The RANGE and ROOTS Constraints: some applications Christian Bessiere¹, Emmanuel Hebrard², Brahim Hnich³, Zeynep Kiziltan⁴, and Toby Walsh² ¹ LIRMM, CNRS/University of Montpellier, France, bessiere@lirmm.fr ² NICTA and UNSW, Sydney, Australia, {ehebrard, tw}@cse.unsw.edu.au ³ 4C, University College Cork, Ireland, brahim@4c.ucc.ie ⁴ University of Bologna, Italy, zkiziltan@deis.unibo.it Let X_1, \ldots, X_n be a set of integer variables each with domain $dom(X_i)$, and let $D = \bigcup_i dom(X_i)$. Let $X : \{1, \ldots, n\} \to D$ be the assignment function from the set of variable indices to their domain set D. The RANGE constraint constrains T to be the range of function X restricted to the variables whose index belong to S. When S is not used it is implicitly equal to $\{1, ..., n\}$. RANGE($$[X_1, \ldots, X_n], S, T$$) iff $T = \bigcup_{i \in S} \{X_i\}$ The ROOTS constraint constraint S to be the set of indices which are inverses of an element of T. ROOTS($$[X_1, \ldots, X_n], S, T$$) iff $S = \bigcup_{j \in T} X^{-1}(j)$ where $X^{-1}(j)$ is the set of indices whose image is j. We now give an extensive catalog of global constraints that can be expressed in terms of Roots and Range. #### ALLDIFFERENT: **Semantics:** AllDifferent($[X_1, \ldots, X_n]$) holds iff all X_i take different values. **Decomposition:** RANGE($[X_1, \ldots, X_n], \{1, \ldots, n\}, T$) $\land |T| = n$. # ALLDIFFERENTEXCEPT0: **Semantics:** AllDifferentExcept0($[X_1, ..., X_n]$) holds iff all X_i take different values except those variables which are assigned to 0. **Decomposition:** RANGE($[X_1,\ldots,X_n],\{1,\ldots,n\},T$) \land Count($[X_1,\ldots,X_n],0,=,N$) \land $|T-\{0\}|=n-N$. ## AlldifferentInterval: **Semantics:** AlldifferentInterval($[X_1, ..., X_n], k$) holds iff all X_i take values from different intervals. The intervals are defined by i * k... * k + k - 1 where i is an integer. **Decomposition:** $\forall i \in \{0, \dots, max(D)/k\}$. AmongInterval $([X_1, \dots, X_n], i*k, i*k+k-1, N) \land 0 \leq N \leq 1$. ### AlldifferentModulo: Semantics: AlldifferentModulo($[X_1, \ldots, X_n], m$) holds iff all X_i have distinct rest when divided by m. Decomposition: $\forall i \in \{0, \ldots, m-1\}$. AmongModulo($[X_1, \ldots, X_n], i, m, N$) $\land 0 \leq N \leq 1$. # ALLDIFFERENTPARTITION: **Semantics:** Alldifferent Partition $([X_1, \ldots, X_n], [p_1, \ldots, p_m])$ holds iff all X_i take values from different partitions where each p_i defines a partition. **Decomposition:** $\forall i \in \{1, ..., m\}$. AmongLowUp $(0, 1, [X_1, ..., X_n], p_i)$. #### Among: **Semantics:** AMONG($[X_1, \ldots, X_n], [d_1, \ldots, d_m], N$) holds iff the number of variables in X_1, \ldots, X_n which to their value in d_1, \ldots, d_m is N. **Decomposition:** ROOTS($[X_1, \ldots, X_n], S, \{d_1, \ldots, d_m\}) \land |S| = N.$ #### AmongInterval: **Semantics:** AmongInterval($[X_1, \ldots, X_n]$, low, up, N) holds iff the number of variables in X_1, \ldots, X_n wh take their value in the interval low...up is N. **Decomposition:**Among($[X_1, \ldots, X_n], [low, low + 1 \ldots, up - 1, up], N$). #### AMONGLOWUP: **Semantics:** AmongLowUp($low, up, [X_1, \ldots, X_n], [d_1, \ldots, d_m]$) holds iff the variables in X_1, \ldots, X_n take least low and at most up values in d_1, \ldots, d_m . **Decomposition:** Among($[X_1, \ldots, X_n], [d_1, \ldots, d_m], N$) $\land low \leq N \leq up$. # Among Modulo: **Semantics:** AMONGMODULO($[X_1, \ldots, X_n]$, rem, quot, N) holds iff the number of variables in X_1, \ldots, X_n which take their value as rem by modulo quot is N. **Decomposition:** Among($[X_1, \ldots, X_n]$, $[rem, rem + quot \ldots, max]$, N) where max is the maximum value D which is rem by modulo quot. # AmongSeq: **Semantics:** AmongSeq($low, up, seq, [X_1, \ldots, X_n], [d_1, \ldots, d_m]$) holds iff all sequences of seq variables X_1, \ldots, X_n take at least low and at most up values in d_1, \ldots, d_m . **Decomposition:** $\forall i \in \{1, \dots, n - seq\}$, AMONGLOWUP $(low, up, [X_i, \dots, X_{i+seq-1}], [d_1, \dots, d_m])$. ### APPLY: **Semantics:** APPLY(f, S, T) holds iff T is the set of values constructed by applying the function f to the S. **Decomposition:** Range($[X_1, ..., X_n], S, T$) where $X_i = j$ iff f(i) = j. #### Assign&Counts: **Semantics:** Assign&Counts($colours, [X_1, ..., X_n], [Y_1, ..., Y_n], op \in [\leq, \geq, <, >, \neq, =], N$) holds iff by assignment of bin and colour to each of n items, the number of items d_i of colour colour in each bin satisf d_i op N. **Decomposition:** $\forall i \in D$. ROOTS $([X_1, \dots, X_n], S_i, \{i\}) \land RANGE([Y_1, \dots, Y_n], S_i, T_i) \land |T_i \cap colours| op$ #### Assign&NValues: **Semantics:** Assign&NValues($[X_1, \ldots, X_n], [Y_1, \ldots, Y_n], op \in [\leq, \geq, <, >, \neq, =], N$) holds iff by the assignment of bin and value to each of n items, the number of distinct values d_i in each bin satisfies d_i op N. **Decomposition:** $\forall i \in D$. Roots($[X_1, \ldots, X_n], S_i, \{i\}$) \land Range($[Y_1, \ldots, Y_n], S_i, T_i$) \land $|T_i|$ op N. #### ATLEAST: **Semantics:** ATLEAST($[X_1, \ldots, X_n], v, N$) holds iff the number of variables in X_1, \ldots, X_n assigned to v is at least N. **Decomposition:** ROOTS($[X_1, \ldots, X_n], S, \{v\}$) $\land |S| \ge N$. #### ATLEASTN VALUE: **Semantics:** ATLEASTNVALUE($[X_1, \ldots, X_n], N$) holds iff the number of distinct values assigned to X_1, \ldots, X_n is at least N. **Decomposition:** RANGE($[X_1, \ldots, X_n], \{1, \ldots, n\}, T$) $\land |T| \ge N$. #### ATMOST: **Semantics:** ATMOST($[X_1, \ldots, X_n], v, N$) holds iff the number of variables in X_1, \ldots, X_n assigned to v is at most N. **Decomposition:** ROOTS($[X_1, \ldots, X_n], S, \{v\}) \land |S| \leq N$. # ATMOSTNVALUE: **Semantics:** ATMOSTNVALUE($[X_1, \ldots, X_n], N$) holds iff the number of distinct values assigned to X_1, \ldots, X_n is at most N. **Decomposition:** Range($[X_1, \ldots, X_n], \{1, \ldots, n\}, T$) $\land |T| \leq N$. # BALANCE: Semantics: Balance($[X_1, \ldots, X_n]$, $op \in [\leq, \geq, <, >, \neq, =], N$) holds iff the difference d between the number of occurrences of the value that occurs the most and the value that occurs the least satisfies d op N. Decomposition: $GCC([X_1, \ldots, X_n], [d_1, \ldots, d_{|D|}], [O_1, \ldots, O_{|D|}]) \land RangeCtr([O_1, \ldots, O_{|D|}], op, N)$ where $\{d_1, \ldots, d_{|D|}\} = D$. #### BALANCEINTERVAL: **Semantics:** BALANCEINTERVAL($[X_1, \ldots, X_n], N, k$) holds iff N is the difference between the minimum and the maximum number of variables in X_1, \ldots, X_n that take values from the same interval. The intervals are defined by i * k ... i * k + k - 1 where i is an integer. **Decomposition:** $(\forall i \in \{0, \dots, max(D)/k\}. \text{ AmongInterval}([X_1, \dots, X_n], i * k, i * k + k - 1, N_i)) \land \text{RangeCtr}([N_0, \dots, N_{max(D)/k}], =, N).$ # BALANCEMODULO: **Semantics:** BALANCEMODULO($[X_1, \ldots, X_n], N, m$) holds iff N is the difference between the minimum and the maximum number of variables in X_1, \ldots, X_n that have the same rest when divided by m. #### **Decomposition:** $(\forall i \in \{0,\ldots,m-1\}. \text{ AmongModulo}([X_1,\ldots,X_n],i,m,N_i)) \land \text{RangeCtr}([N_0,\ldots,N_{m-1}],=,N).$ #### BALANCEPARTITION: **Semantics:** BALANCEPARTITION($[X_1, \ldots, X_n], N, [p_1, \ldots, p_m]$) holds iff N is the difference between the m imum and the maximum number of variables in X_1, \ldots, X_n that take values from the same partition whereach p_i defines a partition. **Decomposition:** $(\forall i \in \{1, ..., m\}. \text{ Among}([X_1, ..., X_n], p_i, N_i)) \land \text{RangeCtr}([N_1, ..., N_m], =, N).$ #### BINPACKING: **Semantics:** BINPACKING($[X_1, \ldots, X_n], c, weights$) holds iff by the assignment of a bin to each of n ite described by a weight (by the weights function), the total capacity of each bin does not exceed c. **Decomposition:** $\forall i \in D$. ROOTS($[X_1, \ldots, X_n], S_i, \{i\}$) \land APPLY(weights, S_i, T_i) \land SUM(T_i) $\leq c$. # CARDATLEAST: **Semantics:** CARDATLEAST($[X_1, \ldots, X_n], [d_1, \ldots, d_m], N$) holds iff N is the minimum number of times the value of d_1, \ldots, d_m is taken by the variables X_1, \ldots, X_n . **Decomposition:** $GCC([X_1, \ldots, X_n], [d_1, \ldots, d_m], [O_1, \ldots, O_m]) \land MIN(N, [O_1, \ldots, O_m]).$ Note: This constraint is very similar to MINNVALUE in which the values are not specified. #### CARDATMOST: **Semantics:** CARDATMOST($[X_1, \ldots, X_n], [d_1, \ldots, d_m], N$) holds iff N is the maximum number of times the value of d_1, \ldots, d_m is taken by the variables X_1, \ldots, X_n . **Decomposition:** $GCC([X_1,\ldots,X_n],[d_1,\ldots,d_m],[O_1,\ldots,O_m]) \wedge MAX(N,[O_1,\ldots,O_m]).$ Note: This constraint is very similar to MAXNVALUE in which the values are not specified. # CARDATMOSTPARTITION: Semantics: CARDATMOSTPARTITION($[X_1, \ldots, X_n], [p_1, \ldots, p_m], N$) holds iff N is the maximum number times that values of a same partition of p_1, \ldots, p_m are taken by the variables X_1, \ldots, X_n . **Decomposition:** $(\forall i \in \{1, ..., m\}. \text{ Among}([X_1, ..., X_n], p_i, N_i) \land \text{Max } (N, [N_1, ..., N_m]).$ # CHANGEPARTITION: **Semantics:** ChangePartition $(N, [X_1, \ldots, X_n], [p_1, \ldots, p_m])$ holds iff there are N consecutive pairs variables in X_1, \ldots, X_n which take values from different partitions where each p_i defines a partition. **Decomposition:** $(\forall i \in \{1, \dots, n-1\}. \text{ AlldifferentPartition}([X_i, X_{i+1}], [p_1, \dots, p_m]) \leftrightarrow N_i = 1) \land \sum_{i \in \{1, \dots, n-1\}} N_i = N.$ #### COMMON: **Semantics:** Common($[X_1, \ldots, X_n], [Y_1, \ldots, Y_m], N, M$) holds iff N (resp. M) variables in X_1, \ldots, X_n (re in Y_1, \ldots, Y_m) take their values in Y_1, \ldots, Y_m (resp. in X_1, \ldots, X_n). **Decomposition:** Among($[X_1, \ldots, X_n], [Y_1, \ldots, Y_m], N$) \wedge Among($[Y_1, \ldots, Y_m], [X_1, \ldots, X_n], M$). # Common Modulo: **Semantics:** CommonModulo($[X_1, \ldots, X_n], [Y_1, \ldots, Y_m], N, M, k$) holds iff N (resp. M) variables in X_1, \ldots, X_n (resp. in Y_1, \ldots, Y_m) take their values in one of the equivalence classes derived from the values of Y_1, \ldots, Y_m (resp. X_1, \ldots, X_n) modulo k. **Decomposition:** RANGE($[Y_1, \ldots, Y_m], \{1, \ldots, m\}, S_1$) \land APPLY($mod\ k, S_1, T_1$) \land AMONG($[X_1, \ldots, X_n], T_1, N$) \land RANGE($[X_1, \ldots, X_n], \{1, \ldots, n\}, S_2$) \land APPLY($mod\ k, S_2, T_2$) \land AMONG($[Y_1, \ldots, Y_n], T_2, M$). #### COUNT: **Semantics:** COUNT($[X_1, \ldots, X_n], v, op \in [\leq, \geq, <, >, \neq, =], N$) holds iff the operation op is satisfied between the number of variables assigned to v and N. **Decomposition:** ROOTS($[X_1, ..., X_n], S, \{v\}$) $\land |S| op N$. # DISJOINT: **Semantics:** DISJOINT($[X_1, \ldots, X_n], [Y_1, \ldots, Y_m]$) holds iff there is no overlap between the set of values assigned to X_1, \ldots, X_n and those assigned to Y_1, \ldots, Y_m . **Decomposition:** Range($[X_1,\ldots,X_n]$, $\{1,\ldots,n\}$, S) \wedge Range($[Y_1,\ldots,Y_m]$, $\{1,\ldots,m\}$, T) \wedge $S \cap T = \{\}$. A special case of Common: Common($[X,\ldots,X_n]$, $[Y_1,\ldots,Y_m]$, $[Y_0,\ldots,Y_m]$ $[Y_0,\ldots,Y_m$ # ELEMENT: **Semantics:** Element $(I, [X_1, \dots, X_n], V)$ holds iff $X_I = V$. **Decomposition:** $V \in T \land |T| = 1 \land \text{Roots}([X_1, \dots, X_n], S, T) \land I \in S.$ # GCC: Semantics: $GCC([X_1, \ldots, X_n], [d_1, \ldots, d_m], [O_1, \ldots, O_m])$ holds iff the value d_i is used O_i times in X_1, \ldots, X_n . Decomposition: $\forall i \in \{1 \ldots, m\}$ ROOTS $([X_1, \ldots, X_n], S_i, \{d_i\}) \land |S_i| = O_i$. # GLOBALCONTINUITY: **Semantics:** GLOBAL CONTINUITY $([X_1, \ldots, X_n])$ holds iff all 1's are consecutive. **Decomposition:** ROOTS($[X_1, \ldots, X_n], S, \{1\}$) \wedge MIN(S, Low) \wedge MAX(S, Hi) \wedge |S| = Hi - Low + 1. # INSAMEPARTITION: **Semantics:** InSamePartition($V_1, V_2, class$) holds iff the values assigned to V_1 and V_2 are in the same class (with respect to class). **Decomposition:** APPLY(class, V_1, S) \land APPLY(class, V_2, T) \land S = T. #### INTERVALANDCOUNT: Semantics: Interval And Count (colours, $[X_1, \ldots, X_n], [Y_1, \ldots, Y_n], k, N$) holds iff by the assignment of origin and colour to each of n tasks, the number of items d_i of colour colour in each interval satisfies $d_i \leq N$. Decomposition: $(\forall i \in \{0, \dots, max(D)/k\}. \text{ROOTS}([X_1, \dots, X_n], S_i, \{i * k... i * k + k - 1\}) \land \text{RANGE}([Y_1, \dots, Y_n], S_i, T_i) \land |T_i \cap colours| \leq N.$ #### LINKSETTOBOOLEANS: **Semantics:**LinkSetToBooleans $(S, [B_1, ..., B_n])$ holds iff the 0/1 variables $B_1, ..., B_n$ which are as ciated to a value belonging to the set variable S are 1, while the remaining 0/1 variables are all equal 0. **Decomposition:** ROOTS($[B_1, \ldots, B_n], S, \{1\}$). #### Max: **Semantics:** MAX $(Max, [X_1, ..., X_n])$ holds iff Max is the maximum value of the variables $X_1, ..., X_n$. **Decomposition:** RANGE $([X_1, ..., X_n], \{1, ..., n\}, S) \wedge MAX(S, Max)$. # MAXINDEX: **Semantics:** MAXINDEX $(MaxI, [X_1, ..., X_n])$ holds iff MaxI is the indices of the variables $X_1, ..., X_n$ c responding to the maximum value of the variables. **Decomposition:** MAX $(Max, [X_1, \ldots, X_n]) \land \text{Roots}([X_1, \ldots, X_n], MaxI, \{Max\}).$ #### MaxModulo: **Semantics:** $MAX(Max, M, [X_1, ..., X_n])$ holds iff Max is the maximum value of the variables $X_1, ..., A_n$ according to the partial order $(X \mod M) < (Y \mod M)$. **Decomposition:** RANGE($[X_1, \ldots, X_n], \{1, \ldots, n\}, S$) \land APPLY($mod\ M, S, T$) \land MAX(T, Max). # MaxN: **Semantics:** MAXN($[X_1, \ldots, X_n], N, k$) holds iff N is the maximum value of rank k (i.e. the k^{th} largest distingular) in X_1, \ldots, X_n . **Decomposition:** RANGE($[X_1, \ldots, X_n], \{1, \ldots, n\}, S$) \land KTHMAX(S, N). # MaxNValue: **Semantics:** MAXNVALUE($[X_1, \ldots, X_n], N$) holds iff N is the maximum number of times that the same value taken by the variables X_1, \ldots, X_n . **Decomposition:** GCC($[X_1, \ldots, X_n], [d_1, \ldots, d_{|D|}], [O_1, \ldots, O_{|D|}]) \wedge Max(N, [O_1, \ldots, O_{|D|}])$ where $\{d_1, \ldots, D\}$. # MIN: **Semantics:** MIN $(Min, [X_1, ..., X_n])$ holds iff Min is the minimum value of the variables $X_1, ..., X_n$. **Decomposition:** RANGE $([X_1, ..., X_n], \{1, ..., n\}, S) \land MIN(S, Min)$. # MINEXCEPT0: **Semantics:** MINEXCEPTO $(Min, [X_1, ..., X_n])$ holds iff Min is the minimum value of the variables $X_1, ..., I$ ignoring all variables that take 0 as value. **Decomposition:** RANGE($[X_1, \ldots, X_n], \{1, \ldots, n\}, S$) $\land T = S - \{0\} \land Min(T, Min).$ #### MINGREATER THAN: **Semantics:** MINGREATERTHAN($Var_1, Var_2, [X_1, \dots, X_n]$) holds iff Var_1 is the smallest value strictly greater than Var_2 in X_1, \dots, X_n . **Decomposition:** MINN($[X_1, \ldots, X_n], Var_1, k+1$) \land MINN($[X_1, \ldots, X_n], Var_2, k$). # MININDEX: **Semantics:** MININDEX $(MinI, [X_1, ..., X_n])$ holds iff MinI is the indices of the variables $X_1, ..., X_n$ corresponding to the minimum value of the variables. **Decomposition:** MIN $(Min, [X_1, ..., X_n]) \land \text{Roots}([X_1, ..., X_n], MinI, \{Min\}).$ # MINMODULO: **Semantics:** MIN $(Min, M, [X_1, ..., X_n])$ holds iff Min is the minimum value of the variables $X_1, ..., X_n$ according to the partial order $(X \mod M) < (Y \mod M)$. **Decomposition:** RANGE($[X_1, \ldots, X_n], \{1, \ldots, n\}, S$) \land APPLY($mod\ M, S, T$) \land MIN(T, Min). #### MINN: **Semantics:** MINN($[X_1, \ldots, X_n], N, k$) holds iff N is the minimum value of rank k (i.e. the k^{th} smallest distinct value) in X_1, \ldots, X_n . **Decomposition:** Range($[X_1, \ldots, X_n], \{1, \ldots, n\}, S$) \land KthMin(S, N). # MINNVALUE: **Semantics:** MINNVALUE($[X_1, \ldots, X_n], N$) holds iff N is the minimum number of times that the same value is taken by the variables X_1, \ldots, X_n . **Decomposition:** GCC($[X_1,\ldots,X_n],[d_1,\ldots,d_{|D|}],[O_1,\ldots,O_{|D|}]) \land \text{MinExcept0}(N,[O_1,\ldots,O_{|D|}]) \text{ where } \{d_1,\ldots,d_{|D|}\} = D.$ # NCLASS: **Semantics:** NCLASS($[X_1, \ldots, X_n], N, class$) holds iff the number of distinct class (with respect to class) of values assigned to X_1, \ldots, X_n is N. **Decomposition:** Range($[X_1,\ldots,X_n],\{1,\ldots,n\},S$) \land Apply(class,S,T) \land |T|=N. #### NEQUIVALENCE: **Semantics:** NEQUIVALENCE($[X_1, \ldots, X_n], N, m$) holds iff the number of distinct values modulo m assigned to X_1, \ldots, X_n is N. **Decomposition:** $NCLASS([X_1, ..., X_n], N, mod m).$ #### NINTERVAL: **Semantics:** NINTERVAL($[X_1, ..., X_n], N, k$) holds iff N is the number of intervals for which at least one value is taken by at least one variable of $X_1, ..., X_n$. The intervals are defined by i * k..i * k + k - 1 where i is an integer. # **Decomposition:** $(\forall i \in \{0,\dots, \max(D)/k\}. \text{ AmongInterval}([X_1,\dots,X_n], i*k, i*k+k-1, N_i) \land \text{ Min}(D_i,[1,N_i])) \land N = \sum_{i \in \{0,\dots,\max(D)/k\}} D_i.$ #### NotAllEqual: Semantics: NotAllEqual($[X_1, \ldots, X_n]$) holds iff the variables X_1, \ldots, X_n take more than one single val **Decomposition:** NVALUE($[X_1, \ldots, X_n], N) \land N > 1$. #### NPAIR: **Semantics:** NPAIR($[X_1, \ldots, X_n], [Y_1, \ldots, Y_n], N$) holds iff N is the number of distinct pairs of values assign to $\langle X_1, Y_1 \rangle, \ldots, \langle X_n, Y_n \rangle$. We assume the maximum domain size is d. **Decomposition:** $\forall i \in \{1, ..., n\}.$ $Z_i = X_i * d + Y_i \land NValue([Z_1, ..., Z_n], N).$ # NVALUE: **Semantics:** NVALUE($[X_1, ..., X_n], N$) holds iff the number of distinct values assigned to $X_1, ..., X_n$ is N **Decomposition:** RANGE($[X_1, ..., X_n], \{1, ..., n\}, T$) $\land |T| = N$. # RANGECTR: **Semantics:** RANGECTR($[X_1, \ldots, X_n], op \in [\leq, \geq, <, >, \neq, =], N$) holds iff the difference d between the maximum and the minimum values assigned to the variables X_1, \ldots, X_n satisfies d op N. **Decomposition:** $MAX(Max, [X_1, ..., X_n]) \wedge MIN(Min, [X_1, ..., X_n]) \wedge Max - Min op N.$ #### Same: **Semantics:** Same1($[X_1, \ldots, X_n]$, $[Y_1, \ldots, Y_m]$) holds iff the same set of values is shared by X_1, \ldots, X_n at Y_1, \ldots, Y_m . Same2($[X_1, \ldots, X_n]$, $[Y_1, \ldots, Y_n]$) holds iff the values assigned to X_1, \ldots, X_n correspond to values assigned to Y_1, \ldots, Y_n according to a permutation. **Decomposition:** Same1: Range($[X_1, \ldots, X_n], \{1, \ldots, n\}, S$) \land Range($[Y_1, \ldots, Y_m], \{1, \ldots, m\}, T$) \land S T. By defining Range($[X_1, \ldots, X_n], S, T$) as $T = \biguplus_{i \in S} \{X_i\}$, we can decompose Same2 similarly to Same # SAMEINTERVAL: **Semantics:** SameInterval($[X_1, \ldots, X_n], [Y_1, \ldots, Y_n], k$) holds iff N_i (resp. M_i) is the number of variable in X_1, \ldots, X_n (resp. Y_1, \ldots, Y_n) which take their values in the interval k * i ... k * i + k - 1 and $N_i = M_i$ for i **Decomposition:** $\forall i \in \{0, \dots, max(D)/k\}$. AmongInterval($[X_1, \dots, X_n], i * k, i * k + k - 1, N_i$) AmongInterval($[Y_1, \dots, Y_n], i * k, i * k + k - 1, M_i$) $\land N_i = M_i$. # SameModulo: **Semantics:** SameModulo($[X_1, \ldots, X_n], [Y_1, \ldots, Y_n], m$) holds iff N_i (resp. M_i) is the number of variable in X_1, \ldots, X_n (resp. Y_1, \ldots, Y_n) which have i as a rest when divided by m and $N_i = M_i$ for all i in 0..m – **Decomposition:** $\forall i \in \{0,\dots,m-1\}. \text{ AmongModulo}([X_1,\dots,X_n],i,m,N_i) \land \text{ AmongModulo}([Y_1,\dots,Y_n],i,m,N_i) \land N_i = M_i.$ # SAMEPARTITION: Semantics: SamePartition($[X_1, \ldots, X_n], [Y_1, \ldots, Y_n], [p_1, \ldots, p_m]$) holds iff N_i (resp. M_i) is the number of variables in X_1, \ldots, X_n (resp. Y_1, \ldots, Y_n) which take their value in p_i and $N_i = M_i$ for all i in 1..m. Decomposition: $\forall i \in \{1, \ldots, m\}$. Among($[X_1, \ldots, X_n], p_i, N_i$) \land Among($[Y_1, \ldots, Y_n], p_i, M_i$) \land $N_i = M_i$. #### SOFTALLDIFFERENTCTR: **Semantics:** SOFTALLDIFFERENTCTR($[X_1, ..., X_n], N$) holds iff N is the number of equality constraints (=) which hold between the variables of $X_1, ..., X_n$. **Decomposition:** GCC($[X_1, ..., X_n], [d_1, ..., d_{|D|}], [O_1, ..., O_{|D|}]) \land N = \sum_{i \in \{1, ..., |D|\}} O_i * (O_i - 1)/2$ where $\{d_1, ..., d_{|D|}\} = D$. #### SOFTALLDIFFERENTVAR: **Semantics:** SOFTALLDIFFERENTVAR($[X_1, \ldots, X_n], N$) holds iff N is the minimum number of variables in X_1, \ldots, X_n for which the value needs to be changed in order that all the variables take a distinct value. **Decomposition:** NVALUE($[X_1, \ldots, X_n], K$) $\wedge N = n - K$. # SUMOFWEIGHTSOFDISTINCTVALUES: **Semantics:** SumOfWeightsOfDistinctValues($[X_1, \ldots, X_n], [\langle d_1, c_1 \rangle, \ldots, \langle d_m, c_m \rangle], C$) holds iff the variables X_1, \ldots, X_n take their values from d_1, \ldots, d_m and C is the sum of the cost values (described by c_i) of the distinct values assigned. # **Decomposition:** $$D = \{d_1, \dots, d_m\} \land GCC([X_1, \dots, X_n], [d_1, \dots, d_m], [O_1, \dots, O_m]) \land (\forall i \in \{1, \dots, m\}. \operatorname{Min}(NO_i, [1, O_i])) \land \sum_{i \in \{1, \dots, m\}} c_i * NO_i = C.$$ # SURJECTION: Semantics: Surjection($[X_1, ..., X_n], S$) holds iff for each $j \in S$ there exists $X_i = j$. Decomposition: Range($[X_1, ..., X_n], \{1, ..., n\}, T$) $\land S \subseteq T$. #### SYMETRICALLDIFFERENT: **Semantics:** SymetricAllDifferent($[X_1, ..., X_n]$) holds iff $X_i = j \leftrightarrow X_j = i$ (it is therefore implied that AllDifferent($[X_1, ..., X_n]$)) # Decomposition: RANGE($$[X_1, ..., X_n], \{1, ..., n\}, \{1, ..., n\}$$) $\land (\forall i \in \{1, ..., n\})$. ROOTS($[X_1, ..., X_n], S_i, \{i\}$) $\land X_i \in S_i$) # SYMETRICGCC: **Semantics:** SymetricGCC($[X_1, \ldots, X_n], [Y_1, \ldots, Y_n], [OX_1, \ldots, OX_n], [OY_1, \ldots, OY_n]$) holds iff $i \in X_j \leftrightarrow j \in Y_i$ and OX_i (resp. OY_i) is the number of occurrences of i in the sets assigned to Y_1, \ldots, Y_n (resp. X_1, \ldots, X_n). # **Decomposition:** $\forall i \in \{1, \dots, n\}$. LinkSetToBooleans $(X_i, [B_{i1}, B_{i2}, \dots, B_{in}]) \land$ LinkSetToBooleans $(Y_i, [B_{1i}, B_{2i}, \dots, B_{ni}]) \land OX_i = |X_i| \land OY_i = |Y_i|$. # USEDBY: **Semantics:** USEDBY($[X_1, \ldots, X_n], [Y_1, \ldots, Y_m]$) holds iff the multiset of values assigned to Y_1, \ldots, Y_m is subset of the one assigned to X_1, \ldots, X_n . **Decomposition:** By defining RANGE($[X_1, \ldots, X_n], S, T$) as $T = \biguplus_{i \in S} \{X_i\}$, we can decompose USED similarly to USES. # Uses: **Semantics:** USES($[X_1,\ldots,X_n],[Y_1,\ldots,Y_m]$) holds iff the set of values assigned to Y_1,\ldots,Y_m is a subset the one assigned to X_1,\ldots,X_n . **Decomposition:** RANGE($[X_1,\ldots,X_n],\{1,\ldots,n\},S$) \wedge RANGE($[Y_1,\ldots,Y_m],\{1,\ldots,m\},T$) \wedge $T\subseteq S$.