Why Channel?
Multiple viewpoints for branching heuristics

Brahim Hnich and Toby Walsh

Cork Constraint Computation Center, University College Cork, Ireland.
{brahim,tw}Q4c.ucc.ie

Abstract. When modelling a problem, there are often alternative view-
points that can be taken. It can even be advantageous to use multiple
viewpoints, and to have constraints which channel between them to main-
tain consistency. Multiple viewpoints often make it much easier to post
the different problem constraints, as well as improve the amount of con-
straint propagation. In this paper, we demonstrate another reason for
using multiple viewpoints: branching heuristics can be more effective
when they look at multiple viewpoints.

1 Introduction

Constraint programming is a highly successful technology for solving a wide
variety of combinatorial problems like resource allocation, transportation, and
scheduling. However, its uptake is hindered by the difficulty of modelling prob-
lems successfully as constraint programs. One key modelling decision is which
viewpoint or viewpoints to use. For example, in modelling a sports tournament
scheduling problem, do we take the viewpoint in which the games are the vari-
ables, and the times are their values? Or do we take the dual viewpoint in which
the times are the variables, and the games are their values? Or do we take both
viewpoints, and have channelling constraints to maintain consistency between
the two viewpoints?

There are a number of reasons we might consider multiple viewpoints, even
though using more than one viewpoint introduces additional overheads. First,
different constraints may be easier to post in the different viewpoints. Second,
propagation may be improved. For example, one viewpoint may be linear and
so can be solved using ILP. A third possibility, proposed by Geelen in [1] and
explored in detail here, is that branching heuristics may profit from looking at
more than one viewpoint. The results given in [1] are promising but are limited
to a small number of experiments on n-queens problems. It is therefore timely to
perform a more extensive experimental study on a range of challenging problems.

2 Permutation problems

Our analysis will focus on permutation problems. A permutation problem is a
constraint satisfaction problem in which each decision variable takes an unique

value, and there is the same number of values as variables. In a permutation
problem, we can easily transpose the roles of the variables and the values to give
a dual model which is also a permutation problem. Each variable in the primal
becomes a value in the dual, and vice versa. We shall also consider multiple
permutation problems in which the variables divide into a number of (possibly
overlapping) sets, each of which is a permutation problem.

It is possible to combine multiple viewpoints by using channelling constraints
to maintain consistency between the different viewpoints. This approach is called
“redundant modelling” by Cheng et al. [2] and was specifically suggested for per-
mutation problems in [1]. In a permutation problem, the channelling constraints
are of the form: X; = j iff D; = 4. Many constraint toolkits support chan-
nelling of this kind with efficient global constraints. For example, ILOG Solver
has a constraint, IlcInverse, and the Sicstus finite domain constraint library
has an assignment predicate which can be used to channel efficiently between
the primal and dual viewpoints of a permutation.

To ensure that we have a permutation, we can post a global all-different
constraint on the primal variables. Alternatively, we can post binary not-equals
constraints between any two primal variables. However, if we have both pri-
mal and dual variables, the channelling constraints are on their own sufficient to
ensure we have a permutation. Indeed, the channelling constraints provide an in-
termediate level of pruning between what GAC achieves on a primal all-different
constraint and AC on binary not-equals constraints on the primal [3,4]. AC on
the binary not-equals constraints identifies singleton variables (those variables
with a single value left in their domain). AC on the channelling constraints iden-
tifies both singleton variables and singleton values (those values which are left
in the domain of a single variable). GAC on an all-different constraint identifies
both singleton variables and singleton values plus even more complex situation
(e.g. three variables with just two values left between them).

There are thus a large number of different ways to model and solve a per-
mutation problem. We can, for example, post an all-different constraint posted
on the primal and use Regin’s efficient algorithm [5] to maintain GAC on this
constraint (in the tables of results, we will write “¥” for this model and solution
method). Alternatively, we can maintain AC on channelling constraints between
primal and dual (we write “¢” for this model and solution method). A third
viewpoint is to maintain AC on binary not-equals constraints between any two
primal variables (we write “#” for this model and solution method). Finally,
we can take any combination of these viewpoints. For example, we can main-
tain GAC on an all-different constraint on the primal and AC on channelling
constraints between primal and dual (we write “V¢” for this model and solution
method).

3 Variable and value ordering

The aim of this paper is to study how multiple viewpoints may benefit variable
and value ordering heuristics. A variable ordering heuristic like smallest domain

is usually justified in terms of a “fail-first” principle. We have to pick eventually
all the variables, so it is wise to choose one that is hard to assign, giving us
hopefully much constraint propagation and a small search tree. On the other
hand, a value ordering heuristics like most promise [1] is usually justified in terms
of a “succeed-first” principle [6]. We pick a value likely to lead to a solution, so
reducing the risk of backtracking and trying one of the alternative values. In a
permutation problem, we can branch on the primal or the dual variables or on
both. We therefore consider the following heuristics.

Smallest domain, SD(p+d) : choose the primal or the dual variable with the
smallest domain, and choose the values in numeric order.

Primal smallest domain, SD(p) : choose the primal variable with the small-
est domain, and choose the values in numeric order.

Dual smallest domain, SD(d) : choose the dual variable with the smallest
domain, and choose the values in numeric order.

Double smallest domain, SD?(p+d) : choose the primal/dual variable with
the smallest domain, and choose the value whose dual/primal variable has
the smallest domain.

Primal double smallest domain, SD?(p) : choose the primal variable with
the smallest domain, and choose the value whose dual variable has the small-
est domain.

Dual double smallest domain, SD?(d) : choose the dual variable with the
smallest domain, and choose the value whose primal variable has the smallest
domain.

The idea of using the smallest domain heuristic on the dual as a value ordering
heuristic can be traced at least as far back as [7]. It was also used in [2,3]. We
shall now argue that the variable and value ordering provided by the double
smallest domain heuristics is consistent with the fail first principle for variable
ordering and the succeed first for value ordering. Barbara Smith in a personal
communication to the authors made a similar argument. Suppose we assign the
primal value k to the primal variable X (an analogous argument can be given
if we branch on a dual variable). Constraint propagation will prune the primal
value k from the other primal variables, and the dual value X from the other
dual variables. Of course, constraint propagation may do more than this if we
have an all-different constraint or channelling constraints. However, to a first
approximation, this is a reasonable starting point. Geelen’s succeed first value
ordering heuristic computes the “promise” of the different values by multiplying
together the domain sizes of the uninstantiated variables [1]. Each term in this
product is constant if k& and X do not occur in the domain and is reduced by
1 if k or X occurs in the domain. This is likely to be maximized by ensuring
we reduce as few terms as possible. That is, by ensuring & and X occur in as
few domains as possible. That is X and Dj, have the smallest domains possible.
Hence double smallest domain will tend to branch on the variable with smallest
domain and assign it the value with most promise.

4 Problem domains

We will compare these different models and heuristics on the following collection
of permutation problems. All the models are implemented in Solver 5.300, and
are available at CSPLib.

Langford’s problem: Given two integers n and m, Langford’s problem is to
permute n sets of numbers 1 to m, so that each appearance of the number
1 is ¢ on from the last. This is prob024 in CSPLib.

Quasigroup existence problem: An order n quasigroup is a Latin square of
size n. That is, an n x n multiplication table in which each row and column
is a permutation of the numbers 1 to n. Quasigroups existence problem
determines the existence or non-existence of quasigroups of a given size with
additional properties. QG3(n) denotes quasigroups of order n for which (a *
b) * (bxa) = a. QG4(n) denotes quasigroups of order n for which (b*a)* (a*
b) = a. Furthermore, we may additionally demand that the quasigroup is
idempotent, i.e., a x a = a for every element a. This is prob003 in CSPLib.

Golomb rulers problem: A Golomb ruler has n marks arranged on the ticks
of a ruler of length m such that the distances between any pair of marks are
all distinct. This is prob006 in CSPLib.

Sport scheduling problem: We want to schedule games between n teams
over n — 1 weeks when n is even (n weeks when n is odd). Each week is
divided into n/2 periods when 7 is even ((n — 1)/2 when n is odd). Each
game is composed of two slots, "home” and ”away”, where one team plays
home and the other team plays away. The objective is to schedule a game for
each period of every week such that: every team plays against every other
team; a team plays exactly once a week when we have an even number of
teams, and at most once a week when we have an odd number of weeks; and
a team plays at most twice in the same period over the course of the season.
This is prob026 in CSPLib.

Magic squares problem: An order n magic square is an n by n matrix con-
taining the number 1 to n?, with each row, column, and diagonal equal the
same sum. This is prob019 in CSPLib.

5 Experimental results

We now compare the different models and branching heuristics in an extensive
set of experiments. The hypothesis we wish to test is that branching heuristics
can profit from multiple viewpoints.

5.1 Langford’s problem

The results are given in Table 1. We make a number of observations. The primal
not-equals viewpoint (“#£”) gives the worst results (as it does in almost all the
subsequent problem domains). We will not therefore discuss it further. The best

L(3,12) L(3,13) L(3,14) L(3,15)
model|heuristic | fails sec. | fails sec. | fails sec. fails sec.
|SD(p) 62016 10.27|300800 53.72(1368322 272.03|7515260 1601.00
vV |SD(p) 20795 3.59 | 93076 16.95| 405519 78.18 2072534 414.71
¢ |SD(p+d) | 11683 2.16|45271 8.66| 184745 36.46| 846851 171.97
¢ |SD(p) 21148 3.68 | 94795 16.84| 412882 74.99 (2112477 389.69
¢ [SD(d) 15214 2.64 | 59954 10.73| 249852 46.39 (1144168 221.01
c SD2(p+d) 11683 2.2 | 45271 9.04 | 184745 38.32 | 846851 180.00
c |SD?(p) 20855 3.89 | 93237 17.07| 406546 75.38 |2077692 393.21
¢ |SD?(d) 14314 2.62 | 56413 10.61| 234770 45.68 |{1076352 213.51
Ve |SD(p+d) |11449 2.84 {44253 11.47|180611 48.71 (827564 231.80
Ve |SD(p) 20795 4.93 93076 22.61| 405519 102.45|2072534 537.14
Ve |SD(d) 14459 3.44 | 56701 13.94| 234790 60.13 |{1069249 282.42
Ve SD2(p+d) 11451 2.91 | 44254 11.72| 180631 49.71 | 827605 235.56
Ve [SD?(p) 20488 4.98 | 91513 22.86| 399092 103.09|2037159 540.04
Ve [SD?(d) 13639 3.38 | 53483 13.78| 221307 59.33 1009250 278.32

Table 1. No. of backtracks (fails) and running time to find all solutions, or prove that
there are no solutions, to four instances of Langford problem. Runtimes are for ILOG
Solver 5.300 on 1200MHz, Pentium III processor, and 512 MB of RAM.

QG3(6) | QG(7) | QG3(8) QG3(9)
model|heuristic |fails sec. |fails sec. |fails sec. | fails sec.
|SD(p) 8 0.01{100 0.22(1895 8.46|83630 600.61
vV |SD(p) 7 0.01(59 0.17]955 5.76|35198 385.57
¢ |SD(p+d) | 7 0.02| 63 0.16|1117 5.81|53766 463.40
¢ |SD(p) 7 0.02(59 0.17]1039 5.70|38196 373.38
¢ |SD(d) 6 0.01]| 54 0.19| 888 5.40|46539 418.96
¢ |SD*(p+d)| 7 0.02| 63 0.17|1117 5.83| 53785 461.05
c SD2(p) 7 0.01| 58 0.17|1043 5.68|38198 372.41
¢ |SD?(d) 6 0.01] 54 0.18|887 5.42|46741 419.94
Ve [SD(p+d) | 7 0.02| 54 0.16| 999 6.00|49678 474.82
Ve [SD(p) 7 0.02(59 0.18]955 5.85|35198 376.06
Ve [SD(d) 5 0.02|52 0.2 |824 5.73|43278 438.81
Ve |SD?*(p+d)| 7 0.03| 54 0.17|999 6.05|49702 477.04
Ve |SD?(p) 7 0.02|58 0.18|959 5.84|35201 368.87
Ve |SD?(d) 5 0.02|52 0.19|823 5.80|43452 432.89

Table 2. No. of backtracks (fails) and running time to find all solutions, or prove that
there are no solutions, to four instances of QG3 problem. Runtimes are for ILOG Solver
5.300 on 1200MHz, Pentium III processor, and 512 MB of RAM.

runtimes are obtained with the channelling constraints and branching on the
primal or dual variable with smallest domain. Being forced to branch on just the
primal or dual tends to increase runtimes. The branching heuristic therefore prof-
its from the multiple viewpoints. Note that maintaining GAC on the all-different
constraint is neither the best startegy in terms of failures or runtimes. This is
despite the fact that it has the strongest propagator. This model has only one
viewpoint and this hinders the branching heuristic. Note also that the smallest
search trees (but not runtimes) are obtained with models that combines the all-
different constraint on the primal with the channelling constraints between the
primal and dual. In such models, we have the benefits of the strongest propagator
and a dual viewpoint for the branching heuristic. Finnally, note that the model
with just an all-different constraint only has primal variables, and gives the same
search tree as the model with the all-different constraint and channelling when
it is forced to branch on just the primal variables. The pruning performed by
the all-different constraint subsumes that performed by the channelling [3,4].

5.2 Quasigroups

The quasigroups existence problem can be modelled as a multiple permutation
problem with 2n intersecting permutation constraints. We introduce a variable
for each entry in the multiplication table of the quasigroup. We then post per-
mutation constraints on each row and column of variables. In Table 2, we give
results for the QG3 family of problems. All the models and branching heuristics
except the primal not-equals models are competitive. A dual viewpoint doesn’t
appear to offer much advantage, but it also does not hurt. In Table 3, we give
results for the QG4 family of problems. All the models and branching heuristics
are again competitive except the primal not-equals models and those models
which force the branching heuristic to branch on a dual variable. Note also that
the best runtime on the largest problem is with the double smallest domain
heuristic.

5.3 Golomb rulers

To model the Golomb rulers problem as a permutation problem, we introduce
a variable for each pairwise distance between marks. Since we may have more
values than variables, we introduce additional variables to ensure that there are
as many variables as values. Geelen advocates such a construction in [1] as we
can then post a permutation constraint on the enlarged set of variables. In Table
4, we give results for finding four optimal length rulers. Despite the fact that it
has the strongest propagator, the primal all-different model is not competitive
on the larger problems. The best runtimes are obtained with the channelling
constraints and branching on the primal or dual variable with smallest domain.
Being forced to branch on just the primal variables hurts the branching heuristic.

QG4(6) | QG4(7) | QG4(8) QG4(9)
model|heuristic |fails sec. |fails sec. |fails sec.| fails sec.
|SD(p) 6 0.01| 82 0.23(1779 8.29|116298 843.26
VY |SD(p) 4 0.01| 57 0.19(892 5.12| 52419 496.24
¢ |SD(p+d) | 6 0.02] 59 0.20|935 4.99| 55232 489.89
¢ |SD(p) 6 0.01| 59 0.20]|931 4.92| 55397 485.72
¢ |SD(d) 6 0.02| 74 0.21(1266 7.59| 83316 772.17
c [SD*(p+d)| 6 0.02] 59 0.19|940 4.81| 55264 476.66
¢ |SD*(p) | 6 0.01| 59 0.19|936 4.87|55442 478.48
c [SD%*(d) 6 0.01| 73 0.22|1267 7.37| 82916 766.33
Ve |SD(p+d) | 4 0.02| 57 0.19|900 5.19|52045 486.72
Ve |SD(p) 4 0.02]| 57 0.20|892 5.29(52419 491.54
Ve |SD(d) 4 0.02]| 67 0.21(1102 7.04| 73997 745.09
Ve [SD?*(p+d)| 4 0.01| 57 0.19|905 5.24| 52077 491.45
Ve SD2(p) 4 0.01]| 57 0.20|897 5.23| 52463 493.70
Ve [SD?(d) 4 0.01| 66 0.23(1104 7.02| 73714 745.86

Table 3. No. of backtracks (fails) and running time to find all solutions, or prove that
there are no solutions, to four instances of QG4 problem. Runtimes are for ILOG Solver
5.300 on 1200MHz, Pentium III processor, and 512 MB of RAM.

Golomb(7,25)|Golomb(8,34)|Golomb(9,44) | Golomb(10,55)
model|heuristic |fails sec. fails sec. fails sec. | fails sec.

|SD(p) 912 0.15 |5543 1.12 - - - -
VY |SD(p) 500 0.11 |2949 0.81 - - - -
c |SD(p+d) |606 0.12 |3330 1.01 |17002 7.54 |72751 49.14
¢ |SD(p) 890 0.15 |5343 1.25 - - - -
c |SD(d) 626 0.12 [3390 1.02 |17151 7.55 |73539 49.25
c |SD*(p+d)|608 0.12 [3333 1.03 |17022 7.63 |72853 49.37
c |SD?*(p) |928 0.17 |5648 1.27 - - - -
c [SD?*(d) [626 0.12 (3390 1.03 |17179 7.59 |73628 49.59

Ve |SD(p+d) 493 0.12 (2771 1.10 [14313 8.29 |61572 54.63

Ve |SD(p) 500 013 |2949 1.08 | - - - -

Ve |SD(d) 495 0.13 [2782 1.10 |14325 8.28 |61616 54.46
2

(p+d)|504 0.14 |2787 1.1 |14392 8.38 | 61898 54.94
Ve |SD?*(p) |542 0.14 |3258 1.12 - - - -
(d) 495 0.13 |2794 1.11 |14400 8.39 |61893 54.97

Table 4. No. of backtracks (fails) and running time to find all solutions, or prove that
there are no solutions, to four instances of Golomb rulers problem. Runtimes are for
ILOG Solver 5.300 on 1200MHz, Pentium IIT processor, and 512 MB of RAM. A dash
means that no results were returned after 1 hour.

Sport(6) | Sport(8) Sport(10) Sport(12)
model|heuristic |fails sec. |fails sec.| fails sec. fails sec.
|SD(p) 0 0.00|1248 0.22(1863275 397.70(5777382 1971.92
vV |SD(p) 0 0.01]|566 0.15|1361686 350.92|3522705 1444.44
¢ |SD(p+d) {624 0.09| 4 0.01 7 0.03 | 5232 1.78
¢ |SD(p) 0 0.00|566 0.14|1376143 355.99|3537447 1368.84
¢ |SD(d) 589 0.07| 3 0.01| 336 0.07 | 6368 1.9
c SDZ(p—i—d) 7 0.00f 9 0.01| 1112 0.30 | 46122 18.4
c |SD?(p) 113 0.02 (6601 0.94 | 820693 168.91 - -
¢ |SD%(d) 514 0.06| 43 0.01| 7028 1.58 | 6252 2.29
Ve |SD(p+d) |624 0.10| 4 0.01] 7 0.03 | 5190 1.98
Ve [SD(p) 0 0.01]|566 0.16|1361686 372.10(3522705 1495.41
Ve [SD(d) 589 0.09| 3 0.01| 329 0.08 | 6262 2.18
Ve |SD*(p+d)| 7 0.00] 9 0.01| 1102 0.35 | 45125 20.98
Ve [SD?(p) 113 0.02(6563 1.09| 812696 186.23 - -
Ve |SD?(d) 514 0.07| 43 0.02| 6920 1.76 | 6129 2.55

Table 5. No. of backtracks (fails) and running time to find first solution to four in-
stances of sport scheduling problem. Runtimes are for ILOG Solver 5.300 on 1200MHz,
Pentium III processor, and 512 MB of RAM.

Magic(3) |[Magic(4)| Magic(b) Magic(6)
model|heuristic |fails sec. |fails sec. | fails sec. fails sec.
|SD(p) 6 0.00| 20 0.00| 1576 0.11 - -
vV |SD(p) 4 0.00| 19 0.00| 1355 0.11 [2748609 196.45
¢ |SD(p+d) | 5 0.00| 18 0.00| 4637 0.37 - -
¢ |SD(p) 4 0.00| 20 0.00| 1457 0.14 |3448162 249.84
¢ |SD(d) 5 0.00| 37 0.01]|49312 4.61 - -
¢ [SD%(p+d)| 5 0.00| 10 0.00| 555 0.06 |463865 37.41
c SDz(p) 4 0.00| 11 0.00| 495 0.05 [1648408 132.35
¢ |SD*(d) | 5 0.00| 18 0.00(928217 86.07| - -
Ve |SD(p+d) | 5 0.01| 18 0.00| 4436 0.48 - -
Ve |SD(p) 4 0.00(19 0.00(1355 0.17 - -
Ve |SD(d) 5 0.00{ 5 0.00]|42426 5.33 - -
Ve [SD?*(p+d)| 5 0.02] 10 0.01| 435 0.07 | 290103 39.01
Ve SDz(p) 4 0.00| 11 0.00| 355 0.05 (1083993 148.73
Ve |SD?(d) 5 0.00(16 0.00(919057 106.55 - -

Table 6. No. of backtracks (fails) and running time to find the first solution to four
instances of magic square problem. Runtimes are for ILOG Solver 5.300 on 1200MHz,
Pentium IIT processor, and 512 MB of RAM. A dash means that no results were
returned after 1 hour.

5.4 Sport scheduling

The sport scheduling problem is modelled as follows. The set of teams is T =
{1,...,n} (we assume n is even), the set of weeks is W = {1,...,n — 1}, the set
of periodsis P = {1,...,n/2}, and the set of slots ("home” and "away”) are S =
{1,2}. A schedule is then a bijection from P x S into T for each week such that
all the other constraints of the problem are satisfied. We report results in Table
5. Unlike the previous tables which report results to find all solutions, here we
report results to find just the first solution. Despite this significant change in the
experimental setup, we observe similar trends in our results. Even though it has
the strongest propagator, the primal all-different model is again not competitive
on the larger problems. The best runtimes are obtained with the channelling
constraints and branching on the primal or dual variable with smallest domain.
As with the Golomb ruler problem, being forced to branch on just the primal
variables hurts the branching heuristic. Multiple viewpoints appear to offer the
branching heuristic very significant advantages on this problem.

5.5 Magic squares

We model the order n magic square problem as a matrix model in which there
is an n by n matrix of variables which take values from 1 to n2. We then post
permutation constraint on all the variables in such a matrix, and sum constraints
on the rows, columns and diagonals. Results are given in Table 6, again to find the
first solution. The best strategy is the double smallest domain heuristic on either
the model with just channelling constraints, or on the model with channelling
constraints and a primal all-different constraint. The former explores a larger
search tree, but does so very slightly quicker than the later. We conjecture that
the large domain sizes in this problem favour a branching heuristic like double
smallest domain which chooses its values with care.

6 Conclusion

On permuation problems, branching heuristics can be significantly more effec-
tive when they look at both the primal and dual viewpoint. Indeed, branching
on primal or dual variables was often more important to our results than us-
ing a stronger propagator. For example, the model that enforced GAC on an
all-different constraint often gave worse performance both in runtime and search
tree size compared to the model that enforced AC on the channelling constraints.
With the later model, the branching heuristic was able to use the multiple view-
points to make better branching decisions. We also studied the double smallest
domain heuristic [7]. This branches on the primal/dual variable with smallest
domain and assigns it the value whose dual/primal variable has the smallest
domain. This makes decisions which are consistent with the fail-first principle
for variable ordering and the succeed-first principle for value ordering. On some
of our problem domains, it offered the best performance of all the heuristics
studied.

What general lessons can be learnt from these experiments? First, we have
strong support for the hypothesis that branching heuristics can profit from mul-
tiple viewpoints. Second, our experimental results suggest that you should not
necessarily aim for more propagation. For instance, we usually saw better per-
formance when we threw out the all-different constraint. Third, when we model,
we need to think about both the heuristics and the propagation. It would be in-
teresting in the future to study the benefits of multiple viewpoints for branching
heuristics on problems other than permutations where there might not be such
a natural dual viewpoint.

Acknowledgments

The authors are supported by the Science Foundation Ireland. They wish to
thank the members of the APES research group.

References

1. Geelen, P.: Dual viewpoint heuristics for binary constraint satisfaction problems.
In: Proceedings of the 10th ECAI, European Conference on Artificial Intelligence
(1992) 31-35

2. Cheng, B., Choi, K., Lee, J., Wu, J.: Increasing constraint propagation by redundant
modeling: an experience report. Constraints 4 (1999) 167-192

3. Smith, B.: Modelling a Permutation Problem. In: Proceedings of ECAI’2000 Work-
shop on Modelling and Solving Problems with Constraints. (2000) Also available as
Research Report from http://scom.hud.ac.uk/staff/scombms/papers.html.

4. Walsh, T.: Permtuation problems and channelling constraints. In: Proceedings of
8th International Conference on Logic for Programming, Artificial Intelligence and
Reasoning (LPAR 2001). (2001)

5. Régin, J.C.: A filtering algorithm for constraints of difference in CSPs. In: Pro-
ceedings of the 12th National Conference on AI, American Association for Artificial
Intelligence (1994) 362-367

6. Smith, B.: Succeed-first or Fail-first: a case study in variable and value ordering
heuristics. In: Proceedings of the Third International Conference on Practical Ap-
plications of Constraint Programming (PACT-97). (1997) Available as Research
Report 96.26, School of Computer Studies, University of Leeds.

7. Jourdan, J.: Concurrent constraint multiple models in CLP and CC languages:
toward a programming methodology by modelling. In: Proceedings of the INFORMS
Conference. (1995)

