
From Approximate to Optimal Solutions:Constructing Pruning and Propagation RulesIan P. Gent and Toby Walsh�APES Group, Department of Computer ScienceUniversity of Strathclyde, Glasgow G1 1XH, Scotlandfipg,twg@cs.strath.ac.ukAbstractAt the heart of many optimization proceduresare powerful pruning and propagation rules.This paper presents a case study in the con-struction of such rules. We develop a new al-gorithm, Complete Decreasing Best Fit, that�nds the optimal packing of objects into bins.The algorithm use a branching rule based onthe well known Decreasing Best Fit approx-imation algorithm. In addition, it includes apowerful pruning rule derived from a bound onthe solution to the remaining subproblem. Thebound is constructed by using modular arith-metic to decompose the numerical constraints.We show that the pruning rule adds essentiallya constant factor overhead to runtime, whilstreducing search signi�cantly. On the hardestproblems, runtime can be reduced by an or-der of magnitude. Finally we demonstrate howpropagation rules can be built by adding looka-head to pruning rules. This general approach{ optimization procedures built from branchingrules based on good approximation algorithms,and pruning and propagation rules derived frombounds on the remaining subproblem { may bee�ective on other NP-complete problems.1 IntroductionWhen presented with a new combinatorial problem, howdo we construct an e�ective optimization procedure?Korf has demonstrated how to convert approximationalgorithms for number partitioning into branching ruleswithin optimization procedures [Korf, 1995]. He con-cluded that this \presents an example of an approachthat may be e�ective on other combinatorial problems.Namely, we took a good polynomial-time approximationalgorithm, and made it complete, so that the �rst solu-tion found is the approximation, and then better solu-tions are found as long as the algorithm continues to run,eventually �nding the optimal solution" [Korf, 1995]. Wetest this claim for a closely related problem, bin packingusing the Decreasing Best Fit approximation algorithm.�Supported by EPSRC award GR/K/65706. We thankthe members of the APES group, especially Paul Shaw.

A shortfall of Korf's proposal is that optimizationprocedures also bene�t from pruning rules to termin-ate unproductive lines of search, and propagation rulesto determine when branching decisions are forced. Weidentify a very general pruning rule derived from a boundon the solution to the remaining subproblem. The boundis constructed by using modular arithmetic to decomposethe numerical constraints. Since pruning rules need to becheap to test, we describe an implementation that addsessentially a constant factor overhead to the runtimewhilst signi�cantly reducing the number of nodes ex-plored. This pruning rule is more e�ective on harder andmore constrained problems. We then show how propaga-tion rules can be derived from pruning rules. Finally, wederive similar pruning rules for other domains includingnumber partitioning and knapsack problems.Our pruning bound is based on reasoning about thenumerical constraints of a problem using modular arith-metic. For example, can we pack objects with weights8; 6; 4; 2;2 into two equally sized bins leaving no emptyspace? The parity bit alone tells us this is impossible.As the sum of the weights is 22 and the two bins are thesame size, each bin has 11 units of capacity. It is clearlyimpossible to pack objects with even weights into binswith an odd capacity and leave no empty space. In thispaper, we generalize such reasoning to other bit positionsand to non-binary bases.This research suggests a general strategy for build-ing optimization procedures that may be useful in otherNP-complete problems. That is, we construct branch-ing rules from good polynomial-time approximationalgorithms, and pruning and propagation rules frombounds on the solution to the remaining subproblem.For combinatorial problems involving numbers, modu-lar arithmetic may be able to decompose the constraintsand suggest bounds useful for pruning and propagation.2 Bin packingTo explore Korf's claim, we chose bin packing. Thereexist several good polynomial-time approximation al-gorithms for bin packing but few e�ective optimizationprocedures. Bin packing is of practical and theoreticalimportance. Many businesses like post o�ces have realbin packing problems to solve that are of economical



value [Slatford and Yeadon, 1970]. Problems such asscheduling, processor allocation, fabric cutting and min-imization of VLSI circuit size and delay, can be modeledby bin packing problems. Bin packing is NP-completein the strong sense [Garey and Johnson, 1979].We consider a general bin packing problem in whichthe bins can have di�erent capacities. This allows us toreason about the subproblems encountered during searchwhen bins may be partially full. In addition, as we showin Sec. 9, many other problems like number partition-ing can be seen as instances of such general bin packingproblems. A bin packing problem consists of a set ofobjects S and a set of bins B. Each object s 2 S has aweight ws, and each bin b 2 B has a capacity cb. Thedi�erence between the sum of the bin capacities and thesum of the weights is the spare capacity, sc. The aimis to partition the objects between the bins so that thesum of weights in each bin is less than or equal to itscapacity. All weights and capacities are integers. If allthe bins have the same capacity, this is the NP-completeproblem SR1 from [Garey and Johnson, 1979].Decreasing Best Fit (Dbf) is one of the bestpolynomial-time approximation algorithms for bin pack-ing. Best Fit puts the next object into the fullest binthat will accommodate it without exceeding the capa-city. Dbf simply sorts the objects into decreasing orderof their weight before calling Best Fit. Objects with thelargest weights are thereby packed �rst. Dbf is guaran-teed asymptotically to use no more than 11/9 times theoptimal number of bins, compared to Best Fit which canuse 17/10 times the optimal [Garey and Johnson, 1979].3 A branching ruleTo develop an optimization procedure for bin packing,we follow Korf's methodology, and convert the Decreas-ing Best Fit approximation algorithm into a branchingrule within the Complete Decreasing Best Fit (Cdbf)optimization procedure. Cdbf computes a lower boundon the number of bins required. If all the bins have thesame capacity, c then we need at least d�=ce bins where� is the sum of the weights. Search begins with the num-ber of available bins equal to this lower bound. If thesearch tree is exhausted before a packing is found, thenumber of available bins is incremented. This usuallyrelaxes the constraints su�ciently to make packing easy.The objects are sorted into decreasing order of theirweight and packed into bins by the branching rule. The�rst choice of the branching rule is that made by the De-creasing Best Fit approximation algorithm. That is, itpacks the next object into the fullest bin that accommod-ates it. To make the optimization procedure complete,we must decide what the branching rules does on back-tracking. A natural generalization is to order bins byhow full they are. The branching rule thus tries to packthe next object into the fullest bin that accommodatesit, and on backtracking, tries bins in increasing order oftheir unused capacity. A branch terminates successfullyif all the objects are packed into bins. A branch ter-

minates unsuccessfully and forces backtracking when thenext object cannot be packed into any bin. That is, whenthe weight of the next object exceeds the largest unusedcapacity. To avoid duplicating search, the branching ruledoes not pack an object into more than one bin with thesame unused capacity. We therefore never open morethan one new bin for any object. As a consequence, the�rst object is always packed into the �rst bin, the secondobject into the �rst or the second bin, etc. In the worstcase, when packing n objects into b bins, Cdbf exploresall bn=b! di�erent packings.4 A pruning ruleA bin packing problem imposes constraints on how theweights in the bins add up. We decompose these con-straints into constraints on how the bit positions add up.To do this, we take the modulus of the weights and ca-pacities to a set of bases. Often the bases will be all thepowers of 2 since, as we show in Sec. 5, we can then usesimple logical operations on the binary representation.However, other bases can be used at little extra cost.The constraint on each bin is that the sum of theweights is no more than the capacity of the bin. Toreason about how the spare capacity is distributed acrossthe bins, we construct a set 1sc containing sc \dummy"objects, each with a weight of 1. We now have to �nd anexact packing of S [ 1sc so that the sum of the weightsin each bin is strictly equal to the capacity of the bin.That is, for each b 2 B,Xs2b ws = cbTo focus on di�erent bit positions, we take the modulusof both sides of this equation to the base m,(Xs2b ws) mod m = cb mod mAnd sum over the bins,Xb2B (Xs2b ws) mod m! = Xb2B(cb mod m) (1)Unfortunately, we cannot use this equation directly as wedo not know which objects will be put in each bin. Wecan, however, give an upper bound for the left hand sideof (1) assuming the worst possible partition of weightsfor the mod sum. To derive the bound, we use the factthat for any integers a and b,(a mod m) + (b mod m) � (a + b) mod mApplying this repeatedly to the left hand side of (1) givesXb2B Xs2b(ws mod m)! � Xb2B(cb mod m)But the nested summation sums over all the weights inall the bins. Hence,Xs2S[1sc(ws mod m) � Xb2B(cb mod m)



That is,Xs2S[1sc(ws mod m) �Xb2B(cb mod m) � 0Now, if s 2 1sc then ws = 1 and (1 mod m) = 1 for allm. Thus,sc+Xs2S(ws mod m)�Xb2B(cb mod m) � 0 (2)This is our general pruning bound. The �rst two termsof the LHS of (2) represents the maximumcontributionsmod m that we can expect from the spare capacity andS. The third term represents the capacities mod m thatwe need these contributions to reach. If at any time,the LHS is less than zero, the packing of the bins isimpossible. We can then prune search.As an example, consider again the bin packing prob-lem from the introduction. This problem has no sparecapacity. Mod 2, we have objects with zero weight (i.e.the weights provide no parity bits), and two bins eachwith a capacity of 1 (i.e. each bin needs a parity bit).The LHS of (2) is 0-2. Since this is less than zero, wecannot pack the objects into the two bins.As a second example, can objects with weights 650,540, 390, 260 and 130 be packed into two bins of ca-pacity 1000? Consider this problem mod 128. The ob-jects contribute weights mod 128 of 10, 28, 6, 4 and 2respectively. In addition, we have 30 units of spare ca-pacity. However, each bin needs 1000 mod 128 = 104.The objects cannot therefore be packed into the bins.The pruning bound re
ects this; the LHS of (2) is30 + (10 + 28 + 6 + 4 + 2) � (104 + 104). As this isless than zero, we cannot pack the objects into the bins.5 ImplementationTo implement checking the bound e�ciently, we makethree critical observations. First, if the moduli used areall powers of a given base (e.g. m, m2, m3 : : : ), manycomputations from one power of the base can be reusedin the next higher power. For example, with powers of10, (a mod 1000) > (b mod 1000) if either the 100's digitof a is larger than that of b, or if the 100's digits of thenumbers are the same and (a mod 100) > (b mod 100).Similar reuse of calculated values can be made for otheroperations such as longhand addition and subtraction.Second, the LHS of (2) changes only slightly when anobject is assigned to a bin. In fact, detailed analysisshows that if we put an object s into a bin b, the valueof the LHS of (2) does not change at all if (ws modm) �(cb mod m), and is otherwise simply reduced by m. Itis more e�cient therefore to initialise the values of theLHS of (2) at the start of search, and merely computethe change to these values at each node. To restore thevalues on backtracking, we use one bit for each modulusm indicating if the LHS of (2) was decremented.These two observations combine together. We initially�nd the base m expansion of the weights and capacities.Then at each node, we perform the subtraction cb � ws

longhand in base m. In doing this, the values of theLHS of (2) in each power of m are decremented whenthere is a borrow in that digit position, since a borrowis necessary when (ws mod m) > (cb mod m). The com-plexity of the operations performed at each node is thusthe same as that of the subtraction cb � ws, which hasto be performed in any case. The only other operationis that of decrementing the LHS of (2) and incrementingit on backtracking. The LHS of (2) is always a multipleof m so we store the value divided by m and decrementit and increment it by 1 instead of m. Since this valueis a number bounded above by n, these decrements andincrements take less than O(logn) time. In practice nis small and it may take just a single machine opera-tion. We can thus implement checking the bound in allpowers of a given base with a constant factor overheadcompared to Cdbf without modular pruning. Our ex-periments support this observation.Our third observation does not a�ect the theoreticalcomplexity but does make a practical implementationmore e�cient. A natural set of bases to use is all powersof 2. This is the set of bases used in the experimentsreported here. This choice allows us to take advantageof the binary representation of numbers in computers.For example, �nding the value of an integer modulus apower of 2 is very cheap. In addition, we do not needto perform the subtraction longhand since the bits of(a xor b xor a� b) indicate whether a borrow was ne-cessary into a given bit position when computing a � b.6 ExperimentsAs in previous experimental studies [McGeoch, 1986], wepack objects with pseudo-random integer weights intobins that are twice their maximum size. We generaten objects each with a weight drawn uniformly and ran-domly from (0; l] and pack into bins of capacity 2l. Ex-ploratory tests with this model show large variation inproblem di�culty. For example, the worst case for asample of 1,000 bin packing problems with 20 objects ofsize 211 took 3,522,573 nodes whereas 90% of problemsneeded just 1 branch. The data suggests that problemdi�culty is very dependent on the spare capacity.We therefore modify the model to generate problemswith a predetermined spare capacity. We use two addi-tional parameters: a lower bound on the number of bins,d; and a spare capacity, sc. The new model constructsbin packing problems which, if they pack into d bins ofcapacity 2l, leave a spare capacity of sc. We generaten� 1 objects with weights randomly and uniformly dis-tributed on (0; l]. Let w be 2ld � sc � �. This is theweight the nth and �nal object would need to have togive the required spare capacity. If w 2 (0; l] then weassign the nth object this weight. If not, we throw awaythe n�1 objects and start again. We experimented witha variety of spare capacities, but found that performancewas broadly similar with weights in the range (0; l] andspare capacity sc as with weights in the range (0; l=sc]and spare capacity 0. In the rest of the paper we restrict



attention to problems with no spare capacity.To determine the overhead modular pruning adds toCdbf in practice, Fig. 1 gives a scatter plot of nodessearched to �nd the optimal packing against Cpu timewith and without modular pruning. We use 100 prob-lems at each value of n from 8 to 20 and random 10-bitweights which leave no spare capacity when packed inton=4 bins. In this and subsequent experiments, we prunewith bases that are powers of 2. Cdbf was coded intoCommon Lisp and run on a network of identical DECAlpha 300LX's with 125MHz processors. This graphsupports our claim that pruning adds a constant factoroverhead to runtime. Regression for cpu seconds pernode suggests that the overhead is about a factor of 5.4for n = 8 but declines to 2:4 at n = 20. The nearly linearnature of this graph also supports the practice of usingnodes searched as a proxy for cpu time.
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9 Other applicationsWe now describe some other application domains.9.1 Subset sumGiven a set S, is there a subset whose weights have agiven target sum t? Subset sum is problem SP13 in[Garey and Johnson, 1979]. It is equivalent to bin pack-ing into two bins with capacities t and � � t where � isthe sum of the weights. The pruning bound becomes,Xs2S(ws mod m) � t mod m � (� � t) mod m � 0For example, is there a subset of 17, 12, 9 and 4 with sum23? Consider the numbers mod 4. We have 1, 0, 1 and0 with which to meet the target sums of 23 mod 4 and19 mod 4 (that is, 3 and 3). It is therefore impossible to�nd a subset with the required sum. This is con�rmedby the bound, with the LHS being less than zero.9.2 Number partitioningGiven a set S is there a partition of S into k sets whoseweights have an equal sum? For k = 2 this is SP12in [Garey and Johnson, 1979]. Number partitioning isequivalent to bin packing into k equal bins with capa-cities �=k, where � is the sum of the weights, assumedto be a multiple of k. To construct a pruning boundthat applies in the middle of search, we assume that wehave constructed a partial partition of S, that the partialpartitions have weights with sums si, and that si � �=k.Let S0 be the numbers still to be partitioned. The re-maining problem is equivalent to bin packing into k binswith capacities �=k� si. This gives the pruning boumd,Xs2S0(ws mod m)� kXi=1(�k � si) mod m � 0Note that the �rst term is less than jSj:m and the secondis less than k:m. For a �xed number of objects, we aretherefore more likely to break the bound for large k.This agrees with our intuitions. The more bins we have,the more likely we will be able to deduce using modulararithmetic that we cannot �ll one of the bins. A similarbound can be derived for inexact number partitioningproblems in which the sum of the weights is not neces-sarily a multiple of k, and the sums of the partitions iswithin some � > 0. To construct a bound here, we addto S an extra set of \dummy" objects with unit weight.9.3 Knapsack problemsIn the 0/1 knapsack problem, we have a set of objectsS, each object s 2 S has a weight ws and a value vs.We also have a target value v and a knapsack which cancontain a weight w. Is it possible to put objects in theknapsack to reach the target value without exceeding theweight? This is problem MP9 in [Garey and Johnson,1979]. For simplicity, consider the special case where theweights of the objects equal their values. Let � be thesum of the weights. Then we wish to �nd a subset of



S with weight at least v but no more than w. This isequivalent to packing into two bins, with capacities wand � � w, and with a spare capacity of w � v.10 Related WorkKorf converted the Greedy and the Karmarkar-Karpapproximation algorithms for number partitioning intobranching rules for optimization procedures [Korf, 1995].The pruning rules Korf used are the analogues of thesimple pruning rule in Cdbf without modular pruning.McGeoch has performed extensive experiments on theFirst Fit, Best Fit, Decreasing First Fit and Decreas-ing Best Fit approximation algorithms [McGeoch, 1986],using objects with integer weights and bins of capacity230�1. She observed a `critical region' in which Decreas-ing First Fit gave packings with a large amount of emptyspace. As these packings tended to occur when there wasa statistical excess of objects with large weights, this re-gion may become less important as n increases and thedistribution of weights tends to become more uniform.Bin packing has a polynomial-time asymptotic ap-proximation scheme [Papadimitriou, 1994]. This usesmodular arithmetic to reduce the grain size of theweights. To approximate within �, each weight w is re-placed by dw=qe where q is the quantum size of weights,b�cc and c is the bin capacity. Knapsack problems havebeen proposed as the basis of a public-key cryptosystem[Merkle and Hellman, 1978]. The receiver deciphers theencoded message by multiplying the weights of the knap-sack problem by a secret key and taking the modulus us-ing a second secret key. This gives a knapsack instancethat can be rapidly solved. Brickell (personal commu-nication cited in [Lagarias and Odlyzko, 1985]) sugges-ted that di�cult and `dense' cryptographic knapsackproblems with many objects and small weights mightbe solved by converting them to `low-density' problemsthrough one or more modular multiplications. [Bright etal., 1994] describes a parallel method for solving knap-sack problems. Modular arithmetic may still be of use insuch methods for eliminating parts of the search space.11 ConclusionsThe main contributions of this paper are new pruningand propagation rules for bin packing and some closelyrelated problems. The pruning rule uses a bound con-structed by decomposing the numerical constraints withmodular arithmetic. We incorporated this rule into anew optimization procedure, Complete Decreasing BestFit. We showed that the pruning rule adds essentiallya constant factor overhead to runtime whilst reducingsearch signi�cantly. On the hardest problems, runtimecan be reduced by an order of magnitude. Finally, wedemonstrated how propagation rules can be built byadding lookahead to pruning rules. There are many dir-ections for future research. For example, how do weidentify good sets of bases and multiples for pruning?What contributions might this research make beyondbin packing? First, the pruning bound can be applied to
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