
Chapter 5
A Branch-and-Price Framework
for the Maximum Covering and Patrol
Routing Problem

Paul A. Chircop, Timothy J. Surendonk, Menkes H. L. van den Briel,
and Toby Walsh

Abstract The Maximum covering and patrol routing problem (MCPRP) is con-
cerned with the allocation of police patrol cars to accident hotspots on a highway
network. A hotspot is represented as a time window at a precise location on the
network at which motor vehicle accidents have a high probability of occurring. The
nature of these accidents may be due to speeding, driver fatigue or blind-spots at
intersections. The presence of police units at hotspots serves as an accident preven-
tion strategy. In many practical applications, the number of available cars cannot
cover all of the hotspots on the network. Hence, given a fleet of available units, an
optimization problem can be designed which seeks to maximize the amount hotspot
coverage. The cars must be routed in such a way as to avoid multiple contributions
of the patrol effort to the same hotspot. Each police car is active over a predefined
shift, beginning and ending the shift at a fleet station. In this paper, we introduce a
method for constructing a time-space network of theMCPRPwhich is suitable for the
application of a branch-and-price solution approach. We propose some large-scale
test problems and compare our approach to a state-of-the-art Minimum cost network
flow problem (MCNFP) model. We show that our branch-and-price approach can
outperform theMCNFPmodel on selected large-scale networks for small to medium
fleet sizes. We also identify problems which are too large for the MCNFP model to
solve, but which can be easily handled by our approach.

P. A. Chircop (B) · T. J. Surendonk
Defence Science and Technology Group, Sydney, NSW, Australia
e-mail: paul.chircop@dst.defence.gov.au

T. J. Surendonk
e-mail: timothy.surendonk@dst.defence.gov.au

M. H. L. van den Briel
Hivery, Sydney, NSW, Australia
e-mail: menkes@hivery.com

T. Walsh
UNSW Sydney, Data61, Kensington, NSW, Australia
e-mail: toby.walsh@data61.csiro.au

TU Berlin, Berlin, Germany

© Crown 2021
A. T. Ernst et al. (eds.), Data and Decision Sciences in Action 2,
Lecture Notes in Management and Industrial Engineering,
https://doi.org/10.1007/978-3-030-60135-5_5

59

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60135-5_5&domain=pdf
mailto:paul.chircop@dst.defence.gov.au
mailto:timothy.surendonk@dst.defence.gov.au
mailto:menkes@hivery.com
mailto:toby.walsh@data61.csiro.au
https://doi.org/10.1007/978-3-030-60135-5_5

60 P. A. Chircop et al.

Keywords Route planning · Surveillance scheduling · Branch-and-price

5.1 Introduction and Background

The Maximum covering and patrol routing problem (MCPRP) was first studied by
Keskin et al. [10]. Given a set of highway locations and time intervals at which
traffic accidents have a high probability of occurring, the problem is to find patrol
routes for a set of police cars so that the aggregate coverage of all the accident
hotspots is maximized. Each patrol car begins and ends its route at a fleet station on
a predefined shift. Keskin et al. [10] modelled the MCPRP using a Mixed-integer
programming (MIP) formulation and found that state-of-the-art commercial solvers
were not always able to find good quality solutions. Hence, a number of heuristic
techniques (local and tabu search) were introduced and benchmarked on a range of
test problem instances. The test problems solved by Keskin et al. [10] were generated
with randomized and real-world data with up to 40 hotspots and 8 patrol cars. These
test problem instances were created to reflect the circumstances faced by (and the
resources available to) law enforcement agencies in a particular region of the United
States.1 The paper by Keskin et al. [10] reports that the heuristic techniques were
able to produce good quality but not optimal solutions to the larger problem instances
with 40 hotspots.2

The paper published by Çapar et al. [3] showed that significant improvements
could be made to the MIP formulation of [10]. With information on the structure of
candidate routes in an optimal solution, the authors demonstrated that the number of
variables in the formulation of [10] can be reduced. The authors also incorporated a
number of bounds constraints which provide additional strength to their reformula-
tion. The enhanced efficiency given through this reformulation of the MCPRP was
demonstrated on the benchmark instances introduced in the original paper by Keskin
et al. [10].3

More recent work by Dewil et al. [7] has shown that the MCPRP can be modelled
as a Minimum cost network flow problem (MCNFP).4 The MCNFP is solvable in

1The literature review conducted by Keskin et al. [10] notes that the MCPRP bears similarities to
the Team orienteering problem with time windows (TOPTW). However, the distinguishing charac-
teristic of the MCPRP is that the profit associated with visiting a hotspot is not fixed, but is rather
a function of the amount of “dwell time” within that hotspot’s time window. The authors state that
the range of time window lengths used in the problems of their study varied from 1−270minutes
(usually assuming an 8hour shift).
2The results of this study can also be found in the PhD thesis by Li [12].
3Çapar et al. [3] considered a number of extensions to the standard MCPRP paradigm. These
extensions included the incorporation of shift breaks and allowing the patrol vehicles to begin the
shift at different locations, possibly with delayed starting times.
4TheMCNFP possesses the integrality property when the arc capacities are integer (see Ahuja et al.
[1]). This means that the optimal solution is naturally integer if the problem is solved as a linear
program.

5 A Branch-and-Price Framework for the Maximum … 61

polynomial time, and thus, the authors correct the claim by Keskin et al. [10] that
the MCPRP is NP-hard. The study sets out a time-space network formulation of the
problem on which an MCNFP model is defined. The network formulation divides
individual hotspots into time sections or segments, which are constructed by con-
sidering possible transitions of vehicles which depart from the end of a hotspot (and
arrive at another hotspot) or arrive at the beginning of a hotspot (having departed
from another hotspot). The MCNFP paradigm also permits the time sections to be
weighted differently, thus constituting an extension of the standard MCPRP. The
authors demonstrate the superiority of their approach by comparing their computa-
tional results with those of Keskin et al. [10]. The MCNFP model is extended by the
authors to a Multi-commodity minimum cost network flow problem (MCMCNFP)
model which aims to handle overlapping shifts and different start/end locations for
the patrol vehicles. In order to test the scalability of the model, the authors state that
they could solve a 100 hotspot instance to optimality with up to 23 patrol cars. How-
ever, the authors also report that they could not run a 500 hotspot problem instance,
even with 3 patrol cars.

Given the limitations on theMCNFPmodel to solve large-scale problem instances
of the MCPRP (as reported by Dewil et al. [7]), our paper aims to investigate the
applicability and feasibility of a branch-and-price (column generation with branch-
and-bound) approach to the problem. Given that similar approaches have recently
proved to be effective at solving closely related patrol routing and scheduling prob-
lems, a branch-and-price approach constitutes a natural and promising candidate for
solving large-scale instances of the MCPRP.5

We begin our study by outlining a process for the construction of a time-space
network, which provides an appropriate modelling framework for a path-based lin-
ear programming formulation of the MCPRP. A column generation master prob-
lem, reduced costs, subproblem, seed column construction and pricing strategies are
then subsequently outlined. We then propose a simple branch-and-price paradigm
to obtain integer solutions through the incorporation of branching cuts to the master
problem. The paper concludes with a presentation and discussion of a number of
computational tests performed on a range of benchmark problems, and the results
are compared with the MCNFP model of Dewil et al. [7].

5.2 Preliminary Notation

The patrol operations network is a directed graph GS = (VS, AS), where VS = {0} ∪
{1, . . . , n} is the set of geographical locations and AS ⊆ {(i, j) | i, j ∈ VS, i �= j}
is the set of feasible transitions between the elements of VS . The singleton set {0} is
used to denote the fleet station, whereas the set {1, . . . , n} represents the number of
distinct locations at which hotspots may be found. For each i ∈ VS\{0} there is a set

5For example, see previous work on the Patrol boat scheduling problem with complete coverage
(PBSPCC) by the authors of this paper [5] or the PhD thesis by Chircop [4].

62 P. A. Chircop et al.

of non-overlapping hotspots, where each hotspot is represented by a time window
with a start time and an end time. The number of hotspots at location i is given by
hi , and the mth hotspot at location i is denoted by (i, [eim, lim]), where eim < lim for
all m ∈ {1, . . . , hi } and for all i ∈ VS\{0}. Without loss of generality, at any given
location i ∈ VS\{0}, ifm ′ < m ′′, then lim ′ ≤ eim ′′ , wherem ′,m ′′ ∈ {1, . . . , hi }. The set
of all hotspots is given byW and is indexed by �. The opening (start time) of hotspot
� is denoted by min(�) while the close (finish time) of the hotspot is denoted by
max(�). The set of hotspots can be expressed as W := ⋃

i∈VS\{0} W (i), where, W (i)
is the set of timewindows {(i, [ei1, li1]), . . . , (i, [eihi , lihi])} at location i .We also define
a function ω which maps hotspots to their geographical locations: ω : W → VS\{0}.

5.3 Network Construction

Given GS = (VS, AS), the set of hotspotsW and a shift duration T , we can construct
a time-space network GR = (VR, AR) for the MCPRP according to a transformation
(GS,W, T) 	→ GR . On this expanded time-space network, we have a set of patrol
arcs AP ⊂ AR , a set of waiting arcs AW ⊂ AR , and a set of transit arcs AT ⊂ AR .
The set of patrol arcs in time window � ∈ W is expressed as AP(�) ⊆ AP. We define
tuv ∈ Z

+ to be the transit time of traversing arc (u, v) ∈ AR . For each v ∈ VR , let
A+(v) be the set of all arcs emanating from v, and let A−(v) be the set of all arcs
terminating at v. The source and sink vertices (representing the fleet station) are s and
τ , respectively. Note that A−(s) = A+(τ) = ∅. Equipped with the preceding defini-
tions and notation, the time-space network construction begins with an initialization
procedure which creates a source and a sink vertex, along with a layer of vertices for
each spatial location VS\{0}. Each layer will initially contain T + 1 vertices, where
the horizontal spacing between the vertices defines the time discretization. Hence,
each vertex u ∈ VR can be expressed in terms of a location-time pair (i, t), where
i ∈ VS and t ∈ {0, . . . , T }. The initialization procedure can be found in Algorithm1.

Algorithm 1MCPRP: Initialization of a time-space network
1: Input: A spatial network GS = (VS, AS) and a shift length T
2: procedure InitializeTimeSpaceNetwork(GS, T)
3: VR, AR ← ∅

4: Create source vertex s = (0, 0) and sink vertex τ = (0, T)

5: VR ← VR ∪ {s, τ }
6: for i ∈ VS\{0} do
7: for t = 0, . . . , T do
8: Create vertex u with u = (i, t)
9: VR ← VR ∪ {u}
10: return GR = (VR, AR)

5 A Branch-and-Price Framework for the Maximum … 63

Once the initialization procedure has been executed, the next step is to define the
hotspots on the time-space network. The hotspots for each location are represented
by a series of patrol arcs. The design choice for the hotspots is based on the following
insightful theorem from Keskin et al. [10], which is stated below.

Theorem 5.1 (Keskin et al. [10]) Let K ∗ be an optimal solution to an instance of
the MCPRP. For each hotspot � ∈ W visited by a patrol vehicle k ∈ K ∗, the time
at which k finishes patrolling � is min

{
max(�), T − t{ω(�)}0

}
if � is the last hotspot

visited on k’s route, and max(�) otherwise.

Theorem5.1 states that in an optimal solution to the MCPRP, a given patrol vehicle
will remain at hotspot � until the close of the time window if hotspot � is not the last
hotspot on k’s route. If, on the other hand, the hotspot � is the last hotspot visited
on patrol vehicle k’s route, then k remains at hotspot � until the close of the time
window or until the latest time at which k can leave the hotspot and arrive back at
the fleet station within the shift T . Given this result, we can represent each hotspot
with a series of patrol arcs which collectively terminate at the vertex corresponding
to the end of the time window or at the vertex corresponding to the latest possible
time at which a patrol vehicle must return to the fleet station. The first patrol arc in
the series emanates from the vertex corresponding to the start of the time window,
with the subsequent patrol arc in the series originating at the next chronological
vertex within the time window, and so on. This process is illustrated in Fig. 5.1.
The formal procedure for constructing the patrol arcs over the hotspots on a time-
space network can be found in Algorithm 2. This procedure also includes a test to
check whether a time window lies within, crosses the boundary of or lies outside of
the feasibility interval [t0i , T − ti0]. Any hotspot which crosses the boundary of the
feasibility interval must have its start and end time updated accordingly, while any
hotspot lying entirely outside the feasibility window should be discarded.

As we will see in a later section, a set of packing constraints is required in the
column generationmaster problem to avoidmultiple contributions to the patrol effort
in each hotspot. By adopting the patrol arc construction shown in Fig. 5.1, only one

Fig. 5.1 Part a corresponds to a hotspot which lies entirely within the timespan [t0i , T − ti0]. Part
b is indicative of a time window which has a closing time greater than T − ti0. The green arc in
part b is the transit arc which traces back to the fleet station

64 P. A. Chircop et al.

Algorithm 2MCPRP: Patrol arc construction for hotspots
1: Input: A spatial network GS = (VS, AS), a shift length T , a set of hotspots W
2: procedure ConstructPatrolArcs(GS,W, T)
3: GR ← InitializeTimeSpaceNetwork(GS, T)
4: AP ← ∅

5: for � ∈ W do
6: AP(�) ← ∅

7: if
(
max(�) < t0{ω(�)}

)∨ (
min(�) > T − t{ω(�)}0

)
then

8: continue
9: else
10: if min(�) < t0{ω(�)} then
11: min(�) ← t0{ω(�)}
12: if max(�) > T − t{ω(�)}0 then
13: max(�) ← T − t{ω(�)}0
14: for t = min(�), . . . ,max(�) − 1 do
15: Create arc (u, v) with u = (ω(�), t) and v = (ω(�),max(�))
16: AP ← AP ∪ {(u, v)}
17: AP(�) ← AP(�) ∪ {(u, v)}
18: AR ← AR ∪ AP

19: return GR = (VR, AR)

packing constraint is required per hotspot. Without the insight of Theorem5.1, a
naive alternative would be to construct a patrol arc for each time interval in each
hotspot, with a corresponding packing constraint for the patrol arcs in the master
problem. Such a naive construction would increase the runtime for the solution of
both the master problem and subproblem.

Once the hotspots have been identified and constructed on the time-space network,
the next step is to create transit arcs between the source vertex and each location. In
addition, another set of transit arcs is required to connect each geographical location
with the sink vertex. Following the construction of these transit arcs, a set of waiting
arcs is required for each layer of vertices in the time-space network. Waiting arcs
correspond to dead time, where a patrol vehicle is stationed at a geographical location
but is not actively contributing to the patrol effort. First, waiting arcs are constructed
between the end of each time window and the start of all subsequent time windows
at the same location. Second, a set of waiting arcs is created to connect a location’s
arrival vertex with the start of each time window at that location. Finally, waiting arcs
are constructed which connect the end of each time window at a given location with
that location’s termination vertex.6 The procedure is fully described in Algorithm3.

Following the construction of the primary transit and waiting arcs, we need to
account for secondary transit and waiting arcs which correspond to potential move-

6The arrival vertex at location i ∈ VS is the vertex v ∈ VR such that v = (i, t0i). The termination
vertex at location i ∈ VS is the vertex u ∈ VR such that u = (i, T − ti0).

5 A Branch-and-Price Framework for the Maximum … 65

Algorithm 3MCPRP: Primary transit and waiting arc construction
1: Input: A spatial network GS = (VS, AS), a shift length T , a set of hotspots W
2: procedure ConstructTransitWaitingArcs(GS,W, T)
3: GR ← ConstructPatrolArcs(GS,W, T)
4: AT, AW ← ∅

5: for i ∈ VS\{0} do
6: Create arcs (s, v) and (u, τ) with v = (i, t0i) and u = (i, T − ti0)
7: AT ← AT ∪ {(s, v), (u, τ)}
8: for � ∈ W (i) do
9: Create arcs (v,w) and (x, u) with w = (i,min(�)) and x = (i,max(�))
10: AW ← AW ∪ {(v,w), (x, u)}
11: for �′ ∈ W (i) do
12: if min(�′) > max(�) then
13: Create arc (y, z) with y = (i,max(�)) and z = (i,min(�′))
14: AW ← AW ∪ {(y, z)}
15: AR ← AR ∪ AT ∪ AW

16: return GR = (VR, AR)

Algorithm 4MCPRP: Secondary transit and waiting arc construction
1: Input: A spatial network GS = (VS, AS), a shift length T , a set of hotspots W
2: procedure ConnectLocations(GS,W, T)
3: GR ← ConstructTransitWaitingArcs(GS,W, T)
4: for i ∈ VS\{0} do
5: for � ∈ W (i) do
6: for j ∈ VS\{0, i} such that bi j = 1 do
7: if max(�) + ti j ≤ T − t j0 then
8: Create arc (u, v) with u = (i,max(�)) and v = (j,max(�) + ti j)
9: AT ← AT ∪ {(u, v)}
10: if ∃ �′ ∈ W (j) such that min(�′) ≤ max(�) + ti j ≤ max(�′) then
11: continue
12: else
13: for �′ ∈ W (j) do
14: if min(�′) > max(�) + ti j then
15: Create arc (v,w) with w = (j,min(�′))
16: AW ← AW ∪ {(v,w)}
17: AR ← AR ∪ AT ∪ AW

18: return GR = (VR, AR)

ments of patrol vehicles between different geographical locations. For the end of each
time windowmax(�) at a given geographical location i ∈ VS\{0}, a set of transit arcs
is created to link location i with all other locations j ∈ VS\{0, i} for which a feasible
transit lane exists, that is, for all j such that bi j = 1 and max(�) + ti j ≤ T − t j0,

66 P. A. Chircop et al.

Algorithm 5MCPRP: Post processing of the time-space network
1: Input: A spatial network GS = (VS, AS), a shift length T , a set of hotspots W
2: procedure PostProcessing(GS,W, T)
3: GR ← ConnectLocations(GS,W, T)
4: Vtemp, Atemp ← ∅

5: for (u, v) ∈ AP do
6: if (A−(u) = ∅) ∧ (u �= s) then
7: Atemp ← Atemp ∪ {(u, v)}
8: else
9: continue
10: for u ∈ VR\{s, τ } do
11: if A−(u) = ∅ then
12: Vtemp ← Vtemp ∪ {u}
13: else
14: continue
15: VR ← VR\Vtemp, AR ← AR\Atemp, AP ← AP\Atemp

16: return GR = (VR, AR)

where (bi j)i, j=1,...,n is the adjacency matrix of the spatial network. For each feasible
transit arc constructed between u = (i,max(�)) and v = (j,max(�) + ti j), we need
to check if there exists an �′ ∈ W (j) such that min(�′) ≤ max(�) + ti j ≤ max(�′). If
this condition is satisfied, then the connecting transit arc between i and j hits a hotspot
at location j , and no further work is required. However, if the condition is not satis-
fied, then a series of waiting arcs are required to connect node v = (j,max(�) + ti j)
with each node w = (j,min(�′)) such that �′ ∈ W (j) and min(�′) > max(�) + ti j .
The procedure to construct the secondary transit andwaiting arcs is formally outlined
in Algorithm4.

The final stage of the time-space network construction is a post-processing phase.
At this final stage, any vertices in the time-space network which do not contain any
incoming arcs are deleted. In other words, a vertex u ∈ VR\{s, τ } will be deleted if
A−(u) = ∅. In addition, all arcs (u, v) ∈ A+(u) which proceed from such a vertex
must be deleted from the network. These arcs, if they exist, will be patrol arcs,
since all waiting and transit arcs are constructed from vertices with non-empty in-arc
sets. The post-processing phase is illustrated in Fig. 5.2 and formally summarized in
pseudocode in Algorithm 5.

5.4 Master Problem

The time-space network GR = (VR, AR) constructed according to the procedures of
the previous section can be used to formulate theMCPRPas a linear program, suitable
for the application of column generation. Let P be the set of all feasible paths through

5 A Branch-and-Price Framework for the Maximum … 67

Post Processing

Fig. 5.2 (TOP) Construction of secondary transit and waiting arcs on the time-space network. The
yellowvertices correspond to the end times of hotspots fromwhich transit (blue) arcs are constructed.
If a transit arc emanating from a yellow vertex does not land within a hotspot at another location,
waiting (red) arcs are constructed from the target vertex to the opening of all subsequent hotspots.
Additional waiting arcs are constructed between the closing of a hotspot and the opening of the
following hotspot at the same geographical location. (BOTTOM) The time-space network after
the post-processing phase (deletion of superfluous arcs and vertices). A vertex, with or without an
outgoing patrol (black) arc, is deleted if there are no arcs pointing to it

the network GR from s to τ . For each p ∈ P , let xuvp = 1 if path p uses arc (u, v) ∈
AR and xuvp = 0 otherwise.As the time-space networkGR contains no cycles,we can
express the integral flow xuv ∈ Z

+ over an arc (u, v) ∈ AR in terms of path variables
λp ∈ {0, 1} for all p ∈ P , where λp = 1 if path p is used and λp = 0 otherwise.
Hence, we can write xuv = ∑

p∈P xuvpλp. Denote c̄p = ∑
(u,v)∈AP

tuvxuvp to be the
total time spent on patrol for path p ∈ P , and c̄pi = ∑

�i∈W
∑

(u,v)∈AP(�i)
tuvxuvp to

be the time path p ∈ P spends on patrol in location i ∈ VS\{0}, where �i ∈ {� ∈
W | ω(�) = i}. Moreover, let a�p = ∑

(u,v)∈AP(�)
xuvp for all p ∈ P and � ∈ W , so

that a�p = 1 if p ∈ P patrols hotspot � ∈ W and a�p = 0 otherwise. By relaxing the
integrality constraints on the path variables, that is, setting λp ≥ 0 for all p ∈ P , we
can formulate a master linear programming problem for the MCPRP as follows:

68 P. A. Chircop et al.

maximize
∑

p∈P

c̄pλp, (5.1)

subject to
∑

p∈P

a�pλp ≤ 1, ∀� ∈ W, [π�] (5.2)

∑

p∈P

c̄pλp ≤ C̄, [α] (5.3)

∑

p∈P

c̄piλp ≤ C̄i , ∀i ∈ VS\{0}, [βi] (5.4)

∑

p∈P

λp ≤ κmax, [γ] (5.5)

λp ≥ 0, ∀p ∈ P. (5.6)

The objective function (5.1) seeks tomaximize the aggregate time spent on hotspot
patrol. The statement of the objective is followed by a series of packing constraints
given through (5.2). There is a single packing constraint for each hotspot � ∈ W .
The packing constraints are included to ensure that each hotspot is patrolled by
at most one vehicle, thereby prohibiting multiple contributions to a single hotspot.
The constraints (5.3) and (5.4) are optional bounds constraints for the formulation.
Constraint (5.3) stipulates an upper bound C̄ on the aggregate patrol time delivered
by the vehicles across all hotspots on the network. The constraints given by (5.4) use
a set of values {C̄i | i ∈ VS\{0}} to enforce upper bounds on the aggregate patrol
effort delivered to all the hotspots at each geographical location. The upper bounds
C and C̄i are given through (5.7) below. Constraint (5.5) provides an upper bound
on the number of available patrol vehicles through κmax. Finally, the constraints (5.6)
enforce non-negativity conditions on the flow of each vehicle over each arc in the
time-space network.

C̄ :=
n∑

i=1

hi∑

m=1

(
lim − eim

)
, C̄i :=

hi∑

m=1

(
lim − eim

)
, ∀i ∈ VS\{0}. (5.7)

If the set P of feasible paths through the time-space network is large, then it
may not be practicable to write out the full master problem (5.1)–(5.6). In such
cases, the problem can be initialized with a subset of paths P ′ ⊂ P to form an
initial Restricted master problem (RMP). Columns representing paths of negative
reduced cost can then be added to the RMP in an iterative fashion by feeding the dual

5 A Branch-and-Price Framework for the Maximum … 69

variables7 of theRMP to a columngeneration subproblem.8 A candidate initialization
procedure for the RMP of the MCPRP is proffered in Sect. 5.6, while the nature of
the column generation subproblem is discussed in Sect. 5.5.

5.5 Reduced Costs and Subproblem

Paths of negative reduced cost are determined by solving a pricing subproblem
over the underlying time-space network GR . Uncovering the algebraic form of the
reduced cost of a path p ∈ P naturally leads to revealing the structure of the pric-
ing subproblem. First, we can construct some useful surjective mappings in order
to define the reduced cost of a path: φ : AP → W ′ and ψ : AP → VS\{0}. The set
W ′ = {1, . . . , |W |} is an integer-valued index set corresponding to the hotspots on
the network. Thus, for each patrol arc, φ maps to the hotspot index, while ψ maps
to the geographical location. The reduced cost r̄ p of a path p ∈ P through the time-
space network GR is given through r̄ p := υTAp − c̄p, where υT is a row vector of
the dual variables of the master problem (5.1)–(5.6),Ap is the column corresponding
to variable λp, and c̄p is the cost coefficient of λp in the objective function (5.1).
Therefore, the reduced cost r̄ p of a path p ∈ P through the time-space network GR

can be written in terms of the underlying arc variables as follows:

r̄ p = υTAp − c̄p, (5.8)

=
(∑

�∈W
π�a�p

)

+ αc̄p + βi c̄pi + γ − c̄p, (5.9)

=
(∑

�∈W
π�

∑

(u,v)∈AP(�)

xuvp

)

+ α

(∑

(u,v)∈AP

tuvxuvp

)

+
(∑

(u,v)∈AP

βψ(u,v)tuvxuvp

)

(5.10)

+ γ

(∑

(s,v)∈A+(s)

xsvp

)

−
(∑

(u,v)∈AP

tuvxuvp

)

,

=
(∑

(u,v)∈AP

[
πφ(u,v) + (

α + βψ(u,v) − 1
)
tuv

]
xuvp

)

+
(∑

(s,v)∈A+(s)

γ xsvp

)

.

(5.11)

7The dual variables of the RMP can be found in square parentheses along the right-hand side of
(5.1)–(5.6).
8This essentially describes the column generation technique for solving prohibitively large linear
programs (see [6] for a comprehensive introduction). The fundamental insight of the column gen-
eration approach is to generate the columns of the constraint matrix on-the-fly by recourse to an
optimization subproblem. The idea was originally suggested by Ford and Fulkerson [8], but was
first implemented by Gilmore and Gomory [9].

70 P. A. Chircop et al.

Hence, the reduced cost of path p ∈ P can be expressed as r̄ p = ∑
(u,v)∈p μuvxuv,

where the coefficients μuv are given through: μuv = πφ(u,v) + (α + βψ(u,v) − 1)tuv
if (u, v) ∈ AP, μuv = γ if (u, v) ∈ A+(s) and μuv = 0 otherwise. Therefore, the
pricing subproblem can be written as a shortest path problem over GR as follows:

minimize
∑

(u,v)∈AR

μuvxuv, (5.12)

subject to
∑

(s,v)∈A+(s)

xsv = 1, (5.13)

∑

(u,v)∈A−(v)

xuv =
∑

(v,w)∈A+(v)

xvw, ∀v ∈ VR\{s, τ }, (5.14)

∑

(u,τ)∈A−(τ)

xuτ = 1, (5.15)

xuv ∈ {0, 1}, ∀(u, v) ∈ AR . (5.16)

Given thatGR is a directed acyclic graph, the shortest path problem given through
(5.12)–(5.16) can be solved by first applying the dual costs from the RMP and then
performing edge relaxation over a topologically sorted list of the vertices inGR . This
procedure is given through DAG-SP(GR, μ, s, τ), which outputs a shortest path p
through GR from s to τ assuming the cost structure μ and the associated path cost
δp(s, τ). The entire shortest path procedure is summarized in Algorithm 6.

Algorithm 6MCPRP: Dual based shortest path through a time-space network
1: Input: A time-space network GR = (VR, AR) with source s ∈ VR and sink

τ ∈ VR , vector of dual variables υ

2: procedure MCPRP_DualShortestPath(GR, s, τ,υ)
3: for (u, v) ∈ AP do
4: μuv ← πφ(u,v) + (

α + βψ(u,v) − 1
)
tuv

5: for (u, v) ∈ A+(s) do
6: μuv ← γ

7: for (u, v) ∈ AR\ (AP ∪ A+(s)) do
8: μuv ← 0
9: (p, δp(s, τ)) ← DAG- SP(GR, μ, s, τ)
10: r̄∗

p ← δp(s, τ)

11: return (p, r̄∗
p)

5 A Branch-and-Price Framework for the Maximum … 71

5.6 Seed Columns

The path-based linear programming formulation of theMCPRP is of set packing type,
and thus, the problem of constructing a feasible initial primal basis is not onerous
(since the patrol coverage constraints are non-binding). We have chosen to adopt a
Randomized shortest path heuristic (RSPH) to generate a set of candidate paths for
the initialization of the RMP. The random cost structure derived from the RSPH is
intended to produce an initial set of paths which share the patrol coverage effort as
evenly as possible. This was preferred to a straightforward application of a greedy
shortest path heuristic inwhich the hotspots are equallyweighted. For large fleet sizes
relative to the number of hotspots on the network, the application of a straightforward
greedy heuristic would most likely produce an initial basis consisting of both good
and bad quality columns. This would be an undesirable outcome compared to an
initial basis in which the patrol effort is more evenly distributed. Hence, the RSPH
was implemented in an attempt to increase the likelihood of producing initial basis
sets of better quality.

The RSPH first applies a cost μi j = −T to each patrol arc (i, j) ∈ AP and cost
μi j = 0 to each arc (i, j) ∈ AR\AP. For each hotspot � ∈ W in the time-space net-
work, a patrol arc (i, j) is chosen at random from the set AP(�). The time index t at the
tail of arc (i, j), denoted by (i, j)t , is then multiplied by a random number r̃ drawn
from the uniform probability distribution U(0, 1). This value is then negated and
added to the cost of each patrol arc in the hotspot. Once the patrol arc costs have been
updated in this manner, a shortest path is invoked over the time-space network. By
examining the returned shortest path p, we can determine all arcs (i, j) ∈ p such that
(i, j) ∈ AP. We then update the costs of all (u, v) ∈ AP such that φ(u, v) = φ(i, j)
according to μuv = T . On the other hand, if (i, j) ∈ p and (i, j) ∈ AR\AP, then the
arc cost is updated through μi j = 0. A new shortest path is subsequently returned
from the network with the updated cost structure, and the heuristic continues in a
cyclical manner, terminating when the aforementioned procedure has been called
κmax times. The procedure is formally outlined in Algorithm7.

5.7 Pricing Out Candidate Paths

The column generation procedure is initialized by running the randomized construc-
tion heuristic presented in Algorithm7 over the time-space network. Starting from
the initial basis produced by the construction heuristic, columns are generated one-
at-a-time by solving the pricing subproblem using the dual costs from the current
iteration of the RMP. As long as paths of negative reduced cost are returned from
the pricing subproblem, the procedure continues on in a cyclical fashion and the
paths are added as columns/variables to the RMP. The column generation procedure

72 P. A. Chircop et al.

Algorithm 7 MCPRP: Randomized shortest path heuristic for column generation
initialization
1: Input: A time-space network GR = (VR, AR) with source s ∈ VR and sink τ ∈

VR

2: procedure RSPH(GR, s, τ)
3: for (u, v) ∈ AR\AP do
4: μuv ← 0
5: for � ∈ W do
6: Randomly select an arc (i, j) ∈ AP(�)

7: for (u, v) ∈ AP(�) do
8: μuv ← −T − r̃(0, 1) × (i, j)t
9: P ′ ← ∅

10: for k = 1, . . . , κmax do
11: (p, δp(s, τ)) ← DAG- SP(GR, μ, s, τ)
12: P ′ ← P ′ ∪ {p}
13: for (i, j) ∈ p do
14: if (i, j) ∈ AP then
15: for (u, v) ∈ AP such that φ(u, v) = φ(i, j) do
16: μuv ← T

17: return P ′

terminates once the reduced cost of a path returned from the pricing subproblem is
non-negative.9 A straightforward implementation of the procedure is summarized in
Algorithm8.

5.8 Branch-and-Price

As column generation is directly applicable to real variable problems, it can be
embedded within a branch-and-bound tree structure in order to solve large-scale
integer programming problems. This augmented application of column generation
is known as branch-and-price (see [2]). In this section, we propose a straightfor-
ward branch-and-price approach to the MCPRP on the time-space network outlined
heretofore. If the application of column generation at the root node fails to return an
integer solution, we can impose branching cuts to the RMP with respect to the most

9By solving the RMP as a linear program and obtaining its dual variables, a subproblem can be
solved to determine a new column (variable) to add to the RMP. The subproblem can accomplish
this by casting the pricing step of the simplex algorithm (find a variable with negative reduced
cost to enter the basis) as an optimization problem. The process iterates between the RMP and the
subproblem, terminating when no variable can price-out favourably.

5 A Branch-and-Price Framework for the Maximum … 73

Algorithm 8MCPRP: Column generation procedure
1: Input: A time-space network GR = (VR, AR) with source s ∈ VR and sink τ ∈

VR

2: P ′ ← RSPH(GR, s, τ)
3: procedure MCPRP_GenerateColumns(GR, s, τ)
4: Construct RMP from P ′ with associated variables {λp | p ∈ P ′}
5: Solve the RMP to get dual variables υ

6: (p, r̄∗
p) ← MCPRP_DualShortestPath(GR, s, τ,υ)

7: if r̄∗
p ≥ 0 then

8: break
9: else
10: Add new variable λp and associated column to RMP
11: P ′ ← P ′ ∪ {p}
12: goto 4

fractional transit arc in the time-space network.10 The procedure works as follows.
Assume we have a fractional (non-integral) solution to the MCPRP with a basis
defined by a set of paths P ′ ⊂ P . Let (u, v) ∈ AT. The flow F over the arc (u, v) is
given by the sum of the path variables in the current basic solution which use that arc,
that is, F(u, v) := ∑

p∈{q∈P ′ | (u,v)∈q} λp. The most fractional transit arc in the current

non-integral solution is therefore given by (u, v)∗ := argmin(u,v)∈AT
F̃(u, v), where

we have:

F̃(u, v) :=
{

1
2 − (F(u, v) − �F(u, v)�) if F(u, v) − �F(u, v)� < 1

2 ,
1
2 − (�F(u, v)� − F(u, v)) otherwise.

(5.17)

Once the most fractional transit arc has been identified, we can create left and right
disjunctive branches under the current fractional solution (a node in the exploratory
tree). Therefore, new restricted master problems are required for each branching
decision on the left and right. A new RMP created from a branching decision inherits
the form of its antecedent tree node with the addition of the following constraint
(cut):

∑

p∈{q∈P ′ | (u,v)∗∈q}
λp ≤ �F((u, v)∗)� (LEFT), (5.18)

∑

p∈{q∈P ′ | (u,v)∗∈q}
λp ≥ �F((u, v)∗)� (RIGHT). (5.19)

10An investigation of alternative branching strategies, for example, selecting various combinations
of arc variables at a time, is beyond the scope of this paper, but is recommended for future research.

74 P. A. Chircop et al.

Note that the incorporation of a branching cut (5.18)/(5.19) to the master problem
requires that the subproblem’s cost structure be modified by adding a dual penalty
cost to the arc (u, v)∗.

Branching cuts are added to various fractional nodes in the tree in order to find an
integer solution to the full problem. The search tree maintains a best (relaxed) upper
bound zUB and a best (integer) lower bound zLB. Given a list of unfathomed nodes,
we select the node with objective z′ such that zUB − z′ is a minimum. Ties between
nodes with the same objective can be broken by preferring the node with the greatest
ratio of integral non-zero arc variables to the number of non-zero arc variables. In
the event that this ratio is unity, we have an integral solution over the arc variables
of the underlying network. However, integrality of the network arc variables is not a
sufficient condition for the integrality of the path variables. There may be tree nodes
for which a solution has xuv ∈ Z

+ for all (u, v) ∈ AR , where λp /∈ {0, 1} for some
p ∈ P ′.11 Therefore, integrality of the path variables must be checked at each node
in order to obtain a feasible integer solution. Any nodes which are arc integral but not
path integral are pruned from the tree. When a new integer solution has been found,
it can be checked against the current best integer lower bound zLB. If the new integer
solution is better than the current best lower bound, the lower bound is updated.
Otherwise, the newly found integer solution can be pruned from the tree. When the
gap between the best relaxed upper bound and the best integer lower bound is closed,
and if complementary slackness and feasibility conditions are satisfied, an optimal
solution z∗ has been found, and the branch-and-price procedure can be terminated.

5.9 Computational Results

5.9.1 Results on Sample Test Problems

In order to benchmark our proposed branch-and-price approach to the MCPRP, we
randomly generated a set of 40 geographical networks to be used as the basis for
the design of a broad range of test problem instances. Two grid sizes were used to
generate the test networks: 30 × 30min and 60 × 60min.12 Given a grid structure,
the test problems were generated by randomly placing hotspot locations within the
grid, and then assigning time windows of various lengths to each location.13

11Vanderbeck [13] notes that this phenomenon (i.e. fractional path flows translating to integral arc
flows) can occur when the subproblem is a shortest path problem, which is precisely our case. To
see why this is so, recall that xuv = ∑

p∈P xuvpλp for all (u, v) ∈ AR . It is straightforward to see
that if λp ∈ {0, 1} for all p ∈ P , then xuv ∈ Z

+ for all (u, v) ∈ AR , since xuvp ∈ {0, 1} for each
(u, v) ∈ AR and p ∈ P . However, the converse does not hold. That is, it is mathematically possible
to find a set of paths taking fractional values which translates into an integral arc flow solution.
12For a grid structure of size 30 × 30min, a patrol vehicle will traverse the breadth/length of the
structure in 30min.
13In total, we generated 8 networks with 40 hotspots, 8 networks with 60 hotspots, 16 networks
with 80 hotspots and 8 networks with 100 hotspots. Each test network was randomly generated over

5 A Branch-and-Price Framework for the Maximum … 75

In total, 478 separate test problem instances were run, where the number of cars
ranged from 2 to atmost 35.14 The branch-and-price approachwas always able to find
a provably optimal integer solution. The identification of optimality came through
the observation that the objective function value at the root node (which is an upper
bound on the objective of the optimal integer solution) always matched the objective
function value of the integer solution found in each test problem instance. Given the
observed absence of an intergrality gap, we can conclude that the time-space network
construction of the subproblem is obviously a strong formulation for the MCPRP.

A general observation is that when the vehicle flow on the underlying time-space
network was small, that is, when the fleet size was small compared to the number of
hotspots to be covered, the branch-and-price approach consistently produced integer
root node solutions. The amount of branching required generally increased as the
number of vehicles increased, as did the CPU runtime. Another general trend is
that for an equivalent number of patrol vehicles, small grid sizes with short hotspot
durations were harder to solve (in terms of the number of branching decisions and
the CPU runtime) than larger grid sizes with long hotspot durations. This can be
attributed to the increased number of routing choices for instances with short hotspot
durations and shorter travel times between hotspots (especially given that the shift
duration was constant across the entire problem space).

The test problem instances for the 80 hotspot network included 8 test problems
containing 80 locations with a single hotspot affixed to each location and another 8
test problems with 40 locations and 2 hotspots for each location. The general runtime
trend was better for the second set of instances (that is, the ones with two hotspots per
location). Again, this can be attributed to the increased number of routing choices
incurred with an increased number of locations on the network grid. This highlights
the importance of distinguishing the number of locations from the number of hotspots
on the network. The results for the 80 hotspot category suggest that this distinction
is non-trivial.

Finally, we observed that the RSPCH was able to solve the 1min time window
problem instances at the root node, that is, no additional columns needed to be
generated and no branching was required, even for instances with fleet sizes yielding
complete patrol coverage. We note that a problem instance of theMCPRPwith 1min
time windows constitutes a special rendering of the Team Orienteering Problem
(TOP). This special case is called the TOPTW, in which the profit is 1 for each
vertex visited, but with additional constraints imposing strict visiting times for profit
collection at the vertices (see [14]).

a grid structure of size 30 × 30min or 60 × 60min. The time window length of the hotspots was
either 1min, 5−15min, 30min or 30−90min. All test problem instances were run with an 8 hour
shift (that is, 480min) and a time discretization of 1min.
14The computational results of all test problem instances can be found in Appendix G of the PhD
thesis by Chircop [4].

76 P. A. Chircop et al.

5.9.2 Benchmarking Against the MCNFP Model of Dewil et
al. [7]

In order to benchmark and validate our branch-and-price approach to the MCPRP,
we compared its performance on the test problem instances of the previous section
against the MCNFP model presented in [7]. The MCNFP model was implemented
with the network simplex algorithm from the open-source LEMON C++ libraries
(see [11]). For each of the test problems, the MCNFPmodel produced the same opti-
mal objective as the branch-and-price approach. This provides a strong validation
for the correctness of the time-space network construct outlined in this article.15 The
MCNFP model demonstrated superior runtime performance to the branch-and-price
approach on almost all of the test problem instances. The performance differential
became more apparent when the number of patrol cars started to saturate the under-
lying time-space network. These particular instances required a considerable amount
of branching with the branch-and-price approach, and hence, the runtime increased
with the number of patrol cars. This demonstrates that the MCNFP formulation of
the MCPRP is still the gold standard for networks of the scale tested here.

5.9.3 Large-Scale Problem Instances

In addition to the small- to medium-scale networks of the previous section, we also
designed two large-scale problems for which the branch-and-price approach could
outperform the MCNFP model over a broad range of fleet sizes. The first large
scale network consisted of 200 hotspots over a 100 × 100min grid, with the time
window lengths ranging between 30 and 90min. The second network, designed over
the same grid size, contained 250 hotspots, with the time window lengths ranging
between 30 and 60min. For both networks, we considered fleet sizes from 2 to 25
patrol cars. On these problem instances, the branch-and-price approach was able
to outperform the MCNFP model, with the exception of a small number of cases.
Figure5.3 shows the results for the 200 hotspot case, while Fig. 5.4 contains the
results for the 250 hotspot case. These problem instances correspond to situations
in which the underlying time-space network is unsaturated with patrol cars, and so
many of the integer solutions found with the branch-and-price approach solve at
the root node in a shorter time frame than the MCNFP model. However, when we
increased the fleet size beyond 25 patrol cars, more intensive branching was required

15The computational results for the branch-and-price approach to the MCPRP were produced on a
2.70GHz dual-core processor on a 32-bit operating system with 4.00GB of RAM. All primal and
dual solutions to the linear programs were obtained with CPLEX 12.6. The column generation and
shortest path algorithms, along with the required data structures for the master problem and the
time-space network, were coded using the Java programming language and the Eclipse Integrated
development environment (IDE). The MCNFP model was run from an executable (on the same
operating system) compiled from source code supplied by the authors of [7] and the LEMON C++
libraries using the Microsoft Visual Studio (2012) IDE.

5 A Branch-and-Price Framework for the Maximum … 77

60%

70%

80%

90%

100%

12

14

16

18

20

22

w
 C

ov
er

ag
e

U
se

co
nd

s)
MCNFP Comparison: 200 Hotspots, Cars 2 - 25

0%

10%

20%

30%

40%

50%

0

2

4

6

8

10

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Ti
m

e
W

in
do

w

Ru
n�

m
e

(C
PU

Number of Cars

Col. Gen.

MCNFP

% TW

Fig. 5.3 Comparison of the runtime performance of the MCNFP model with the branch-and-price
approach on a 200 hotspot test problem. The time windows range between 30 and 90min, the fleet
size ranges from 2 to 25 patrol cars and the amount of time window coverage is shown on the
right-hand vertical axis

for the branch-and-price approach, and the MCNFP model began to exhibit better
runtime performance. In fact, we observed that the solution time for the MCNFP
was independent of the number of patrol cars, in contrast to the branch-and-price
approach.

Finally, we generated some further test problem instances on two large-scale
networks which could not be solved by the MCNFP model of [7], but which could
be easily handled by the branch-and-price approach.16 These test problems are the
largest instances of theMCPRP solved to-date. The size of the network grid structure
was 100 × 100min for both networks. The first network (H300_a) contained 300
spatial locations and 300 hotspots, with timewindow lengths in the range 30−90min.
The second network (H500_a) contained 250 locations with 500 hotspots of length
30min, with two hotspots allotted to each location on the network grid.17 The results
are summarized in Table5.1 for problem instances with 2−25 patrol vehicles.18 The
majority of these problem instances were solved at the root node (no branching

16The MCNFP model crashed (due to memory capacity constraints) when we attempted to solve
these large-scale instances.
17The aggregate duration of all the hotspots in H300_a was 17,606min. The aggregate duration
for H500_a was 15,000min. The shift duration in both cases was 8 hours (480min).
18The headings used in Table5.1 are as follows: Car—the number of vehicles. R.Obj.—the objective
function value at the root node. R.Ti.—theCPU time (seconds) at the root node. R.Col.—the number
of columns generated at the root node.No.—the number of nodes explored (fathomed) in the branch-
and-price tree. S.Ti.—the CPU time (seconds) taken to find the integer solution. Hot.—the number
of hotspots visited.

78 P. A. Chircop et al.

60%

70%

80%

90%

100%

16

18

20

22

24

26

28

30

w
 C

ov
er

ag
e

U
se

co
nd

s)

MCNFP Comparison: 250 Hotspots, Cars 2 - 25

0%

10%

20%

30%

40%

50%

0

2

4

6

8

10

12

14

16

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Ti
m

e
W

in
do

w

Ru
n�

m
e

(C
PU

Number of Cars

Col. Gen.

MCNFP

% TW

Fig. 5.4 Comparison of the runtime performance of the MCNFP model with the branch-and-price
approach on a 250 hotspot test problem. The time windows range between 30 and 60min, the fleet
size ranges from 2 to 25 patrol cars and the amount of time window coverage is shown on the
right-hand vertical axis

required). However, given the extremely large size of the underlying time-space
networks, the column generation process was much slower than the previously tested
networks. For example, when H500_a was solved with 25 cars, only two branching
decisionswere required to find an integer solution, but the runtimewas approximately
5min. We again observed that more intensive branching was required as the number
of cars began to saturate each network. For example, we tested H500_a with 48
vehicles, which took approximately 40min to solve with 22 branching decisions
required.

5.10 Conclusions and Future Work

This paper has introduced a branch-and-price framework, underpinned by a specially
tailored time-space network, for obtaining solutions to the MCPRP. We introduced
a number of test problems for benchmarking, consisting of different numbers of
hotspots, time window durations and grid sizes. These test problems were used to
validate our approach against the MCNFP model of [7]. While the MCNFP model
outperforms the runtime efficiency of the branch-and-price approach on small- to
medium-scale problems, it was shown that on large-scale problem instances with
certain fleet sizes, the branch-and-price approach can outperform theMCNFPmodel.
We also introduced two large-scale problems, onewith 300 hotspots and another with
500 hotspots, which could not be solved by the MCNFP model, but which could be

5 A Branch-and-Price Framework for the Maximum … 79

Table 5.1 Summary of computational results for two large-scale networks
Car Test problem H300_a Test problem H500_a

R.Obj. R.Ti. R.Col. No. S.Ti. Hot. R.Obj. R.Ti. R.Col. No. S.Ti. Hot.

2 735 0.6 7 0 0.6 13 676 2.2 16 0 2.2 27

3 1,085 1.3 12 0 1.3 19 995 2.6 20 0 2.6 41

4 1,434 2.2 23 0 2.2 26 1,312 3.6 28 0 3.6 52

5 1,767 3.2 33 0 3.2 32 1,623 7.5 54 0 7.5 63

6 2,096 4.5 48 0 4.5 38 1,930 10.1 74 0 10.1 76

7 2,423 5.2 56 0 5.2 45 2,234 13.6 100 0 13.6 87

8 2,745 5.7 56 2 11.0 51 2,533 16.4 118 0 16.4 98

9 3,067 5.7 60 0 5.7 56 2,829 22.3 155 0 22.3 108

10 3,385 8.1 86 0 8.1 63 3,123 22.8 162 0 22.8 121

11 3,696 7.1 79 1 10.2 68 3,411 27.3 192 0 27.3 131

12 4,007 9.7 105 0 9.7 73 3,695 32.7 229 1 50.5 143

13 4,308 10.7 119 0 10.7 79 3,973 39.1 271 0 39.1 154

14 4,609 14.0 136 0 14.0 83 4,246 44.1 306 3 84.6 166

15 4,900 14.1 152 0 14.1 89 4,519 49.9 346 0 49.9 176

16 5,189 16.6 176 0 16.6 96 4,789 67.0 447 0 67.0 187

17 5,477 18.1 191 0 18.1 103 5,053 63.6 436 0 63.6 198

18 5,764 16.7 180 0 16.7 108 5,313 73.8 507 0 73.8 207

19 6,048 20.5 213 0 20.5 113 5,572 94.4 633 0 94.4 216

20 6,325 23.9 247 0 23.9 117 5,829 93.2 636 0 93.2 229

21 6,602 27.2 279 0 27.2 121 6,083 117.0 764 1 140.5 238

22 6,872 27.4 280 0 27.4 126 6,332 105.8 727 0 105.8 247

23 7,140 27.6 290 0 27.6 130 6,579 130.7 888 0 130.7 258

24 7,408 30.6 316 1 37.2 136 6,823 160.3 1,019 1 201.5 266

25 7,673 27.4 288 0 27.4 140 7,065 224.4 1,374 2 301.4 274

easily handled with the branch-and-price framework. These large-scale problems are
the largest instances of the MCPRP solved to-date.

One avenue for further research of solution approaches to the MCPRP is to inves-
tigate the applicability of the branch-and-price framework to the network model
developed by Dewil et al. [7]. Utilizing the model of [7] within a branch-and-price
framework would not significantly change the structure of the master problem intro-
duced in this paper, except that the packing constraints would correspond to time
sections of the hotspots. The master problem’s objective function would also need
to be modified to incorporate any weights applied to the time sections. The branch-
and-price approach could also be applied to variants of the MCPRP which account
for overlapping shifts and/or different start/end locations for the patrol cars. The con-
sideration of a heterogeneous fleet for the MCPRP is another possible growth path
for the framework introduced in this paper. In this case, we hypothesize that separate
subproblems on distinct and specially tailored time-space networks would need to

80 P. A. Chircop et al.

be considered for each vehicle type. We note that if the patrol vehicles do not share
a single transit speed, then Theorem5.1 (see [10]) is no longer valid, and therefore,
the patrol arc construct for the hotspots introduced in this paper would need to be
revised.

Acknowledgements The authors would like to sincerely thank Dr Reginald Dewil (KU Leuven)
for supplying the source code of the Minimum cost network flow problem (MCNFP) model at short
notice.

References

1. Ahuja R, Magnanti T, Orlin J (1993) Network flows: theory, algorithms, and applications.
Prentice Hall

2. Barnhart C, Johnson EL, Nemhauser GL, Savelsbergh MWP, Vance PH (1998) Branch-and-
price: column generation for solving huge integer programs. Oper Res 46:316–329

3. Çapar İ, Keskin BB, Rubin PA (2015) An improved formulation for the maximum coverage
patrol routing problem. Comput Oper Res 59:1–10

4. Chircop PA (2017) Column generation approaches to patrol asset scheduling with complete
and maximum coverage requirements. PhD thesis, University of New South Wales, Sydney,
Australia

5. Chircop PA, Surendonk TJ, van denBrielMHL,Walsh T (2013) A column generation approach
for the scheduling of patrol boats to provide complete patrol coverage. In: Piantadosi J, Ander-
ssen RS, Boland J (eds) Proceedings of the 20th international congress on modelling and
simulation. Modelling and Simulation Society of Australia and New Zealand, pp 1110–1116

6. Desrosiers J, Lübbecke ME (2005) A primer in column generation. In: Desaulniers G,
Desrosiers J, Solomon MM (eds) Column generation. Springer, US, pp 1–32

7. Dewil R, Vansteenwegen P, Cattrysse D, Oudheusden DV (2015) A minimum cost network
flow model for the maximum covering and patrol routing problem. Eur J Oper Res 247:27–36

8. Ford LR, Fulkerson DR (1958) A suggested computation for maximal multi-commodity net-
work flows. Manag Sci 5:97–101

9. Gilmore PC, Gomory RE (1961) A linear programming approach to the cutting-stock problem.
Oper Res 9:849–859

10. Keskin BB, Li SR, Steil D, Spiller S (2012) Analysis of an integrated maximum covering and
patrol routing problem. Transp Res Part E(mohana) Logist Transpo Rev 48:215–232

11. Király Z, Kovács P (2012) Efficient implementations of minimum-cost flow algorithms. Acta
Univ Sapientiae, Inform 4:67–118

12. Li SR (2012)Vehicle routingmodels in public safety and health care. PhD thesis, TheUniversity
of Alabama TUSCALOOSA

13. Vanderbeck F (2005) Implementing mixed integer column generation. In: Desaulniers G,
Desrosiers J, Solomon MM (eds) Column generation. Springer, US, pp 331–358

14. Vansteenwegen P, SouffriauW, Van Oudheusden D (2011) The orienteering problem: a survey.
Eur J Oper Res 209:1–10

	5 A Branch-and-Price Framework for the Maximum Covering and Patrol Routing Problem
	5.1 Introduction and Background
	5.2 Preliminary Notation
	5.3 Network Construction
	5.4 Master Problem
	5.5 Reduced Costs and Subproblem
	5.6 Seed Columns
	5.7 Pricing Out Candidate Paths
	5.8 Branch-and-Price
	5.9 Computational Results
	5.9.1 Results on Sample Test Problems
	5.9.2 Benchmarking Against the MCNFP Model of Dewil et al. ch5Dewil
	5.9.3 Large-Scale Problem Instances

	5.10 Conclusions and Future Work
	References

