Symmetry Breaking using Value Precedence

Toby Walsh!

Abstract. We present a comprehensive study of the use of value
precedence constraints to break value symmetry. We first give a sim-
ple encoding of value precedence into ternary constraints that is both
efficient and effective at breaking symmetry. We then extend value
precedence to deal with a number of generalizations like wreath
value and partial interchangeability. We also show that value prece-
dence is closely related to lexicographical ordering. Finally, we con-
sider the interaction between value precedence and symmetry break-
ing constraints for variable symmetries.

1 INTRODUCTION

Symmetry is an important aspect of many search problems. Symme-
try occurs naturally in many problems (e.g. if we have two identical
machines to schedule, or two identical jobs to process). Symmetry
can also be introduced when we model a problem (e.g. if we name
the elements in a set, we introduce the possibility of permuting their
order). We must deal with symmetry or we will waste much time vis-
iting symmetric solutions, as well as parts of the search tree which
are symmetric to already visited parts. One simple but highly effec-
tive mechanism to deal with symmetry is to add constraints which
eliminate symmetric solutions [3].

Two common types of symmetry are variable symmetries (which
act just on variables), and value symmetries (which act just on val-
ues). With variable symmetries, we have a number of well under-
stood symmetry breaking constraints. For example, many problems
can be modelled using matrices of decision variables, in which the
rows and columns of the matrix are symmetric and can be freely per-
muted. We can break such symmetry by lexicographically ordering
the rows and columns [4]. Efficient propagators have therefore been
developed for such ordering constraints [5, 2].

Value symmetries are also common. However, symmetry breaking
for value symmetry is less well understood. In this paper, we study
a common type of value symmetry where the values for variables
are interchangeable. For example, if we assign orders to machines
and two orders are identical, we can swap them in any schedule. We
show here how to deal with such symmetry. In particular, we give
a simple encoding that breaks all the symmetry introduced by inter-
changeable values. We also show how this is closely related to the
lexicographical ordering constraint.

2 BACKGROUND

A constraint satisfaction problem consists of a set of variables, each
with a domain of values, and a set of constraints specifying allowed
combinations of values for given subsets of variables. A solution is
an assignment of values to variables satisfying the constraints. Finite

1 National ICT Australia and University of New South Wales, email:
tw@cse.unsw.edu.au

domain variables take values which are integers, or tuples of integers
taken from some given finite set. Set variables takes values which
are sets of integers. A set variable .S has a lower bound 1b(.S) for
its definite elements and an upper bound ub(.S) for its definite and
potential elements.

Constraint solvers typically explore partial assignments enforcing
a local consistency property. We consider the two most common local
consistencies: arc consistency and bound consistency. Given a con-
straint C', a bound support on C' is an assignment of a value to each
finite domain variable between its minimum and maximum and of a
set to each set variable between its lower and upper bounds which
satisfies C'. A constraint C' is bound consistent (BC) iff for each fi-
nite domain variable, its minimum and maximum values belong to
a bound support, and for each set variable S, the values in ub(S)
belong to S in at least one bound support and the values in [6(S)
belong to .S in all bound supports. Given a constraint C' on finite do-
main variables, a support is assignment to each variable of a value in
its domain which satisfies C. A constraint C on finite domains vari-
ables is generalized arc consistent (GAC) iff for each variable, every
value in its domain belongs to a support.

A variable symmetry is a bijection on variables that preserves so-
lutions. For example, in a model of the rehearsal problem (prob039
in CSPLib) in which we assign musical pieces to time slots, we can
always invert any schedule. This is a reflection symmetry on the vari-
ables. A value symmetry is a bijection on values that preserves solu-
tions. For example, in our model of the rehearsal problem, two pieces
requiring the same musicians are interchangeable and can be freely
permuted in any solution. Note that some authors call these global
value symmetries as they act globally on values [12]. Finally, a pair
of values are interchageable if we can swap them in any solution.

3 VALUE PRECEDENCE

We can break all symmetry between a pair of interchangeable values
using a global value precedence constraint [9].

PRECEDENCE([v;, vk], [X1, .., Xn])

This holds iff min{i | X; = v; Vi = n+ 1} < min{i | X; =
vk Vi = n + 2}. Law and Lee give a specialized algorithm for en-
forcing GAC on such a global constraint [9]. We show here that this
is unnecessary. We can encode the constraint efficiently and effec-
tively into a simple sequence of ternary constraints.

We introduce a sequence of 0/1 variables, where B; = 1if X; =
v; for some [< . Value precedence prevents us assigning X; = v
unless B; = 1. To ensure this, we post the sequence of ternary con-
straints, C'(X;, Bi, Bi+1) for 1 < ¢ < n which hold iff X; = v;
implies Biy1 = 1, X; # v; implies B; = Bj1, and B; = 0 im-
plies X; # vi. We also set By = 0. We assume that we can enforce
GAC on each individual ternary constraint C' using a table constraint

or using primitives like implication and equality constraints. As the
constraint graph is Berge-acyclic, enforcing GAC on the ternary
constraints achieves GAC on PRECEDENCE([v;, vg], [X1, .., Xn]).
Since C is functional in its first two arguments and there are O(n)
ternary constraints, this takes O(nd) time where d is the maximum
domain size of the X;. This is therefore optimal (as was Law and
Lee’s specialized algorithm). The incremental behavior is also good.
Law and Lee’s algorithm maintains three pointers, «, (3 and -y to save
re-traversing the vector. A constraint engine will also perform well
incrementally on this encoding provided it ignores constraints once
they are entailed. Our experimental results support this claim.

4 MULTIPLE VALUE INTERCHANGEABILITY

Many problems involve multiple interchangeable values. For exam-
ple, in a finite domain model of the social golfer problem (prob010 in
CSPLib) in which we assign groups to golfers in each week, all val-
ues are interchangeable. To break all such symmetry, Law and Lee
[9] propose the global constraint:

PRECEDENCE([v1, .., Um], [X1, .., Xn])

This holds Iffmln{z ‘ X; =v;Vi= n+1} < min{i | X; = Uj\/i =
n+2} forall 1 < ¢ < j < m. To propagate this constraint, Law and
Lee suggest decomposing it into pairwise precedence constraints of
the form PRECEDENCE([vs, vj], [X1, .., Xn]) for all ¢ < j [9]. Law
has conjectured (page 77 of [8]), that such a decomposition does not
hinder GAC propagation. We prove this is not the case.

Theorem 1 Enforcing GAC on PRECEDENCE([v1, .., Um],
[X1,..,Xn]) is strictly stronger than enforcing GAC on
PRECEDENCE([v;, v5], [X1,.., Xn]) forall 1 <i < j < m.

Proof: Clearly it is at least as strong. To show strictness, con-
sider PRECEDENCE([1, 2, 3,4], [X1, X2, X3, X4]) with X; € {1},
X, € {1,2}, X5 € {1,3}, and X4 € {3,4}. Then enforcing GAC
on PRECEDENCE([1, 2, 3,4], [X1, X2, X3, X4]) prunes 1 from the
domain of X,. However, PRECEDENCE([i, j], [X1, X2, X3, X4]) is
GACforalll1<i< j<4.0

We propose instead a simple encoding of
PRECEDENCE([v1, .., Um], [X1, .., Xn]) into a sequence of ternary
constraints. We introduce n + 1 finite domain variables, where
Y; records the greatest index of the values used so far in the
precedence order. We then post a sequence of ternary constraints,
D(X;,Y;, Y1) for 1 < i < n which hold iff X; # v, for any
i>Yi+1,Yi1 =Y+ 1if X; = viyy, and Yiy1 = Y; otherwise.
We set Y1 = 0. Again, we achieve GAC on the global constraint
simply by enforcing GAC on the individual ternary constraints.
This takes O(nmd) time. By comparison, enforcing GAC on the
decomposition into precedence constraints between all pairs of
interchangeable values takes O(nm?d) time.

5 PARTIAL INTERCHANGEABILITY

We may have a partition on the values, and values within each parti-
tion are interchangeable. For example, in the model of the rehearsal
problem in which we assign musical pieces to time slots, we can
partition the musical pieces into those requiring the same musicians.
Suppose the values are divided into s equivalence classes, then we
can break all symmetry with the global constraint:

PRECEDENCE([[01,1 s U1,my |y -+5 [Us, 15 s Vs,ms], [X1s -y Xn))

This holds iff min{i | X; = v;x Vi =n+ 1} < min{i | X; =
vikt1 Vi=n+2}foralll1 < j<sand1l <k < m;. This global
constraint can be decomposed into s precedence constraints, one for
each equivalence class. However, such decomposition hinders prop-
agation.

Theorem 2 Enforcing GAC on PRECEDENCE([[v1,1, ., U1,my] -+
[Vs,1, -4y Vs,ms]], [X1, .., Xn]) is strictly stronger than enforcing
GAC on PRECEDENCE([vi,1, -, Vi,m; |, [X1, .., Xn]) for 1 <i <s.

Proof: Clearly it is at least as strong. To show strictness,
consider ~ PRECEDENCE(][[1,2, 3], [4, 5, 6]], [X1,..,X5]) with
X1,X2,Xs € {1,2,3,4,5,6}, X4 € {3} and X5 € {6}.
Then PRECEDENCE([[1,2,3],[4,5,6]], [X1,..,X5]) is unsat-
isfiable. ~ However, PRECEDENCE([L,2, 3], [X1,.., X5]) and
PRECEDENCE([4, 5, 6], [X1, .., X5]) are both GAC. ¢

Decomposition is again unnecessary as we can encode the global
constraint into a sequence of ternary constraints. The idea is to keep a
tuple recording the greatest value used so far within each equivalence
class as we slide down the sequence. We introduce n + 1 new finite-
domain variables, Y; whose values are s-tuples. We write Y;[j] to
indicate the jth component of the tuple. We then post a sequence of
ternary constraints, £(X;,Y;, Yi+1) for 1 <4 < nwhich hold iff for
all 1 < j < swehave X; # v forall k > Yi[j] + 1, Yiqa[j] =
Yilj] + 1if Xi = v, y,[j14+1 and Yipa[j] = Yi[j] otherwise. The
value taken by Y;1[;] is the largest index within the jth equivalence
class used up to X;. Since E is functional in its third argument, this
takes O(nde) time where e = [],__ m. Note that if all values are
interchangeable with each other, then s = 1 and m1 = m, and
enforcing GAC takes O(nmd) time. Similarly, for just one pair of
interchangeable values, s = n — 1, m; = 2and m; = 1 fori > 1,
and enforcing GAC takes O(nd) time.

6 WREATH VALUE INTERCHANGEABILITY

Wreath value interchangeability [13] is a common type of symme-
try in problems where variables are assigned a pair of values from
D1 x Do, values in D; are fully interchangeable, and for a fixed
value in Dy, values in D5 are interchangeable as well. For example,
if we are scheduling a conference, the days of the week might be in-
terchangeable, and given a particular day, the meeting rooms might
then be interchangeable. For simplicity, we assume the same prece-
dence ordering is used for the values in D, for every fixed value in
D;. However, we can relax this assumption without difficulty.

We can break all the symmetry of wreath-value interchangeability
with the global constraint:

PRECEDENCE([u1, .., Um, [1, .., Vp]], [X1, .., Xn])

This holds iff min{i | X;[1] = u; Vi=n+ 1} < min{i | X;[1] =
ujr1Vi=n+2}foralll <j < m,and min{i | X; = (u;,ve) V
i =n+1} <min{i| X; = (uj,vet1)Vi =n+2}forall1 < j <
mand 1 < k < p. This can be decomposed into precedence con-
straints of the form PRECEDENCE([(ui, v;), (uk,)], [X1, .., Xn]),
but this hinders propagation.

Theorem 3 Enforcing GAC on PRECEDENCE([u1, .., Um,
[v1,..,vp]], [X1,..,Xn]) is strictly stronger than enforcing
GAC on PRECEDENCE([(u:,v;), (uk, v)], [X1,.., Xx]) for all
1<i<k<m,andforalli=41<ij<m,1<k<l<p.

Proof: Clearly it is at least as strong. To show strict-
ness, consider PRECEDENCE([L,2,[3,4]], [X1, X2, X3, X4])

with X1 € {(1,3)}, X2 € {(1,3),(1,4)}, Xs €
{(1,3),(2,3)}, X4 € {(2,3),(2,4)}, Then enforcing GAC on
PRECEDENCE(][1, 2, [3,4]], [X1, X2, X3, X4]) prunes (1,3) from
Xo. However, PRECEDENCE([(u, v), (w, 2}], [X1, X2, X3, X4]) is
GACforalll1 <u<w<2and 3 <wv,z < 4,and forall u = w,
1<u,w<2,3<v<z<4.90

We again can propagate such a precedence constraint us-
ing a simple encoding into ternary constraints. We have
a finite domain variable which records the greatest pair
used so far down the sequence. We can then encode
PRECEDENCE([u1, .., Um, [1, .., Vp]], [X1, .., Xn]) Dy means
of a sequence of ternary constraints, F'(X;,Y;,Yit1) for1 <i<n
which hold iff X;[1] # u; forall j > Yi[1] + 1, if Xi[1] = uy,
then X;[2] # v; forall j > Yi[2] + 1, Yiy1 = (Y3[1] 4+ 1,1) if
Xil] = uy,p) + Land Yi[2] = m, Yigr = (Yi[1], Y[2] + 1) if
Xi = (uy,p1],Vy;12) + 1), and Yiy1 = Y; otherwise. Enforcing
GAC using this encoding takes O(ndmp) time. The extension
to wreath value partial interchangeability and to wreath value
interchangeability over k-tuples where & > 2 are both straight
forwards.

7 MAPPING INTO VARIABLE SYMMETRY

An alternative way to deal with value symmetry is to convert it into
variable symmetry [4, 10]. We introduce a matrix of 0/1 variables
where B;; = 1iff X; = j. We assume the columns of this 0/1 ma-
trix represent the interchangeable values, and the rows represent the
original finite domain variables. We now prove that value precedence
is equivalent to lexicographically ordering the columns of this 0/1
matrix, but that channelling into 0/1 variables hinders propagation.

Theorem 4 PRECEDENCE([v1, .., Um], [X1, .., X»]) IS equivalent
toX; =v;iff B =1for 0 < j <mand0 < ¢ < n, and
[BLJ'7 ..,Bn’j] >lex [Bl,j+17 ..,Bn,j+1] for 0 <7 <m.

Proof: By induction on n. In the base case,n = 1, X1 = v1, Bi,1 =
land By,; = 0for1 < j < m. In the step case, suppose the value
precedence constraint holds for a ground assignment in which vy, is
the largest value used so far. Consider any extension with X, 11 =
v;. There are two cases. In the first, [= &£+ 1. The {th column is thus
[0, ..,0,1]. This is lexicographically less than all previous columns.
In the other case, I < k. Adding a new row with a single 1 in the
[th column does not change the ordering between the [— 1th, /th and
I + 1th columns. The proof reverses in a similar way. ¢

We could thus impose value precedence by channelling into an
0/1 matrix model and using lexicographical ordering constraints [4].
However, this decomposition hinders propagation as the lexicograph-
ical ordering constraints do not exploit the fact that the 0/1 matrix
has a single non-zero entry per row. Indeed, even if we add this
implied constraint to the decomposition, propagation is hindered.
It is thus worth developing a specialized propagator for the global
PRECEDENCE constraint.

Theorem5 GAC on PRECEDENCE([v1,..,Um], [X1,.., Xn]) IS
strictly stronger than GACon X; = v; iff B;; = 1for0 < j < m
and 0 < ¢ < n, GACon [B1,j,.., Bn,j| >lex [B1,j+1;--, Bn,j+1]
for0<j<m,andGACon ™" Bi;=1for0<i<n.

Proof: Clearly it is as strong. To show strictness, consider X; = 1,
X2 €{1,2,3}, X3 =3,B1,1=Bs3=1,B12=DBi13=DBs1 =
Bs2 = 0,and By1, Bz 2, B2 3 € {0, 1}. Then the decomposition is

GAC. However, enforcing GAC on the value precedence constraint
will prune 1 and 3 from X5. ¢

It is not hard to show that partial value interchangeability corre-
sponds to partial column symmetry in the corresponding 0/1 ma-
trix model. As with full interchangeability, we obtain more pruning
with a specialized propagator than with lexicographical ordering con-
straints.

8 SURJECTION PROBLEMS

A surjection problem is one in which each value is used at least once.
Puget converts value symmetries on surjection problems into vari-
able symmetries by channelling into dual variables which record the
first index using a value [11]. For interchangeable values, this gives
O(nm) binary symmetry breaking constraints: X; = j — Z; < 4,
Zi=i—X;=j,and Zy < Zpp1 forall 1 <i<n, 1 <j<m
and 1 < k& < m. Any problem can be made into a surjection by intro-
ducing m additional new variables to ensure each value is used once.
In this case, Puget’s symmetry breaking constraints ensure value
precedence. However, they may not prune all possible values. Con-
sider X1 =1, Xo € {1,2}, X3 € {1,3}, X4 € {3,4}, X5 = 2,
Xe =3, X7 =4,721 =1, Zy € {2, 5}, Zs € {3, 4, 6}, and
Zy € {4,7}. Then all the binary implications are AC. However, en-
forcing GAC on PRECEDENCE([1, 2, 3,4], [X1, . .., X7]) will prune
1 from Xo.

9 SET VARIABLES

We also meet interchangeable values in problems involving set vari-
ables. For example, in a set variable model of the social golfers
problem in which we assign a set of golfers to the groups in
each week, all values are interchangeable. We can break all such
symmetry with value precedence constraints. For set variables,
PRECEDENCE([v1, .., Um], [S1, .., Sn]) holds iff min{s | (v; € Si A
vp € S;)Vi=n+1} <min{i| (vy € Si Av; € S;)Vi=n+2}
forall 1 < j < k < m [9]. That is, the first time we distinguish be-
tween v; and vy, (because both values don’t occur in a given set vari-
able), we have v; occurring and not vy,. This breaks all symmetry as
we cannot now swap v; for vi. Law and Lee again give a specialized
propagator for enforcing BC on PRECEDENCE([v;, v], [S1, .., Sn]).
We prove here that this decomposition hinders propagation.

Theorem 6 Enforcing BC on PRECEDENCE([v1, .., Um], [S1, .., Sn])
is strictly stronger than enforcing BC on
PRECEDENCE([v;, v5], [S1, .., Sn]) forall 1 < i < j < m.

Proof: Clearly it is at least as strong. To show strictness, consider
PRECEDENCE([0, 1, 2], [S1, Sz, S3, 54, 55]) with {} C S1 C {0},
{}y €8 C{1},{} €8s C {1}, {} €54 C {0} and S5 = {2}.
Then enforcing BC on PRECEDENCE([0, 1, 2], [S1, S2, S35, S4, S5])
sets S; to {0}. However, PRECEDENCE([:, j], [S1, S2, S3, S4, S5])
isBCforall0 <i<j <20

As with finite domain variables, we do need to introduce a new
propagator nor to decompose this global constraint. We view each set
variable in terms of its characteristic function (a vector of 0/1 vari-
ables). This gives us an n by d matrix of 0/1 variables with column
symmetry in the d dimension. Unlike the case with finite domain
variables, rows can now have any sum. We can break all such col-
umn symmetry with a simple lexicographical ordering constraint [4].
If we use the lex chain propagator [2], we achieve BC on the original
value precedence constraint in O(nd) time.

In many constraint solvers, set variables also have restrictions on
their cardinality. Unfortunately, adding such cardinality information
makes value precedence intractable to propagate.

Theorem 7 Enforcing BC on PRECEDENCE([v1, .., Um], [S1, .., Sn])
where set variables have cardinality bounds is NP-hard.

Proof: We give a reduction from a 1-in-3 SAT problem in N
Boolean variables, 1 to xn and M positive clauses. We let n =
2N + M, m = 2N and v; = 4. To encode the truth assignment
which satisfies the 1-in-3 SAT problem, we have Sz; = {2¢,2: + 1}
and {21} - 521'+1 - {22, 21+ 1} for1 <3< N. SQi+1 will be {21}
iff ; is false and {2¢, 2¢+ 1} otherwise. The remaining M CSP vari-
ables represent the M clauses. Suppose the ith clause is x; V zy V 2y,
We let Sonyi € {25 + 1,2k + 1,20 + 1}. Finally, we force San
to take two of the values 25 + 1, 2k + 1, 21 + 1 from its upper bound.
Value precedence only permits this if exactly two out of S;, Sax and
So; take the set value representing “false”. The global value prece-
dence constraint thus has bound support iff the corresponding 1-in-3
SAT problem is satisfiable. Hence, enforcing BC is NP-hard. ¢

10 VALUE AND VARIABLE SYMMETRY

In many situations, we have both variable and value symmetry. Can
we safely combine together symmetry breaking constraints for vari-
able symmetries and value symmetries? Do we break all symmetry?

INTERCHANGEABLE VARIABLES

Suppose that all n variables and m values are interchangeable. We
can safely combine a global value precedence constraint (which
breaks all the value symmetry) with a simple ordering constraint
(which breaks all the variable symmetry). However, this does not
break all symmetry. For example, [1, 2, 2] and [1, 1, 2] are symmetric
since inverting the first sequence and permuting 1 with 2 gives the
second sequence. However, both sequences satisfy the value prece-
dence and ordering constraints. We can break all symmetry with
the global constraint INCREASINGSEQ([X1, .., X»]) which holds iff
X1 = 1, Xi+1 = XZ or (X, = Vj and X1'+1 = Uj+1) for all
0 <1< n,and |{’L | X; = vj}| < |{Z | X; = vj+1}| for all
0 < j < m. That is, the values and the number of occurrences
of each value increase monotonically. We can also have the values
increasing but the number of occurrences decreasing. One way to
propagate this constraint is to consider the corresponding 0/1 matrix
model. The INCREASINGSEQ constraint lexicographically orders the
rows and columns, as well as ordering the columns by their sums.

Consider, now, (partially) interchangeable set variables taking
(partially) interchangeable values. This corresponds to an 0/1 ma-
trix with (partial) row and (partial) column symmetry. Unfortunately,
enforcing breaking all row and column symmetry is NP-hard [1].
We cannot expect therefore to break all symmetry when we have
interchangeable set variables and interchangeable values. We can
break symmetry partially by lexicographical ordering the rows and
columns of the corresponding 0/1 matrix.

MATRIX SYMMETRY
Variables may be arranged in a matrix which has row and/or column

symmetry [4]. Lexicographical ordering constraints will break such
symmetries. Suppose that values are also (partially) interchangeable.

As lexicographical ordering constraints can be combined in any num-
ber of dimensions [4], and as value precedence is equivalent to lex-
icographically ordering the 0/1 model, we can safely combine value
precedence and row and column symmetry breaking constraints.

VARIABLE REFLECTION SYMMETRY

Suppose we have a sequence of 2n variables with a reflection sym-
metry. Then we can break all such symmetry with the lexicograph-
ical ordering constraint: [X1, ..., Xn] <iex [Xon,..., Xnt1]. FOr
an odd length sequence, we just miss out the middle element. If val-
ues are also (partially) interchangeable, we can combine such a re-
flection symmetry breaking constraint with precedence constraints.
Whilst these symmetry breaking constraints are compatible, they do
not break all symmetry. For example, [1,2,1,1,2] and [1, 2,2, 1, 2]
are symmetric since inverting the first sequence and permuting 1 with
2 gives the second sequence. However, hoth sequences satisfy all
symmetry breaking constraints.

VARIABLE ROTATION SYMMETRY

Suppose we have a sequence of n variables with a rotation sym-
metry. That is, if we rotate the sequence, we obtain a symmet-
ric solution. We can break all such symmetry with the constraints:
[Xl,... 7Xn] <ex [Xi,...,Xn,Xl,...Xi_l] forl < 1 <n. If
values are also (partially) interchangeable, then we can combine such
symmetry breaking constraints with precedence constraints. Whilst
these symmetry breaking constraints are compatible, they do not
break all symmetry. For example, [1,1,2,1,2] and [1,2,1,2,2] are
symmetric since rotating the first sequence by 2 elements and per-
muting 1 with 2 gives the second sequence. However, both sequences
satisfy all symmetry breaking constraints.

11 EXPERIMENTAL RESULTS

To test the efficiency and effectiveness of these encodings of value
precedence constraints, we ran a range of experiments. We report re-
sults here on Schur numbers (prob015 in CSPLib). This problem was
used by Law and Lee in the first experimental study of value prece-
dence [9]. We have observed similar results in other domains like the
social golfers problem and Ramsey numbers (prob017 in CSPLib).
The Schur number S(k) is the largest integer n for which the in-
terval [1, n] can be partitioned into k& sum-free sets. .S is sum-free iff
Ya,b,c € S . a # b+ c. Schur numbers are related to Ramsey num-
bers, R(n) through the identity: S(n) < R(n) — 2. Schur numbers
were proposed by the famous German mathematician Isaai Schur in
1918. S(4) was open until 1961 when it was first calculated by com-
puter. S(3) is 13, S(4) is 44, and 160 < S(5) < 315. We consider
the corresponding decision problem, S(n, k) which asks if the inter-
val [1, n] can be partitioned into k sum-free sets. A simple model of
this uses n finite domain variables with & interchangeable values.
Results are given in Table 1. The model all uses a single global
precedence constraint to break all value symmetry. The model adja-
cent uses the method proposed by Law and Lee in [9] which posts
O(k) precedence constraints between adjacent interchangeable val-
ues. The model none use no precedence constraints. We coded the
problem using the finite domain library in SICSTUS 3.12.3, and ran
it on an AMD Athlon Dual Core 2.2GHz processor with 1 GB RAM.
The results show the benefits of a global value precedence con-
straint. With a few interchangeable values, we see the same pruning
using adjacent as all. However, we observe better runtimes with the

problem value symmetry breaking
S(n, k) none adjacent values all values

c b t c b t c b t
S5(13,3) | 126 276 0.02 360 46 0.01 | 243 46 0.01
S(13,4) | 126 134400 16.43 477 2,112 1.48 | 243 2,112 0.85
S(13,5) 777 210,682 20.80 | 243 6,606 11.88
S5(13,6) 879 309,917 79.60 | 243 1,032 4251
S(14,3) | 147 456 0.02 399 76 0.02 | 273 76 0.02
S(14,4) | 147 46,1376 39.66 525 8,299 3.06 | 273 8,299 1.96
S(14,5) 816 813,552 66.83 | 273 58558 40.35
S(14,6) 1,731 250,563 348.06 | 273 57,108 197.39
S(15,3) | 168 600 0.03 438 100 0.02 | 303 100 0.02
S(15,4) | 168 1,044,984 101.36 573 17,913 7.92 | 303 17,913 4.73
S(15,5) 855 1,047,710 259.15 | 303 194,209 14597
5(15,6)

Tablel. Decision problem associated with Schur numbers: constraints posted, backtracks and times to find all solutions in seconds to S(n, k). Blank entries
are for problems not solved within the 10 minute cut off. Results are similar to find first solution.

all model as it encodes into fewer ternary constraints (O(n) versus
O(nk)). With more interchangeable values (e.g. & > 4), we observe
both better runtimes and more pruning with the single global prece-
dence constraint in the all model. The encoding of this global con-
straint into ternary constraints appears therefore to be an efficient and
an effective mechanism to deal with interchangeable values.

12 RELATED WORK

Whilst there has been much work on symmetry breaking constraints
for variable symmetries, there has been less on value symmetries.
Law and Lee formally defined value precedence [9]. They also gave
specialized propagators for breaking value precedence for a pair of
interchangeable values. Gent proposed the first encoding of value
precedence constraint [6]. However, it is uncertain what consistency
is achieved as the encoding indexes with finite domain variables.

A number of methods that modify the underlying solver have
been proposed to deal with value symmetry. Van Hentenryck et al.
gave a labelling schema for breaking all symmetry with interchange-
able values [7]. Inspired by this method, Roney-Dougal et al. gave
a polynomial method to construct a GE-tree, a search tree without
value symmetry [12]. Finally, Sellmann and van Hentenryck gave a
O(nd*® 4 n*d*) dominance detection algorithm for breaking all
symmetry when both variables and values are interchangeable [13].

There are a number of earlier (and related) results about the
tractability of symmetry breaking. Crawford et al. prove that break-
ing all symmetry in propositional problems is NP-hard in general
[3]. Bessiere et al. prove that the special case of breaking all row
and column symmetry for variables in a matrix model is NP-hard
[1]. Sellmann and van Hentenryck prove a closely related result that
dominance detection for breaking all symmetry with set variables
and values that are interchangeable is NP-hard [13].

13 CONCLUSIONS

We have presented a detailed study of the use of value precedence
constraints to break value symmetry. We first gave a simple encoding
of value precedence into ternary constraints that is both efficient and
effective. We then extended value precedence to deal with a number
of generalizations like wreath value and partial interchangeability.

We have also shown how value precedence is closely related to lexi-
cographical ordering. Finally, we considered the interaction between
value precedence and other symmetry breaking constraints. There are
a number of interesting open questions. For example, how does value
precedence interact with variable and value ordering heuristics?

REFERENCES

[1] C. Bessiere, E. Hebrard, B. Hnich, and T. Walsh, ‘The complexity of
global constraints’, in Proc. of the 19th National Conf. on Al. AAAI,
(2004).

[2] M. Carlsson and N. Beldiceanu, ‘Arc-consistency for a chain of lex-
icographic ordering constraints’, Technical report T2002-18, Swedish
Institute of Computer Science, (2002).

[3] J. Crawford, G. Luks, M. Ginsberg, and A. Roy, ‘Symmetry breaking
predicates for search problems’, in Proc. of the 5th Int. Conf. on Knowl-
edge Representation and Reasoning, (KR ' 96), pp. 148-159, (1996).

[4] P. Flener, A. Frisch, B. Hnich, Z. Kiziltan, 1. Miguel, J. Pearson, and
T. Walsh, ‘Breaking row and column symmetry in matrix models’, in
8th Int. Conf. on Principles and Practices of Constraint Programming
(CP-2002). Springer, (2002).

[5] A. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, and T. Walsh, ‘Global con-
straints for lexicographic orderings’, in 8th Int. Conf. on Principles and
Practices of Constraint Programming (CP-2002). Springer, (2002).

[6] I.P. Gent, ‘A symmetry breaking constraint for indistinguishable val-
ues’, in Proc. of 1st Int. Workshop on Symmetry in Constraint Satisfac-
tion Problems (SymCon-01), held alongside CP-01, (2001).

[7] P.Van Hentenryck, M. Agren, P. Flener, and J. Pearson, ‘Tractable sym-
metry breaking for CSPs with interchangeable values’, in Proc. of the
18th 1JCAI. (2003).

[8] Y.C. Law, Using Constraints to Break Value Symmetries in Constraint
Satisfaction Problems, Ph.D. dissertation, Department of Computer
Science and Engineering, The Chinese University of Hong Kong, 2005.

[9] Y.C.Law and J.H.M. Lee, ‘Global constraints for integer and set value
precedence’, in Proc. of 10th Int. Conf. on Principles and Practice of
Constraint Programming (CP2004), pp. 362—-376. Springer, (2004).

[10] Y.C.Law and J.H.M. Lee, ‘Breaking value symmetries in matrix mod-
els using channeling constraints’, in Proc. of the 20th Annual ACM
Symposium on Applied Computing (SAC-2005), pp. 375-380, (2005).

[11] J-F. Puget, ‘Breaking all value symmetries in surjection problems’, in
Proc. of 11th Int. Conf. on Principles and Practice of Constraint Pro-
gramming (CP2005), ed., P. van Beek. Springer, (2005).

[12] C. Roney-Dougal, I. Gent, T. Kelsey, and S. Linton, ‘Tractable symme-
try breaking using restricted search trees’, in Proc. of ECAI-2004. 10S
Press, (2004).

[13] M. Sellmann and P. Van Hentenryck, ‘Structural symmetry breaking’,
in Proc. of 19th JCAI. (2005).

