadratic to linear in the number of variables [21].
The full set of lex-leader constraints can often be simplified. For example, in
matrix models with row symmetry, the exponential number of lex-leader con-
straints simplifies to a linear number of lex row ordering constraints [22, 23]. For
matrix models with both row and column symmetry, it is unlikely that we can
break all row and column symmetry using a polynomial number of symmetry
breaking constraints as this is NP-hard [5]. However, we can break most row and
column symmetry using lex constraints to order rows and columns [22, 23]. As
a second example, for problems where variables must take all different values,
Puget has shown that the lex-leader constraints simplify to just a linear number
of binary inequality constraints [13]. Finally, an alternative way to break value
symmetry is to convert it into a variable symmetry by channeling into a dual
viewpoint and using lex-leader constraints on this dual view [23, 24].

17 Conclusions

We have presented some general methods to break symmetries in constraint
satisfaction problems. Our symmetry breaking method works with symmetries
acting on variables, values, or both. Our methods also work with conditional
symmetries, and symmetries acting on set and other types of variables. There
exist a number of promising areas for future work. Are they efficient ways to
combine together these symmetry breaking constraints for particular types of
symmetries (just as value precedence combines together an exponential num-
ber of value symmetry breaking constraints)? Are there useful subsets of these
symmetry breaking constraints when there are too many to post individually?
Are there other types of problems and symmetries where these symmetry break-
ing constraints simplify dramatically (just as Puget has shown for all different
problems)? Finally, can these symmetry breaking methods be used to improve
symmetry breaking methods like SBDS and SBDD that work during search?

References

1. Puget, J.F.: On the satisfiability of symmetrical constrained satisfaction problems.
In Proc. of ISMIS’93. LNAI 689, (1993) 350–361

2. Crawford, J., Luks, G., Ginsberg, M., Roy, A.: Symmetry breaking predicates for
search problems. In: Proc. of the 5th Int. Conf. on Knowledge Representation and
Reasoning, (KR ’96). (1996) 148–159

3. Kiziltan, Z.: Symmetry Breaking Ordering Constraints. PhD thesis, Department
of Information Science, Uppsala University (2004)

4. Carlsson, M., Beldiceanu, N.: Arc-consistency for a chain of lexicographic ordering
constraints. Technical report T2002-18, Swedish Institute of Computer Science
(2002)

5. Bessiere, C., Hebrard, E., Hnich, B., Walsh, T.: The complexity of global con-
straints. In: Proc. of the 19th National Conf. on AI, AAAI (2004)

6. Puget, J.F.: Breaking all value symmetries in surjection problems. In van Beek, P.,
ed.: Proc. of 11th Int. Conf. on Principles and Practice of Constraint Programming
(CP2005), (2005)

7. Frisch, A., Hnich, B., Kiziltan, Z., Miguel, I., Walsh, T.: Global constraints for
lexicographic orderings. In: 8th Int. Conf. on Principles and Practices of Constraint
Programming (CP-2002), (2002)

8. Cohen, D., Jeavons, P., Jefferson, C., Petrie, K., Smith, B.: Symmetry definitions
for constraint satisfaction problems. In van Beek, P., ed.: Proc. of 11th Int. Conf.
on Principles and Practice of Constraint Programming (CP2005), (2005) 17–31

9. Gent, I., Kelsey, T., Linton, S., McDonald, I., Miguel, I., Smith, B.: Conditional
symmetry breaking. In van Beek, P., ed.: Proc. of 11th Int. Conf. on Principles
and Practice of Constraint Programming (CP2005), (2005)

10. Bacchus, F., Walsh, T.: Propagating logical combinations of constraints. In: Proc.
of 19th IJCAI (2005) 35–40

11. Law, Y., Lee, J.: Global constraints for integer and set value precedence. In:
Proc. of 10th Int. Conf. on Principles and Practice of Constraint Programming
(CP2004), (2004) 362–376

12. Walsh, T.: Symmetry breaking using value precedence. In: Proc. of the 17th ECAI,
European Conf. on Artificial Intelligence, IOS Press (2006)

13. Puget, J.F.: Breaking symmetries in all different problems. In: Proc. of 19th IJCAI
(2005) 272–277

14. Smith, B., Petrie, K., Gent, I.: Models and symmetry breaking for peacable armies
of queens. In: Proc. of the First Int. Conf. on Integration of AI and OR Techniques
in Constraint Programming (CP-AI-OR), (2004) 271–286

15. Sadler, A., Gervet, C.: Hybrid set domains to strengthen constraint propagation
and reduce symmetries. In: Proc. of 10th Int. Conf. on Principles and Practice of
Constraint Programming (CP2004), (2004)

16. Hawkins, P., Lagoon, V., Stuckey, P.: Solving set constraint satisfaction problems
using ROBDDs. Journal of Artificial Intelligence Research 24 (2005) 109–156

17. Walsh, T.: Consistency and propagation with multiset constraints: A formal view-
point. In Rossi, F., ed.: 9th Int. Conf. on Principles and Practices of Constraint
Programming (CP-2003), (2003)

18. Dooms, G., Deville, Y., Dupont, P.: CP(Graph): Introducing a graph computation
domain in constraint programming. In van Beek, P., ed.: Proc. of 11th Int. Conf.
on Principles and Practice of Constraint Programming (CP2005), (2005)

19. Gent, I., Petrie, K., Puget, J.F.: Symmetry in constraint programming. In: Hand-
book for Constraint Programming. Elsevier (2006)

20. Aloul, F., Ramani, A., Markov, I., Sakallah, K.: Solving difficult SAT instances
in the presence of symmetries. In: Proc. of the Design Automation Conf.. (2002)
731–736

21. Aloul, F., Sakallah, K., Markov, I.: Efficient symmetry breaking for Boolean sat-
isfiability. In: Proc. of the 18th IJCAI (2003) 271–276

22. Shlyakhter, I.: Generating effective symmetry-breaking predicates for search prob-
lems. In: Proc. of LICS workshop on Theory and Applications of Satisfiability
Testing (SAT 2001). (2001)

23. Flener, P., Frisch, A., Hnich, B., Kiziltan, Z., Miguel, I., Pearson, J., Walsh, T.:
Breaking row and column symmetry in matrix models. In: 8th Int. Conf. on
Principles and Practices of Constraint Programming (CP-2002), (2002)

24. Law, Y., Lee, J.: Symmetry Breaking Constraints for Value Symmetries in Con-
straint Satisfaction. Constraints (2006) to appear.

