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Toby WalshDepartment of Computer Science,University of StrathclydeGlasgow G1 1XH, Scotland.tw@cs.strath.ac.ukAbstractThe HR program forms concepts and makesconjectures in domains of pure mathematicsand uses theorem prover OTTER and modelgenerator MACE to prove or disprove the con-jectures. HR measures properties of conceptsand assesses the theorems and proofs involvingthem to estimate the interestingness of eachconcept and employ a best �rst search. Thisapproach has led HR to the discovery of inter-esting new mathematics and enables it to buildtheories from just the axioms of �nite algebras.1 IntroductionThe HR program invents de�nitions in �nite algebrassuch as group and ring theory, and other areas of puremathematics, such as graph and number theory. Usinga set of production rules to derive a new concept fromold ones and a set of measures for the interestingness ofa concept, HR's best �rst search bases new concepts onthe most interesting old ones. As it invents new de�n-itions, HR uses empirical evidence to spot conjectures.Recently we have interfaced HR with the OTTER the-orem prover, [McCune, 1990], to prove some of the con-jectures HR makes. When OTTER fails, HR invokes theMACE model �nder, [McCune, 1994], to �nd a counter-example. The proofs from OTTER help HR to assessthe concepts involved in the conjectures, and the mod-els given by MACE provide further empirical evidencefor future conjectures. This closes a cycle of mathemat-ical activity similar in nature to Buchberger's spiral ofcreativity, [Buchberger, 1993]. We detail how HR formsand assesses concepts and discuss how this has led to theintroduction of new mathematics. We also show how atheory can be constructed from just the axioms of an al-gebra, and how the heuristic search improves the overallquality of the theory with respect to various measures.1.1 BackgroundLenat, in [Lenat, 1976] chose pure mathematics as thedomain for his AM program to demonstrate the use ofheuristic search in concept formation. AM re-inventedclassically interesting de�nitions and conjectures, such

as highly composite numbers and Goldbach's conjec-ture. The conjectures were based on empirical evid-ence, but no attempt was made to prove them automat-ically. Thus AM performed concept formation, conjec-ture making and counterexample �nding. Attempts tobuild on Lenat's work include the DC program, [Mor-ales, 1985], the Cyrano programs, [Haase, 1986] andLenat's own Eurisko program, [Lenat, 1983]. The AREsystem, [Shen, 1987], used functional transformations toderive new functions from old ones. Shen eliminatedmany special-purpose operations required by AM andthe functional transformations found more complex con-cepts than AM, such as logarithms.The IL program, [Sims, 1990], used a generate, pruneand prove method to invent operators for number types.The user speci�ed some criteria for, say, multiplication ofcomplex numbers and IL generated plausible operators,empirically checked whether they met the criteria, andif so, proved it. Conjectures were always that the oper-ator met the user's requirements, so IL used a cycle ofconcept formation, counterexample �nding and theoremproving. The concepts produced by the system describedin [Bagai et al., 1993] are situations in plane geometry in-volving properties of points and lines. Conjectures wereabout the existence of situations and an e�cient theoremprover showed that certain situations were impossible.For example, the theorem prover showed that the situ-ation of a parallelogram with parallel diagonals couldnot exist. Disproving a conjecture meant �nding a situ-ation in an in�nite number of possibilities, so no counter-example �nding was undertaken. The system thereforeachieved an interplay of concept formation, conjecturemaking and theorem proving.The GT program, [Epstein, 1987], generated andproved theorems in graph theory about properties ofgraphs. The representation of graphs employed enabledmodel generation, concept formation and some theoremproving, and GT demonstrated an e�cient model fortheory formation in graph theory. Another graph theoryprogram, Gra�ti, [Fajtlowicz, 1988] makes conjecturesin graph theory that one summation of numerical in-variants is always less than another. The invariants aregiven by the user and each conjecture is checked againsta large database of graphs. If the conjecture provides a



stronger bound than all previous ones for at least onegraph (the dalmation heuristic), and it is not seeminglyimplied by a previous one (the echo heuristic), the con-jecture is posted to a mailing list for graph theorists.Over 60 papers have been written about Gra�ti's con-jectures, and this has led to important developments ingraph theory. We see that Gra�ti automates conjec-ture formation and counterexample �nding aspects, butthe concepts are provided by the user and the theoremproving is done by the graph theory community.OTTER, [McCune, 1990], is a state of the art �rstorder resolution theorem prover which uses the nega-tion of a conjecture to �nd a contradiction, thus provingthe conjecture. The model generator MACE, [McCune,1994], uses the Davis-Putnam method to search for small�nite models of �rst-order statements, and can be usedto �nd example algebras, eg. �nite groups or rings.2 Concept FormationWorking, say, in group theory, HR starts o� with a littleinitial information, namely some example groups andsome core concepts. The initial information can be givenby the user or generated using MACE and HR (see x3.1).In group theory, the core concepts are the group oper-ation, the identity element and the inverse of elements.HR keeps a data-table of the models of each concept -for example, for the group operation concept, HR storesa data-table with rows [G; a; b; c] where a; b; c 2 G anda � b = c. HR also keeps a de�nition of the concept, ie.a predicate which is satis�ed by the entries in every rowof the data-table. We use the notation:1. [G; a; b; c] : P(a,b,c)to indicate that concept 1 has a data-table with fourcolumns, the �rst of which is the name of the group, andthe last three are triples of elements from that groupwhich satisfy predicate P.2.1 Producing New ConceptsHR invents new concepts by using a production rule tomanipulate the data from one (or two) old tables into anew table. Each of HR's 8 production rules performs asimple operation and HR is able to derive a de�nitionfor the new concept from a de�nition of the old concept.For a particular concept and production rule there aremany possible manipulations, so a set of parameters giveexact speci�cations. Below, we give a description of themanipulation each production rule (PR) performs andan example from group theory: an input and outputconcept. A more detailed description of the productionrules is given in [Bundy et al., 1998].The exists PR: removes columns from the input data-table. The parameters tell the PR which columns tokeep. Eg. using parameters <1,2,3>, we get:[G; a; b; c] : a*b=c ! [G; a; b] : exists c (a*b=c).The match PR: �nds rows where columns prescribed bythe parameters are equal. Eg. parameters <1,2,2,2>,(col1=col1,col2=col2,col3=col2,col4=col2), gives:

[G; a; b; c] : a*b=c ! [G; a] : a*a=a.The forall PR: �nds sets of rows with all elements ofgroups present in particular columns (the parametersspecify which columns). With parameters <4>, we get:[G; a; b; c] : a*b=c ! [G; a; b] : all c (a*b=c).The negate PR: constructs rows which do not appear ina data-table. There are no parameters here. Eg.[G; a; b; c] : a*b=c ! [G; a; b; c] : a*b 6= c.The conjunct PR: given two data-tables, X and Y, andparameters <a,b,...>, this �nds rows in table X forwhich there is a row in table Y with entry a equal toentry 1 in X, with entry b equal to entry 2 in X andso on. As in the following example (using parameters<1,3,2,4>), the two input concepts can be the same:[G; a; b; c] : a*b=c ! [G; a; b; c] : a*b=c & b*a=c.and [G; a; b; c] : a*b=cThe size PR: counts the number of tuples appearing ina data-table. The parameters specify which columns tolook for elements in. Eg. with parameters <3,4> we get:[G; a; b; c] : a*b=c ! [G; a; n] : n=|{(b,c):a*b=c}|.The split PR: �nds rows where a column contains a par-ticular number. The parameters specify which columnto look in and what number to look for respectively. Eg.with parameters <3,2>, we get:[G; a; n] :n=|{(b,c):a*b=c}|! [G; a] :|{(b,c):a*b=c}|=2.The compose PR: certain predicates can be thought of as1:1 functions. Given such a function, this PR replacescolumns in a data-table by the output of the function onthe entries in the column. The parameters specify whichcolumn to replace. Eg. using parameters <2>, with thesecond concept as the function, we get:[G; a; b; c] : a*b=c ! [G; a; b; c] : inv(a)*b=c.and [G; a; b] : b=inv(a)Note that conjunct and compose use 2 old concepts andsize introduces a numerical value. We don't claim thatall interesting concepts in a domain are covered by these8 production rules, merely that it is possible to constructsome interesting concepts using them. Figure 1 showshow HR constructs the concept of Abelian groups:
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2.2 Heuristic Search: Measuring ConceptsHR can perform an exhaustive search by using eachconcept with every production rule, exhausting all pos-sible parameterisations and returning to used up con-cepts when it is possible to use them in a 2-concept pro-duction rule with a new concept. Some concepts will bemore interesting than others, and we can improve thesearch by constructing new concepts from the best oldones. We discuss below �ve concrete measures HR usesto assess the interestingness of a concept.Given a data-table, the set of tuples with a particulargroup name in the �rst column can be used to describethat group. Smaller descriptions are advantageous, soHR measures the parsimony of a concept, which is in-versely proportional to the size of its data-table. Simil-arly, smaller, easier to understand de�nitions are advant-ageous, so HR measures the complexity of a concept, asinversely proportional to the number of production rulesteps used in its construction (which gives a rough guideto the complexity of the concept's de�nition). HR's setof groups can be categorised by a concept if two groupsare thought of as equal if they are given the same descrip-tion by the concept's data-table. Concepts introducingnew categorisations are interesting, so HR measures thenovelty of a concept, which is inversely proportional tothe number of other concepts giving the same categor-isation. Every time a new concept is introduced, thenovelty of all the old concepts is re-assessed.Sometimes, the user may be looking for a conceptwhich gives a particular categorisation, for example theclassi�cation of groups up to isomorphism (where allpairs of isomorphic groups are categorised as the same,but all pairs of non-isomorphic groups are categorised asdi�erent). If the user speci�es such a gold standard clas-si�cation, we can measure the invariance of a conceptby taking all the pairs of groups which should be cat-egorised as the same and �nding the proportion of pairswhich are categorised correctly by the concept. Simil-arly, the discrimination measure �nds the proportionof pairs of groups which should be categorised as di�er-ent that are categorised correctly by the concept.To use the heuristic of basing new concepts on themost interesting previous ones, HR measures and ordersits concepts after a given number of new concepts havebeen introduced, usually 10. To order the concepts, eachof the above measures is normalised to a value between 0and 1 (0 the worst score, 1 the best), and a weighted sumis taken. The user sets the weights, with the choice de-pendent on what type of theory they are looking for, eg.if they were looking for many di�erent categorisations,the novelty measure would be heavily weighted. Often,to avoid a con
ict, one or more weights are set to zero, eg.the novelty measure prefers concepts giving new categor-isations, but the discrimination and invariance measuresprefer concepts giving a particular categorisation, caus-ing a con
ict. The production rules can also be orderedbecause each concept is produced by a single rule, hencethe average score of the concepts output by a productionrule can be used to assess the rule.

3 Theory FormationA set of concepts, however interesting, does not comprisea theory. A theory should also have, at minimum, a setof theorems and proofs. In x3.2 we discuss how HR spotsand makes conjectures, and in x3.3 and x3.4, we discusshow HR uses OTTER and MACE respectively to try toprove or disprove the conjectures. At present, to form atheory, we cut back a little on HR's concept formationabilities, and only use the conjunct, exists, forall, matchand negate production rules. This is because OTTERdoes not deal well with inductively de�ned concepts likethe integers introduced by the size and split productionrules. Also, the compose production rule usually adds alayer of complexity to conjectures which makes it di�cultfor OTTER to prove them in an acceptable time limit.3.1 Starting a TheoryIn algebraic domains such as �nite group theory, HR canconstruct a theory from the bare minimum of informa-tion: the axioms. To do this, HR �rst passes the axiomsto MACE, which is asked to construct a single examplegroup. MACE must be told the size of the group it is to�nd, so HR �rst gives MACE 10 seconds to �nd a groupwith 1 element, then 10 seconds to �nd a group with 2elements and so on until size 8, after which it is unlikelythat MACE will succeed. In the unlikely event that nomodel of any order is found, HR must admit defeat as itsconcept formation process is model based. To describe amodel it has found, MACE outputs a set of tables, eachwith a name. HR examines these tables and for eachone, extracts the name and data contained as an initial(core) concept. In group theory, MACE �nds the trivialgroup with one element and uses three tables to describeit. HR takes these tables and extracts the group opera-tion, identity and inverse concepts - those core conceptswhich were implicit in the axioms.3.2 Making ConjecturesWhenever HR invents a new concept, it immediatelychecks whether a previous concept has the same data-table. For example, one of the �rst concepts HR inventsin group theory is: [G; a] : a*a=a. After �nding themodels for this concept, HR runs through the previousconcepts, and �nds that the only elements, a, for whicha*a=a are the identity elements and vice versa. WhenHR �nds a match like this, it makes the conjecture thatthe de�nitions are equivalent. ie.all a (a=id <-> a*a=a).There are other types of conjecture that HR can make.For example, if HR �nds that the models of a newlyformed concept are a subset of the models of a previ-ous concept (or vice versa), HR can make the conjecturethat one de�nition is a specialisation of the other. Forexample, HR makes the conjecture that the identity ele-ment is always a member of the centre of a group:all a (a=id -> all b (exists c (a*b=c & b*a=c))).For simplicity, conjectures hereafter are assumed to beof the �rst type: de�nition1 <-> de�nition2.



3.3 Proving ConjecturesTheorem proving is, in general, a di�cult activity, so HRmust give OTTER the best chance of proving the con-jectures. Using the 5 production rules mentioned, eachconjecture can be written in a succinct way acceptableto OTTER, and will be of the form:all a b c( P1(a,b,c) & P2(a,b,c) & ... <-> Q1(a,b,c) & ... ).To give OTTER the best chance of proving this, HRsplits it into easier problems (subgoals):( P1(a,b,c) & P2(a,b,c) & ... -> Q1(a,b,c) ).( P1(a,b,c) & P2(a,b,c) & ... -> Q2(a,b,c) ).. . . .( Q1(a,b,c) & Q2(a,b,c) & ... -> P1(a,b,c) ).( Q1(a,b,c) & Q2(a,b,c) & ... -> P2(a,b,c) ).. . . .Of course, if the predicate on the right hand side coin-cides with a predicate on the left hand side, the subgoalis trivially true, so it is not passed to OTTER. Also, itis possible that the subgoal has been looked at in orderto settle a previous conjecture, so HR stores all previ-ous results, and uses them where possible. It also checkswhether a subgoal which has the same right hand side,but a subset of the conditions on the left hand side hasbeen proved - if so, the present subgoal follows as a co-rollary. Entirely novel subgoals are passed to OTTERwith the axioms of the algebra. OTTER is then given a�xed time limit to prove the subgoal, usually 10 seconds.If all the subgoals are proved, the conjecture becomes atheorem and is added to HR's collection.Regardless of the di�culty to prove a conjecture, if theconcepts in it are too complex, OTTER has little chanceof proving it in a short space of time. For this reason,when theory forming, we usually impose the conditionthat no concepts with a complexity greater than a giventhreshold are used to base new concepts on. If OTTERis only given 10 seconds to �nd proofs, it is a good ideato impose a complexity threshold of 5.3.4 Disproving ConjecturesWhen HR has few example groups to provide empiricalevidence, it often makes false conjectures such as:all a b c (a*b=c <-> a*b=c & b*a=c).which states that all groups are Abelian. When falseconjectures are passed to OTTER, it either fails outright,or runs out of time. The unproved subgoals from theconjecture are then passed to MACE. HR gives MACE10 seconds to �nd a counterexample of size 1, then 10seconds to �nd one of size 2, and so on. For the untrueconjecture above, MACE �nds the smallest non-Abeliangroup, D(3) - with six elements. When a new group isfound, HR reads MACE's output once again and addsto the data-tables of the core concepts. Then HR usesthe new data to recalculate the data-tables for all its oldconcepts. By introducing new models only when neededto disprove a conjecture, HR guarantees that the modelsare also interesting - each model has a property which istrue of no previous one.

3.5 Closing the Maths CycleEach new group found by MACE is di�erent to the onesit already has, because it disproves a conjecture whichwas true of all the others. Once introduced, all furthercalculations will involve the new group, which will addmore empirical plausibility to the conjecture making.Also, with the notion that concepts are more interestingif you can prove some interesting facts about them, wecan use the conjectures, theorems and proofs to derivemore measures for the interestingness of a concept.HR has two ways to assess conjectures. Firstly notethat each conjecture states that one de�nition is equi-valent to another. Figure 2 shows a typical conjecture- two concepts have been constructed, with the dottedline indicating that those de�nitions are equivalent. Theshaded nodes belong to the construction paths of bothequivalent concepts and all nodes except X are conceptsalready found in the theory.
XFigure 2: Construction path for a typical conjecture.The more divergent the construction paths for the twode�nitions, the less obvious the fact that they are equi-valent. Therefore, HR measures the surprisingness ofa conjecture as the number of distinct concepts whichappear in one, but not both, construction paths. In �g-ure 2, noting that X is the same as a previous concept,the conjecture scores 3 for surprisingness.When OTTER proves a subgoal, it outputs a prooflength score, and an average of this over all the subgoalswill roughly indicate the di�culty of the overall conjec-ture. Proof length is a measure of the interestingness ofthe proof (and hence the conjecture), but others, such asthe number and length of clauses produced, have beensuggested by OTTER's author, William McCune, as bet-ter alternatives, which we are currently implementing. Aweighted sum of surprisingness and di�culty is used toassign a value between 0 and 1 to each theorem. Then,the average score for the conjectures a concept appearsin can be used to order the concepts themselves. Notethat, the conjecture in �gure 2 is most concerned withtwo old concepts - those appearing with an extra border,and the interestingness of the conjecture is used to assessthe interestingness of both these concepts.HR has only limited ways to investigate and attemptto settle open conjectures (those which cannot be provedor disproved by OTTER or MACE in the given time).Thus we are presently more eager for HR to make prov-able conjectures. So, even though these are probably themost di�cult and interesting, HR gives open conjecturesa score of 0 for di�culty and the di�cult concepts in-volved in the conjectures are discriminated against. Wediscuss how HR can deal with open conjectures in x5.



4 Results4.1 Concept FormationHR works in number theory by �rst generating a table offactorisations for integers 1 to 100. It can turn conceptsinto integer sequences by (i) listing integers of a par-ticular type in numerical order, eg. prime numbers (ii)applying a function to the integers 1, 2, 3, etc. eg. the� function (number of divisors) (iii) identifying integerssetting a record for the highest value output by a func-tion, eg. highly composite numbers (with more divisorsthan any previous integer), which was AM's major re-invention. HR �nds all the number types found by AMand re-invents over 50 well known integer sequences. HRalso outputs many integer sequences not found in the re-cognised repository, the online encyclopedia of integersequences, [Sloane, 1999], which contains over 47,000 se-quences. 8 sequences found by HR have been accep-ted into the encyclopedia, for example, this interestingsequence: 1; 2; 7; 38; 122; 2766; 64686; : : : (those integerssetting a record for f(n) = jfa < n : a+ �(a) = ngj).Presently, we believe that 7 of these 8 sequencesare genuinely new inventions. Perhaps the most in-teresting sequence found by HR is the tau numbers(where the number of divisors is itself a divisor):1; 2; 8; 9; 12; 18; 24; 36; : : : This was missing from the en-cyclopedia, and a search of the relevant literature pro-duced no reference, so we believed this to be a new inven-tion, and we called these numbers `refactorable'. How-ever, we recently discovered that they were �rst de�nedin 1990, [Kennedy and Cooper, 1990]. HR made someinteresting conjectures about tau numbers, eg. that theyare congruent to 0; 1; 2 or 4 mod 8. Proving this and oth-ers from HR led us to some interesting results, [Colton,1999], eg. odd tau numbers are squares. There are alsosome open conjectures, such as whether there are anytriples of tau numbers (there are none � 1053).Asked to �nd concepts classifying groups up to order6, (ie. the concept can be used to decide whether anytwo groups up to order 6 are isomorphic), HR �nds manycalculations unknown to the authors. The function:f(G) = jf(a; b; c) 2 G�G�G : a � b = c ^ b � c = agj;classi�es groups up to order 6 and was genuinely surpris-ing as we hadn't thought such a simple function couldperform the task. When given an hour to �nd as manycategorisations as possible, HR �nds around 200 categor-isations of the groups up to order 6. Also, we chose 20de�nitions from a group theory text, to see how manyHR re-invented. We noted that HR found these 9:� Abelian, cyclic and exponent 2 groups, elements, identities,inverses and orders of elements, orders and centres of groups,but 7 required better handling of subgroups:� Normal subgroups, quotient groups, cosets, index of sub-groups, simple groups, central series, derived subgroupsand 4 involve concepts from other domains:� Elementary Abelian, dihedral, quarternion and p-groups.A hit rate of nearly 50% is encouraging, and in future,more production rules and working in 2 domains at oncewill increase the yield of classically interesting concepts.

4.2 Theory FormationWhen forming theories, the complexity of concepts iscapped and some production rules are removed, so thetheories formed are more super�cial. HR �nds some con-jectures of note, eg. groups of exponent 2 are Abelian:all a (a*a=id) -> all a b (exists c (a*b=c & b*a=c))In 9 experiments, we gave HR 2 hours to constructa theory. We used a complexity threshold of 5 and aweighting of 25% for the novelty of a concept, so that HRdidn't specialise too much, and 75% for the interesting-ness of the theorems each concept was involved in. Theinterestingness of conjectures was measured with equalweights for surprisingness and di�culty. In (G)roup and(Q)uasigroup theory and (R)obbins algebra, we com-pared the (B)est �rst search choosing which concept andproduction rule to use next, against a (R)andom choice,and the (E)xhaustive search described in x2.2. In table1, we recorded the content of the theories produced, ie.the number of concepts, theorems, open conjectures andmodels produced and two measures of the quality of thetheories, namely the average proof length (di�culty) andsurprisingness of all the proved theorems.Algebra Heuristic Concepts Theorems Open Conjectures Models Av.Proof Length Av.Surpris -ingnessG B 143 495 19 6 13.6 1.7G E 91 665 9 5 12.2 1.6G R 190 465 12 6 8.8 2.1Q B 150 192 80 13 4.5 1.5Q E 243 184 87 15 3.6 1.0Q R 268 232 58 17 3.5 2.0R B 40 173 73 3 28.1 1.2R E 50 136 91 3 11.3 0.9R R 51 70 85 3 14.8 1.5Table 1: Summaries of 9 theory formation sessions.We draw two conclusions from these results:� The nature of the theories produced is more depend-ent on the axioms than the choice of search method.� The best �rst search improves the overall quality ofthe theory, with respect to the di�culty of theorems.Conclusion 1 is clear because the rows in table 1 varymuch more between algebras than between di�erentsearches with the same algebra. As expected, in quasig-roup theory, with the least restrictive axioms, MACE�nds most models and, as shown by the average prooflength column, quasigroup conjectures are more easilyproved by OTTER than those about the more complexalgebras. From the signi�cant increase in average prooflength gained by using the best �rst search over the othersearches, it is clear that the heuristic improves the qual-ity of the theory with respect to the di�culty of thetheorems produced. A similar increase is observed whenHR uses the best �rst search to �nd concepts with clas-sifying abilities. The best �rst search concentrates on



particular concepts, so the random search covers a lar-ger space, and therefore spots more varied conjectures,which explains the increase in average surprisingness inthe random searches over the best �rst searches.5 Future Work and ConclusionsPresently, HR can make conjectures which OTTER haslittle chance of proving. To address this imbalance, weintend to interface HR with inductive theorem proverswhich can better handle conjectures with numerical con-tent. Also, we wish to improve HR's treatment of openconjectures. We noted in x3.5 that HR gives open conjec-tures a score of 0 for di�culty, which is counter-intuitive,but sensible while HR has limited possibilities for settlingsuch conjectures. Once HR has better tools to settleopen conjectures, we will increase the interestingness of,and thus time spent investigating, open conjectures.The obvious way to address open conjectures is to giveOTTER and MACE more time to settle them. However,we �nd that the number of settled conjectures does notincrease in line with the time given to the task, andmore sophisticated techniques are required. HR alreadyhas one method to disprove previous open conjectures -when MACE �nds a new model, HR checks whether thisis a counterexample to any previous open conjecture.This approach can be e�ective - we have documentedan example semigroup which disproved 14 of HR's openconjectures. HR can also use previously proved theoremsas lemmas in open conjectures. However, lemma choiceis a di�cult problem and we hope to use techniques suchas gazing, [Barker-Plummer, 1992], to improve matters.Our �rst attempt at lemma use - using the previous the-orem with the most similar construction tree - was en-couraging, as we found a conjecture where the lemmareduced OTTER's proving time from 75 to 8 seconds.Concept formation in HR is (i) novel, because it isthe �rst to work in domains as diverse as group theory,number theory and graph theory and (ii) important, asit has led to the introduction of new mathematics, mostnotably the integer sequences. Theory formation in HRis (i) novel, as it is the �rst to integrate with third partysoftware to perform concept formation, conjecture mak-ing, theorem proving and counterexample �nding and(ii) a bootstrapping system - a theory including mod-els, de�nitions, theorems, proofs and open conjecturescan be created from just the axioms of an algebra. HRimproves on AM and Gra�ti by using theorem prov-ing when constructing theories, and improves on IL, GTand the Bagai et al system, by covering a wider range ofconcept types over more domains. Introducing modelsonly when needed to disprove conjectures and drivinga heuristic search with concrete measures of interesting-ness increases the quality of the theory produced and hasbrought HR success in automated mathematical conceptformation. We hope to continue increasing the interest-ingness of the concepts and theories produced, build-ing a system sophisticated enough for working mathem-aticians to explore new domains with.
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