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.ieAbstra
t. When modelling a problem, there are often alternative view-points that 
an be taken. It 
an even be advantageous to use multipleviewpoints, and to have 
onstraints whi
h 
hannel between them to main-tain 
onsisten
y. Multiple viewpoints often make it mu
h easier to postthe di�erent problem 
onstraints, as well as improve the amount of 
on-straint propagation. In this paper, we demonstrate another reason forusing multiple viewpoints: bran
hing heuristi
s 
an be more e�e
tivewhen they look at multiple viewpoints.1 Introdu
tionConstraint programming is a highly su

essful te
hnology for solving a widevariety of 
ombinatorial problems like resour
e allo
ation, transportation, ands
heduling. However, its uptake is hindered by the diÆ
ulty of modelling prob-lems su

essfully as 
onstraint programs. One key modelling de
ision is whi
hviewpoint or viewpoints to use. For example, in modelling a sports tournaments
heduling problem, do we take the viewpoint in whi
h the games are the vari-ables, and the times are their values? Or do we take the dual viewpoint in whi
hthe times are the variables, and the games are their values? Or do we take bothviewpoints, and have 
hannelling 
onstraints to maintain 
onsisten
y betweenthe two viewpoints?There are a number of reasons we might 
onsider multiple viewpoints, eventhough using more than one viewpoint introdu
es additional overheads. First,di�erent 
onstraints may be easier to post in the di�erent viewpoints. Se
ond,propagation may be improved. For example, one viewpoint may be linear andso 
an be solved using ILP. A third possibility, proposed by Geelen in [1℄ andexplored in detail here, is that bran
hing heuristi
s may pro�t from looking atmore than one viewpoint. The results given in [1℄ are promising but are limitedto a small number of experiments on n-queens problems. It is therefore timely toperform a more extensive experimental study on a range of 
hallenging problems.2 Permutation problemsOur analysis will fo
us on permutation problems. A permutation problem is a
onstraint satisfa
tion problem in whi
h ea
h de
ision variable takes an unique



value, and there is the same number of values as variables. In a permutationproblem, we 
an easily transpose the roles of the variables and the values to givea dual model whi
h is also a permutation problem. Ea
h variable in the primalbe
omes a value in the dual, and vi
e versa. We shall also 
onsider multiplepermutation problems in whi
h the variables divide into a number of (possiblyoverlapping) sets, ea
h of whi
h is a permutation problem.It is possible to 
ombine multiple viewpoints by using 
hannelling 
onstraintsto maintain 
onsisten
y between the di�erent viewpoints. This approa
h is 
alled\redundant modelling" by Cheng et al. [2℄ and was spe
i�
ally suggested for per-mutation problems in [1℄. In a permutation problem, the 
hannelling 
onstraintsare of the form: Xi = j i� Dj = i. Many 
onstraint toolkits support 
han-nelling of this kind with eÆ
ient global 
onstraints. For example, ILOG Solverhas a 
onstraint, Il
Inverse, and the Si
stus �nite domain 
onstraint libraryhas an assignment predi
ate whi
h 
an be used to 
hannel eÆ
iently betweenthe primal and dual viewpoints of a permutation.To ensure that we have a permutation, we 
an post a global all-di�erent
onstraint on the primal variables. Alternatively, we 
an post binary not-equals
onstraints between any two primal variables. However, if we have both pri-mal and dual variables, the 
hannelling 
onstraints are on their own suÆ
ient toensure we have a permutation. Indeed, the 
hannelling 
onstraints provide an in-termediate level of pruning between what GAC a
hieves on a primal all-di�erent
onstraint and AC on binary not-equals 
onstraints on the primal [3, 4℄. AC onthe binary not-equals 
onstraints identi�es singleton variables (those variableswith a single value left in their domain). AC on the 
hannelling 
onstraints iden-ti�es both singleton variables and singleton values (those values whi
h are leftin the domain of a single variable). GAC on an all-di�erent 
onstraint identi�esboth singleton variables and singleton values plus even more 
omplex situation(e.g. three variables with just two values left between them).There are thus a large number of di�erent ways to model and solve a per-mutation problem. We 
an, for example, post an all-di�erent 
onstraint postedon the primal and use Regin's eÆ
ient algorithm [5℄ to maintain GAC on this
onstraint (in the tables of results, we will write \8" for this model and solutionmethod). Alternatively, we 
an maintain AC on 
hannelling 
onstraints betweenprimal and dual (we write \
" for this model and solution method). A thirdviewpoint is to maintain AC on binary not-equals 
onstraints between any twoprimal variables (we write \6=" for this model and solution method). Finally,we 
an take any 
ombination of these viewpoints. For example, we 
an main-tain GAC on an all-di�erent 
onstraint on the primal and AC on 
hannelling
onstraints between primal and dual (we write \8
" for this model and solutionmethod).3 Variable and value orderingThe aim of this paper is to study how multiple viewpoints may bene�t variableand value ordering heuristi
s. A variable ordering heuristi
 like smallest domain



is usually justi�ed in terms of a \fail-�rst" prin
iple. We have to pi
k eventuallyall the variables, so it is wise to 
hoose one that is hard to assign, giving ushopefully mu
h 
onstraint propagation and a small sear
h tree. On the otherhand, a value ordering heuristi
s like most promise [1℄ is usually justi�ed in termsof a \su

eed-�rst" prin
iple [6℄. We pi
k a value likely to lead to a solution, soredu
ing the risk of ba
ktra
king and trying one of the alternative values. In apermutation problem, we 
an bran
h on the primal or the dual variables or onboth. We therefore 
onsider the following heuristi
s.Smallest domain, SD(p+d) : 
hoose the primal or the dual variable with thesmallest domain, and 
hoose the values in numeri
 order.Primal smallest domain, SD(p) : 
hoose the primal variable with the small-est domain, and 
hoose the values in numeri
 order.Dual smallest domain, SD(d) : 
hoose the dual variable with the smallestdomain, and 
hoose the values in numeri
 order.Double smallest domain, SD2(p+d) : 
hoose the primal/dual variable withthe smallest domain, and 
hoose the value whose dual/primal variable hasthe smallest domain.Primal double smallest domain, SD2(p) : 
hoose the primal variable withthe smallest domain, and 
hoose the value whose dual variable has the small-est domain.Dual double smallest domain, SD2(d) : 
hoose the dual variable with thesmallest domain, and 
hoose the value whose primal variable has the smallestdomain.The idea of using the smallest domain heuristi
 on the dual as a value orderingheuristi
 
an be tra
ed at least as far ba
k as [7℄. It was also used in [2, 3℄. Weshall now argue that the variable and value ordering provided by the doublesmallest domain heuristi
s is 
onsistent with the fail �rst prin
iple for variableordering and the su

eed �rst for value ordering. Barbara Smith in a personal
ommuni
ation to the authors made a similar argument. Suppose we assign theprimal value k to the primal variable X (an analogous argument 
an be givenif we bran
h on a dual variable). Constraint propagation will prune the primalvalue k from the other primal variables, and the dual value X from the otherdual variables. Of 
ourse, 
onstraint propagation may do more than this if wehave an all-di�erent 
onstraint or 
hannelling 
onstraints. However, to a �rstapproximation, this is a reasonable starting point. Geelen's su

eed �rst valueordering heuristi
 
omputes the \promise" of the di�erent values by multiplyingtogether the domain sizes of the uninstantiated variables [1℄. Ea
h term in thisprodu
t is 
onstant if k and X do not o

ur in the domain and is redu
ed by1 if k or X o

urs in the domain. This is likely to be maximized by ensuringwe redu
e as few terms as possible. That is, by ensuring k and X o

ur in asfew domains as possible. That is X and Dk have the smallest domains possible.Hen
e double smallest domain will tend to bran
h on the variable with smallestdomain and assign it the value with most promise.



4 Problem domainsWe will 
ompare these di�erent models and heuristi
s on the following 
olle
tionof permutation problems. All the models are implemented in Solver 5.300, andare available at CSPLib.Langford's problem: Given two integers n and m, Langford's problem is topermute n sets of numbers 1 to m, so that ea
h appearan
e of the numberi is i on from the last. This is prob024 in CSPLib.Quasigroup existen
e problem: An order n quasigroup is a Latin square ofsize n. That is, an n� n multipli
ation table in whi
h ea
h row and 
olumnis a permutation of the numbers 1 to n. Quasigroups existen
e problemdetermines the existen
e or non-existen
e of quasigroups of a given size withadditional properties. QG3(n) denotes quasigroups of order n for whi
h (a �b)� (b�a) = a. QG4(n) denotes quasigroups of order n for whi
h (b�a)� (a�b) = a. Furthermore, we may additionally demand that the quasigroup isidempotent, i.e., a � a = a for every element a. This is prob003 in CSPLib.Golomb rulers problem: A Golomb ruler has n marks arranged on the ti
ksof a ruler of length m su
h that the distan
es between any pair of marks areall distin
t. This is prob006 in CSPLib.Sport s
heduling problem: We want to s
hedule games between n teamsover n � 1 weeks when n is even (n weeks when n is odd). Ea
h week isdivided into n=2 periods when n is even ((n � 1)=2 when n is odd). Ea
hgame is 
omposed of two slots, "home" and "away", where one team playshome and the other team plays away. The obje
tive is to s
hedule a game forea
h period of every week su
h that: every team plays against every otherteam; a team plays exa
tly on
e a week when we have an even number ofteams, and at most on
e a week when we have an odd number of weeks; anda team plays at most twi
e in the same period over the 
ourse of the season.This is prob026 in CSPLib.Magi
 squares problem: An order n magi
 square is an n by n matrix 
on-taining the number 1 to n2, with ea
h row, 
olumn, and diagonal equal thesame sum. This is prob019 in CSPLib.5 Experimental resultsWe now 
ompare the di�erent models and bran
hing heuristi
s in an extensiveset of experiments. The hypothesis we wish to test is that bran
hing heuristi
s
an pro�t from multiple viewpoints.5.1 Langford's problemThe results are given in Table 1. We make a number of observations. The primalnot-equals viewpoint (\ 6=") gives the worst results (as it does in almost all thesubsequent problem domains). We will not therefore dis
uss it further. The best



L(3,12) L(3,13) L(3,14) L(3,15)model heuristi
 fails se
. fails se
. fails se
. fails se
.6= SD(p) 62016 10.27 300800 53.72 1368322 272.03 7515260 1601.008 SD(p) 20795 3.59 93076 16.95 405519 78.18 2072534 414.71
 SD(p+d) 11683 2.16 45271 8.66 184745 36.46 846851 171.97
 SD(p) 21148 3.68 94795 16.84 412882 74.99 2112477 389.69
 SD(d) 15214 2.64 59954 10.73 249852 46.39 1144168 221.01
 SD2(p+d) 11683 2.2 45271 9.04 184745 38.32 846851 180.00
 SD2(p) 20855 3.89 93237 17.07 406546 75.38 2077692 393.21
 SD2(d) 14314 2.62 56413 10.61 234770 45.68 1076352 213.518
 SD(p+d) 11449 2.84 44253 11.47 180611 48.71 827564 231.808
 SD(p) 20795 4.93 93076 22.61 405519 102.45 2072534 537.148
 SD(d) 14459 3.44 56701 13.94 234790 60.13 1069249 282.428
 SD2(p+d) 11451 2.91 44254 11.72 180631 49.71 827605 235.568
 SD2(p) 20488 4.98 91513 22.86 399092 103.09 2037159 540.048
 SD2(d) 13639 3.38 53483 13.78 221307 59.33 1009250 278.32Table 1. No. of ba
ktra
ks (fails) and running time to �nd all solutions, or prove thatthere are no solutions, to four instan
es of Langford problem. Runtimes are for ILOGSolver 5.300 on 1200MHz, Pentium III pro
essor, and 512 MB of RAM.
QG3(6) QG(7) QG3(8) QG3(9)model heuristi
 fails se
. fails se
. fails se
. fails se
.6= SD(p) 8 0.01 100 0.22 1895 8.46 83630 600.618 SD(p) 7 0.01 59 0.17 955 5.76 35198 385.57
 SD(p+d) 7 0.02 63 0.16 1117 5.81 53766 463.40
 SD(p) 7 0.02 59 0.17 1039 5.70 38196 373.38
 SD(d) 6 0.01 54 0.19 888 5.40 46539 418.96
 SD2(p+d) 7 0.02 63 0.17 1117 5.83 53785 461.05
 SD2(p) 7 0.01 58 0.17 1043 5.68 38198 372.41
 SD2(d) 6 0.01 54 0.18 887 5.42 46741 419.948
 SD(p+d) 7 0.02 54 0.16 999 6.00 49678 474.828
 SD(p) 7 0.02 59 0.18 955 5.85 35198 376.068
 SD(d) 5 0.02 52 0.2 824 5.73 43278 438.818
 SD2(p+d) 7 0.03 54 0.17 999 6.05 49702 477.048
 SD2(p) 7 0.02 58 0.18 959 5.84 35201 368.878
 SD2(d) 5 0.02 52 0.19 823 5.80 43452 432.89Table 2. No. of ba
ktra
ks (fails) and running time to �nd all solutions, or prove thatthere are no solutions, to four instan
es of QG3 problem. Runtimes are for ILOG Solver5.300 on 1200MHz, Pentium III pro
essor, and 512 MB of RAM.



runtimes are obtained with the 
hannelling 
onstraints and bran
hing on theprimal or dual variable with smallest domain. Being for
ed to bran
h on just theprimal or dual tends to in
rease runtimes. The bran
hing heuristi
 therefore prof-its from the multiple viewpoints. Note that maintaining GAC on the all-di�erent
onstraint is neither the best startegy in terms of failures or runtimes. This isdespite the fa
t that it has the strongest propagator. This model has only oneviewpoint and this hinders the bran
hing heuristi
. Note also that the smallestsear
h trees (but not runtimes) are obtained with models that 
ombines the all-di�erent 
onstraint on the primal with the 
hannelling 
onstraints between theprimal and dual. In su
h models, we have the bene�ts of the strongest propagatorand a dual viewpoint for the bran
hing heuristi
. Finnally, note that the modelwith just an all-di�erent 
onstraint only has primal variables, and gives the samesear
h tree as the model with the all-di�erent 
onstraint and 
hannelling whenit is for
ed to bran
h on just the primal variables. The pruning performed bythe all-di�erent 
onstraint subsumes that performed by the 
hannelling [3, 4℄.5.2 QuasigroupsThe quasigroups existen
e problem 
an be modelled as a multiple permutationproblem with 2n interse
ting permutation 
onstraints. We introdu
e a variablefor ea
h entry in the multipli
ation table of the quasigroup. We then post per-mutation 
onstraints on ea
h row and 
olumn of variables. In Table 2, we giveresults for the QG3 family of problems. All the models and bran
hing heuristi
sex
ept the primal not-equals models are 
ompetitive. A dual viewpoint doesn'tappear to o�er mu
h advantage, but it also does not hurt. In Table 3, we giveresults for the QG4 family of problems. All the models and bran
hing heuristi
sare again 
ompetitive ex
ept the primal not-equals models and those modelswhi
h for
e the bran
hing heuristi
 to bran
h on a dual variable. Note also thatthe best runtime on the largest problem is with the double smallest domainheuristi
.5.3 Golomb rulersTo model the Golomb rulers problem as a permutation problem, we introdu
ea variable for ea
h pairwise distan
e between marks. Sin
e we may have morevalues than variables, we introdu
e additional variables to ensure that there areas many variables as values. Geelen advo
ates su
h a 
onstru
tion in [1℄ as we
an then post a permutation 
onstraint on the enlarged set of variables. In Table4, we give results for �nding four optimal length rulers. Despite the fa
t that ithas the strongest propagator, the primal all-di�erent model is not 
ompetitiveon the larger problems. The best runtimes are obtained with the 
hannelling
onstraints and bran
hing on the primal or dual variable with smallest domain.Being for
ed to bran
h on just the primal variables hurts the bran
hing heuristi
.



QG4(6) QG4(7) QG4(8) QG4(9)model heuristi
 fails se
. fails se
. fails se
. fails se
.6= SD(p) 6 0.01 82 0.23 1779 8.29 116298 843.268 SD(p) 4 0.01 57 0.19 892 5.12 52419 496.24
 SD(p+d) 6 0.02 59 0.20 935 4.99 55232 489.89
 SD(p) 6 0.01 59 0.20 931 4.92 55397 485.72
 SD(d) 6 0.02 74 0.21 1266 7.59 83316 772.17
 SD2(p+d) 6 0.02 59 0.19 940 4.81 55264 476.66
 SD2(p) 6 0.01 59 0.19 936 4.87 55442 478.48
 SD2(d) 6 0.01 73 0.22 1267 7.37 82916 766.338
 SD(p+d) 4 0.02 57 0.19 900 5.19 52045 486.728
 SD(p) 4 0.02 57 0.20 892 5.29 52419 491.548
 SD(d) 4 0.02 67 0.21 1102 7.04 73997 745.098
 SD2(p+d) 4 0.01 57 0.19 905 5.24 52077 491.458
 SD2(p) 4 0.01 57 0.20 897 5.23 52463 493.708
 SD2(d) 4 0.01 66 0.23 1104 7.02 73714 745.86Table 3. No. of ba
ktra
ks (fails) and running time to �nd all solutions, or prove thatthere are no solutions, to four instan
es of QG4 problem. Runtimes are for ILOG Solver5.300 on 1200MHz, Pentium III pro
essor, and 512 MB of RAM.
Golomb(7,25) Golomb(8,34) Golomb(9,44) Golomb(10,55)model heuristi
 fails se
. fails se
. fails se
. fails se
.6= SD(p) 912 0.15 5543 1.12 { { { {8 SD(p) 500 0.11 2949 0.81 { { { {
 SD(p+d) 606 0.12 3330 1.01 17002 7.54 72751 49.14
 SD(p) 890 0.15 5343 1.25 { { { {
 SD(d) 626 0.12 3390 1.02 17151 7.55 73539 49.25
 SD2(p+d) 608 0.12 3333 1.03 17022 7.63 72853 49.37
 SD2(p) 928 0.17 5648 1.27 { { { {
 SD2(d) 626 0.12 3390 1.03 17179 7.59 73628 49.598
 SD(p+d) 493 0.12 2771 1.10 14313 8.29 61572 54.638
 SD(p) 500 0.13 2949 1.08 { { { {8
 SD(d) 495 0.13 2782 1.10 14325 8.28 61616 54.468
 SD2(p+d) 504 0.14 2787 1.1 14392 8.38 61898 54.948
 SD2(p) 542 0.14 3258 1.12 { { { {8
 SD2(d) 495 0.13 2794 1.11 14400 8.39 61893 54.97Table 4. No. of ba
ktra
ks (fails) and running time to �nd all solutions, or prove thatthere are no solutions, to four instan
es of Golomb rulers problem. Runtimes are forILOG Solver 5.300 on 1200MHz, Pentium III pro
essor, and 512 MB of RAM. A dashmeans that no results were returned after 1 hour.



Sport(6) Sport(8) Sport(10) Sport(12)model heuristi
 fails se
. fails se
. fails se
. fails se
.6= SD(p) 0 0.00 1248 0.22 1863275 397.70 5777382 1971.928 SD(p) 0 0.01 566 0.15 1361686 350.92 3522705 1444.44
 SD(p+d) 624 0.09 4 0.01 7 0.03 5232 1.78
 SD(p) 0 0.00 566 0.14 1376143 355.99 3537447 1368.84
 SD(d) 589 0.07 3 0.01 336 0.07 6368 1.9
 SD2(p+d) 7 0.00 9 0.01 1112 0.30 46122 18.4
 SD2(p) 113 0.02 6601 0.94 820693 168.91 { {
 SD2(d) 514 0.06 43 0.01 7028 1.58 6252 2.298
 SD(p+d) 624 0.10 4 0.01 7 0.03 5190 1.988
 SD(p) 0 0.01 566 0.16 1361686 372.10 3522705 1495.418
 SD(d) 589 0.09 3 0.01 329 0.08 6262 2.188
 SD2(p+d) 7 0.00 9 0.01 1102 0.35 45125 20.988
 SD2(p) 113 0.02 6563 1.09 812696 186.23 { {8
 SD2(d) 514 0.07 43 0.02 6920 1.76 6129 2.55Table 5. No. of ba
ktra
ks (fails) and running time to �nd �rst solution to four in-stan
es of sport s
heduling problem. Runtimes are for ILOG Solver 5.300 on 1200MHz,Pentium III pro
essor, and 512 MB of RAM.
Magi
(3) Magi
(4) Magi
(5) Magi
(6)model heuristi
 fails se
. fails se
. fails se
. fails se
.6= SD(p) 6 0.00 20 0.00 1576 0.11 { {8 SD(p) 4 0.00 19 0.00 1355 0.11 2748609 196.45
 SD(p+d) 5 0.00 18 0.00 4637 0.37 { {
 SD(p) 4 0.00 20 0.00 1457 0.14 3448162 249.84
 SD(d) 5 0.00 37 0.01 49312 4.61 { {
 SD2(p+d) 5 0.00 10 0.00 555 0.06 463865 37.41
 SD2(p) 4 0.00 11 0.00 495 0.05 1648408 132.35
 SD2(d) 5 0.00 18 0.00 928217 86.07 { {8
 SD(p+d) 5 0.01 18 0.00 4436 0.48 { {8
 SD(p) 4 0.00 19 0.00 1355 0.17 { {8
 SD(d) 5 0.00 5 0.00 42426 5.33 { {8
 SD2(p+d) 5 0.02 10 0.01 435 0.07 290103 39.018
 SD2(p) 4 0.00 11 0.00 355 0.05 1083993 148.738
 SD2(d) 5 0.00 16 0.00 919057 106.55 { {Table 6. No. of ba
ktra
ks (fails) and running time to �nd the �rst solution to fourinstan
es of magi
 square problem. Runtimes are for ILOG Solver 5.300 on 1200MHz,Pentium III pro
essor, and 512 MB of RAM. A dash means that no results werereturned after 1 hour.



5.4 Sport s
hedulingThe sport s
heduling problem is modelled as follows. The set of teams is T =f1; : : : ; ng (we assume n is even), the set of weeks is W = f1; : : : ; n� 1g, the setof periods is P = f1; : : : ; n=2g, and the set of slots ("home" and "away") are S =f1; 2g. A s
hedule is then a bije
tion from P � S into T for ea
h week su
h thatall the other 
onstraints of the problem are satis�ed. We report results in Table5. Unlike the previous tables whi
h report results to �nd all solutions, here wereport results to �nd just the �rst solution. Despite this signi�
ant 
hange in theexperimental setup, we observe similar trends in our results. Even though it hasthe strongest propagator, the primal all-di�erent model is again not 
ompetitiveon the larger problems. The best runtimes are obtained with the 
hannelling
onstraints and bran
hing on the primal or dual variable with smallest domain.As with the Golomb ruler problem, being for
ed to bran
h on just the primalvariables hurts the bran
hing heuristi
. Multiple viewpoints appear to o�er thebran
hing heuristi
 very signi�
ant advantages on this problem.5.5 Magi
 squaresWe model the order n magi
 square problem as a matrix model in whi
h thereis an n by n matrix of variables whi
h take values from 1 to n2. We then postpermutation 
onstraint on all the variables in su
h a matrix, and sum 
onstraintson the rows, 
olumns and diagonals. Results are given in Table 6, again to �nd the�rst solution. The best strategy is the double smallest domain heuristi
 on eitherthe model with just 
hannelling 
onstraints, or on the model with 
hannelling
onstraints and a primal all-di�erent 
onstraint. The former explores a largersear
h tree, but does so very slightly qui
ker than the later. We 
onje
ture thatthe large domain sizes in this problem favour a bran
hing heuristi
 like doublesmallest domain whi
h 
hooses its values with 
are.6 Con
lusionOn permuation problems, bran
hing heuristi
s 
an be signi�
antly more e�e
-tive when they look at both the primal and dual viewpoint. Indeed, bran
hingon primal or dual variables was often more important to our results than us-ing a stronger propagator. For example, the model that enfor
ed GAC on anall-di�erent 
onstraint often gave worse performan
e both in runtime and sear
htree size 
ompared to the model that enfor
ed AC on the 
hannelling 
onstraints.With the later model, the bran
hing heuristi
 was able to use the multiple view-points to make better bran
hing de
isions. We also studied the double smallestdomain heuristi
 [7℄. This bran
hes on the primal/dual variable with smallestdomain and assigns it the value whose dual/primal variable has the smallestdomain. This makes de
isions whi
h are 
onsistent with the fail-�rst prin
iplefor variable ordering and the su

eed-�rst prin
iple for value ordering. On someof our problem domains, it o�ered the best performan
e of all the heuristi
sstudied.



What general lessons 
an be learnt from these experiments? First, we havestrong support for the hypothesis that bran
hing heuristi
s 
an pro�t from mul-tiple viewpoints. Se
ond, our experimental results suggest that you should notne
essarily aim for more propagation. For instan
e, we usually saw better per-forman
e when we threw out the all-di�erent 
onstraint. Third, when we model,we need to think about both the heuristi
s and the propagation. It would be in-teresting in the future to study the bene�ts of multiple viewpoints for bran
hingheuristi
s on problems other than permutations where there might not be su
ha natural dual viewpoint.A
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