(1T

ISTITUTO PER LA RICERCA SCIENTIFICA E TECNOLOGICA

I 38100 TRENTO — Loc. PANTE DI POvo — TEL. 0461—814444
TeELEX 400874 ITCRST — TELEFAX 0461—810851

A (GENERAL PURPOSE REASONER FOR
ABSTRACTION

Fausto Giunchiglia

Roberto Sebastiani

Adolfo Villafiorita
Toby Walsh

January 1993
Technical Report # 9301-08

Publication Notes: Also DIST-Technical Report 93-0016.

T,
1 C

IsTiITUTO TRENTINO DI CULTURA



A General Purpose Reasoner for Abstraction™

Fausto Giunchiglia'? Roberto Sebastiani® Adolfo Villafiorita®* Toby Walsh!

L'1.R.S.T., 38050 Povo, Trento, Italy.
2 University of Trento, Via Inama 5, 38100 Trento, Italy.
3 D.I.S.T., viale Causa 13, 16146 Genoa, Italy
4 University of Ancona, via Brecce Bianche, 60131 Ancona, Italy
fausto@irst.itc.it rseba@dist.unige.it adolfo@dist.unige.it toby@irst.itc.it
tel: +439.(0)461.314359
fax: ++39.(0)461.314591

Content areas: abstraction,
automated reasoning, interactive theorem proving

Abstract

The goal of the work described in this paper is the development of a sys-
tem, called ABSFOL, which allows the user to state declaratively abstractions
and to use them according to the desired control strategy. ABSFOL has been
successfully tested on many examples. So far we have failed to find an in-

teresting abstraction whose implementation requires a major programming
effort.

*Alan Bundy provided much of the inspiration for the solution of the Goedel ex-
ample. The authors’ names are purely alphabetical.



1 Introduction

By “reasoning with abstraction” we mean the process by which, starting from a
representation of problem (called the “ground space”), we construct a new and
simpler problem representation (called the “abstract space”) and use it to help
the solution of the original problem. This informal definition is very general and
identifies as “abstraction” a large number of applications in areas like problem
solving, planning, reasoning by analogy, learning, qualitative and model based
reasoning, common sense reasoning, approximate reasoning and hardware and
software verification. In [GW92b] we have developed a theory of abstraction and
used it to capture all these different applications inside the same framework.

The goal of the work partially described in this paper is to develop a general
reasoner with abstraction, called ABSFOL. ! By “general” we mean that all the
forms of abstraction must be definable and executable inside ABSFOL. Any user
wanting to reason by abstraction will be able to state it declaratively without
going through the pain of another re-implementation from first principles (e.g. the
Lisp primitives). The definition and implementation of such a general reasoner
presents many problems. The uniformity highlighted by the theory presented in
[GW92b] hides a lot of differences which made all previous implementations very
different. The following is a list of the possible different abstractions and uses of
abstraction.

e Almost all abstractions preserve provability [GW92b, GW92a]. However
provability can be preserved in many different ways [Wel91, GW92b].

o There are many different techniques to forget details and still preserve prov-
ability in the same way. As proved in [GW92b], one set of such techniques
is: deleting preconditions in operators [Sac73], collapsing constants [Hob85],
collapsing predicate or function symbols [Pla80, GW89, Ten88], dropping
arguments to function or predicate symbols [Mel87].

e For each such technique there are many ways of deciding exactly which
details to forget. For instance, [BGW91, Kno91] discuss various ways for
automatically forgetting preconditions.

e Finally, there is a choice of how to intermix reasoning in the ground space
and reasoning in the abstract space. For instance, in SOAR, abstraction is
used only when the system is at an impasse [UR89).

LABSFOL is implemented on top of GETFOL [Giu92], an interactive theorem prover
which is a re-implementation/ extension of the FOL system [Wey80].



ABSFOL allows for all the possible abstractions and uses of abstractions listed
above and has been successfully tested on many abstractions defined in the past
(all those listed in [GW92b]). In section 2 we describe the main idea underlying
ABSFOL, namely that abstraction is implemented as logic plus control. In section 3
we describe the logic of abstraction. This is done by showing, as an example, the
proof of a statement closely related to Godel’s incompleteness theorem.

2 Abstraction = Logic 4+ Control

We formalize abstraction as a mapping of a representation of a problem onto
a new representation. An abstraction f from a ground space }; to an abstract
space Xy, written f: 3y = Y, is defined as a triple (X1, ¥, fa) consisting of two
axiomatic formal systems, ¥; and ¥, and a total function, fx, which maps the
language of ¥; onto that of ¥a. (We use the words “space”, “theory”, “context”
and “formal system” as synonyms).

In order to build a general reasoner for abstraction we must somehow make sure
that the implementation does not depend upon assumptions which prevent any
of the possibilities listed in the previous section. This is achieved by making a
sharp distinction between what we do with abstraction and how we do it; that is,
we make a clear distinction between the calculus and the control. The calculus
defines all the forms of abstraction that can be used, whilst the control defines
all the possible uses and control strategies. In this perspective, a particular
algorithm for using abstraction becomes “algorithm = logic + control” [KowT79].
The situation is similar to that of first order logic or production rules. It is more
complex because of the inherent complexity of reasoning with abstraction.

Let us start with the logic. We must have an operation of abstraction declara-
tion, which allows to define an abstraction f as f = (X1, Y2, fo). An operational
definition of f) allows the construction of Y5 from ;. We call the operation
of generating Y5, abstraction application. In general we need to construct the
deductive machinery and the axioms of ¥,. In this paper, for lack of space, we
consider only abstractions where ¥, has the same inference rules as ¥; and its
axioms are mapped from those of ¥; via fy. We shall prove goals by theorem
proving. As we have ground and abstract goals we need to perform theorem prov-
ing in both spaces. We call these two operations ground and abstract reasoning.
It must also be possible to make the reasoning in the two spaces interact, i.e. to
make assertions in ¥y just because certain facts hold in ¥5. We call this opera-
tion, mapping back. The information that is mapped back strongly influences the
ground reasoning. The ground reasoning can be seen as the process of “refining”



Ground Context Abstract Context

' Ground Goal Abstraction Abstract Goal
‘ f '
6 —> V= @
(i) abs. declare ¢ (ii) a;bjstract

ﬁ (iii) abstract%
wreie W G () mep beck

¢ ¢ f(0)

- Ground Proof Outline - Abstract Proof

Figure 1: A calculus for abstraction.

the information obtained from the abstract space until the goal is proved. This
is why we also call it, refinement. These five steps are graphically represented in
Figure 1. The arrows describe the temporal order of activation in the (simplest)
case of reasoning without bactracking. That is, we define the abstraction, we use
it to build the abstract space, we prove the abstract goal which we then map
back and refine until the original goal is proved.

However the simplicity of Figure 1 should not mislead the reader. Each of the
five steps requires the application of many simpler operations. Thus, declaring
an abstraction requires the declaration of the two spaces involved and of how
the logic and the alphabet are translated. Generating ¥, means generating its
alphabet, axioms and inference rules, the goal and often some of its theorems.
Finding the abstract proof requires the application of the inference rules of the
abstract space. The mapping back is particularly complicated as there are many
possible strategies for extracting the information contained in an abstract proof.
At one extreme only the abstract theorem is mapped back (as in e.g. [GG88]). In
some cases no mapping back is performed at all, and the proof (or disproof) of
the abstract theorem is taken as an approximation of the proof (disproof) of the
ground theorem (as in e.g. [KS92]). At the opposite extreme, the entire abstract
proof is mapped back (as in e.g. [Kno90]). There are also intermediate situations,
for instance in [Plu87, GW89] only the partial order of unfoldings of definitions
in the abstract proof is used. All these possible ways to perform the mapping
back strongly influence the refinement as well. For instance the refinement of an
abstract proof requires bridging the gaps among its nodes. This process is quite



complicated to formalize as it involves reasoning from the middle out (see the
example in section 3).

For each step we must therefore define a set of operations, i.e. a set of inference
rules which define the calculus for that step. The logic of abstraction is the union
of these five sub-calculi plus the prescription for when the inference rules of each
calculus can be applied. One problem is that the inference rules which can be
used depends on the abstraction and in particular on how provability is preserved
across abstraction spaces. For instance, an abstract theorem in general cannot
be used to assert its unabstraction as a ground theorem. It can only be taken as
a “suggestion” of this fact. This is the case with TI abstractions. An abstraction

f={(1,3, fa) is TTiff

Fe, o = by, falp) for any wif ¢ in X;.
However with TD abstractions,

Fs, fale) = kg, ¢ for any wif ¢ in ¥4,

and the unabstraction of an abstract theorem can be directly asserted as a theo-
rem. There is no need for refinement.

The control of abstract reasoning rises many problems as well. The key fact is
that the temporal order suggested by Figure 1 is rarely followed in practice. For
instance the abstract space may be generated only partially, this may require
that we apply the rules of step (ii) after having done some abstract reasoning.
It may happen that steps (iii) and (iv) are iterated. This kind of backtracking
happens very often, e.g. any time we realize that we do not know how to refine
the unabstraction of the abstract proof into a ground proof. We may iterate the
entire process, e.g. perform step (i) (if we want to use a new abstraction) or step
(ii) after step (v). In practice it is possible to envisage cases where the inference
rules of the calculi of steps (i) - (v) are applied in any order.

The main consequence is that no ad hoc control strategy can be hardwired in
ABSFOL. Our solution is to move from a completely automatic use of abstraction
(as it has always been in the past) to one where abstraction is used interactively
and the user can tell the system the exact sequence of operations to perform.
ABSFOL is therefore built as an interactive system. However this is not an optimal
solution as it still leaves the user with too much, often tedious, work to do.
As is very common in interactive theorem proving (see e.g. [GMWT79, Paug9,
CABT86]), we propose a solution where ABSFOL is provided with an ML-like
metalanguage for writing programs which implement search control strategies
[HMMS86, GMW79]. We call such programs, tactics. Automated theorem proving

4



can then be implemented by writing complicated tactics. The user does not have
to write the control strategy from scratch as the system is provided with a library
of tactics implementing (some of) the most useful strategies. For a list of the
advantages of this approach see [GMWT79] and also [Bun88]. This issue is not
further described in this paper.

Two observations are worth making. First, the implementation of a calculus
and a control metalanguage for abstraction is quite complex and rises many
theoretical and practical problems. The main point is one of correctness. This
means not only that the underlying code does the right things but also that the
user interface prevents the user from doing bad things, e.g. from asserting non-
theorems. This implies a lot of code structuring and hiding that it is not necessary
in ad hoc implementations. Second, the interactive use of abstraction, as well
as allowing the construction of a general reasoner also has another important
advantage. Despite some promising theoretical and experimental results (see for
instance [Kor87, Kno91, GW91]) abstraction has proved, in automatic theorem
proving at least, less useful than expected [GW91, Pla90]. The integration of user
interaction and sophisticated heuristics can lessen some of the problems which
have been found in the use of abstraction. For instance we think that it is very
hard (if not impossible) to find a general heuristic which would automatically
generate the abstraction used in section 3.

3 A calculus of abstraction

The goal of this section is to describe some of the details of the five sub-calculi
of the logic of abstraction. We do this by describing the use of a TI abstraction
according to the strategy where “we first abstract the goal, we prove its abstracted
version and then use the structure of the resulting proof as an outline (or plan) to
help construct the proof of the original goal. This is the hardest use of abstraction
to provide a calculus for. It is also the most common use of abstraction in theorem
proving, problem solving and planning” [GW92b)].

We describe this use of abstraction via the proof of a theorem closely related to
Godel’s First Incompleteness theorem. ? This is an interesting example per se, for
at least two reasons. First, the proof of this theorem is a subtle piece of math-
ematics well beyond the reach of current automatic theorem provers. Second,
the proof shows how the interactive use of abstraction allows the construction of
proofs which are much easier to understand and to explain. The precise state-
ment of the goal is “IF . valid(F) N —provable(F)”. That is, there exists a

2The complete proof hinted in this paper can be found in [BGVW93].



formula £’ which is valid in the standard model of arithmetic but not provable
in the standard axiomatization of Peano arithmetics (PA from now on). This
problem is posed in a context called maths which knows of e.g. validity, provabil-
ity, consistency of PA. Consider for instance the following sequence of ABSFOL’s
commands.

noname: : NAMECONTEXT maths;
maths:: AXIOM m4: forall F. provable(F) imp valid(F);

Teletype font is used to write input and output to ABSFOL. (Input and output
have been slightly edited to make them more readable.) “<string>::” is the
ABSFOL prompt. The string before “::” is the name of the current context, that
is the theory we are working in. NAMECONTEXT names the current context. AXIOM
adds an axiom to the current context. Axiom mé4 says that any theorem of PA
is true in the standard model of arithmetics. For simplicity, we assume that the
Godel numbering has been defined and that the diagonalisation lemma has been
proved.

maths:: AXIOM diag: provable(diag(x) IFF ~ prf(formno(diag(x)),x));

where formno (F) is the Godel number of the formula F, diag(x) is the Godel
formula constructed by diagonalization (which asserts its own unprovability),
prf (Fn,Pn) is true iff Pn is the Godel number of a proof of the formula whose
Godel number is Fn. Although these assumptions simplify the theorem greatly,
the proof is still long and complicated. Indeed, our experiments suggest that the
proof is well beyond the reach of a state of the art resolution theorem prover like

Otter [McC90].

3.1 Declaring an abstraction

We have provided ABSFOL with the following tools for defining abstractions: a
language expressive enough to allow the definition of all the abstractions defined
in the past (plus more), an interpreter for such a language which allows for the
automatic (partial or total, see next section) generation of the abstract space, and
a library of abstraction prototypes which can be easily instantiated to the desired
application [Seb93]. At the moment the library contains all the most important
abstractions defined in the past. The abstraction we consider here is adapted
from a proposal by Alan Bundy. The main idea is to collapse the distinction
between (the name of a) formula and its diagonalizing term. This is performed
via the following many-to-one mapping on terms which collapses together terms
which are semantically similar,



diag(x), diag(el), all(x,diag(x)),
“prf(formno(diag(x),x)), = ~d
“prf(formno(diag(x),el))

prf (formno(diag(x),x)), prf (formno(diag(x),el)) = d
In ABSFOL this abstraction is defined with the following command

maths:: MAKECONTEXT absmaths;
maths:: ABSTRACTION goedel:maths => absmaths BY

f(A and B) := f(A) and f(B)

f(A or B) := f(4) or f(B)
f(A imp B) := £(A) imp £(B)
f(A iff B) := £(A) iff £(B)
f(not A4) = not f(A)

f(forall X.A)
f(exists X.A)
£(P(T1,...Tn))
f(diag(T))
f(all(x,diag(x))

forall X. f(A)
exists X. f(4)
P(£(T1),...£(Tn))
“d

“d

M

goedel is the name of the abstraction. MAKECONTEXT creates a new context of
name its first argument. maths and absmaths are the names of the ground
and the abstract spaces. The second line onwards define the abstraction. fj
is declaratively defined using a set of (terminating) rewrite rules. Notice that
goedel preserves the logical structure of expressions and only abstracts atomic
wifs (in particular, on terms). In fact goedel is an atomic abstraction and is
TI [GW92b]. Notice that most (statistically more than ninety per cent) of the
abstractions proposed in the past are atomic.

3.2 Applying an abstraction

A first option is to give ABSFOL the following command
maths:: ABSTRACT CONTEXT BY goedel;

This would cause the complete generation of the language, the axioms and the
inference rules of absmaths. However it is often useful to build the abstract space
only partially (e.g. to save time or to make the abstract search space smaller).
ABSFOL provides commands which generate the components of the abstract space
one by one, or by subsets.



maths:: ABSTRACT ALPHABET BY goedel;
maths:: ABSTRACT GOAL
valid(all(x,diag(x))) and not provable(all(x,diag(x))) BY goedel;
valid(~d) and not provable(”d) is the abstract goal.
maths:: ABSTRACT AXIOM diag BY goedel;
adiag: provable(~d IFF ~d)
maths: ABSTRACT AXIOM m4 BY goedel;
am4: forall F. provable(F) imp valid(F)

(The lines which follow “;” and are before the prompt are ABSFOL’s output).
The first command completely generates the language of absmaths. The second
abstracts the goal. The third and the fourth abstract two axioms. Notice that
the argument of provable in diag collapses into a tautology (diag can therefore
be forgotten), while m4 translates unmodified.

3.3 Abstract reasoning

Step (iii) consists of “standard” theorem proving and can therefore be performed
using GETFOL’s logic [Giu92]. Finding a proof in absmaths is much easier than
finding a proof in maths. In fact, the abstract proof requires just 7 of the 22
abstract axioms and it does not require any of the complicated axioms like the
diagonalization lemma. Indeed, experiments have shown that it is well within the
reach of current resolution theorem provers. Otter, for example, is able to find it
in 0.67 seconds on a Sun/4 generating just 183 clauses (of which 125 are kept).

The most important steps of the abstract proof are reported in Figure 2. The line
numbers on the left are automatically associated by GETFOL to each new theorem.
Each context has its own distinct numbering sequence. The numbers are used for
future reference to the indexed theorems. The abstract proof divides naturally
into two halves. In the first half we show that ~d is unprovable (line 15); in the
second half, we show that ~d is, however, valid (line 29). Note that the abstract
space is inconsistent; indeed at line 15 we demonstrate not provable(~d) whilst
later on, at line 27, we prove provable(~d). In [GW93] we demonstrate that
the fact that the abstract space might be inconsistent cannot be avoided with TI
abstractions like goedel. However, provided we are careful not to exploit this
inconsistency in our proofs, this does not cause problems [GW93]. For example,
although it is able to determine the inconsistency of the abstract space with
relative ease, Otter does not use this fact when proving the abstract goal.



Abstract Proof Ground Proof

1 provable(d) 1 provable(diag(x))

15 not provable(~d) | 32 not provable(all(x,diag(x))
20 not provable(d) 38 not provable(

prf (formno(diag(x),el))

27 provable(~d) 53 provable(diag(el))

29 valid(~d) 58 valid(all(x,diag(x))

30 valid(~d) and 59 valid(all(x,diag(x))) and
not provable(~d) not provable(all(x,diag(x)))

Figure 2: Outlines of the abstract and the ground proofs.

3.4 Mapping back and refinement

We want to use the abstract proof to help guide the construction of the ground
proof. The idea is that the abstract proof should be shorter and easier to construct
than the ground. It should also be “similar”. These intuitions are formalized by
a monotonicity relation between proof trees, called “tree subsumption” [GW92c¢].
Informally, we say that a tree II; subsumes a tree Il,, written “II; C 1157, iff the
same wifs occur in II; as in II; with the same global ordering. 1l; can therefore be
obtained from II; simply by adding nodes. The intuition is that the unabstraction
of the abstract proof should subsume the ground proof. In this case we say that
it is an outline. Outlines can be refined simply by adding nodes. In general we
have to perform more complex operations, e.g. deleting nodes. However this is
not the case for a very large class of abstractions including atomic abstractions

[GW92c].

An outline of the ground proof which results from the mapping back and the
refinement of the abstract proof is reported in Figure 2. The line numbers show
that the ground proof is much longer than the abstract proof. They also show
that the two proofs have the same global structure (if a node is above/ below/
adjacent another in the abstract proof, the same holds for their unabstractions
in the ground proof).

The implementation of the calculi for the mapping back and the refinement rises
some non trivial problems. First, from the abstract proof we can only build a
parametric outline of the ground proof. This outline is not a proof in the ground
space since it contains parameters which represent choices in unabstracting the
(many-to-one) mapping function. In the example, the user is called upon in to
pick unabstractions for d and “d. Thus, the abstract formula ~d which is valid
but not provable (lines 15, 29 and 30 of the abstract proof) corresponds to the



ground formula all(x,diag(x)). By comparison, the abstract formula ~d at
line 27, which is provable and from which we derive the validity of “d at line 29,
corresponds to the ground formula diag(el) (where el is a random element of
the standard model of PA). Second, the unabstraction of the abstract proof is not
a ground proof since the abstract proof only contains deductions corresponding
to the key steps in the ground proof. For instance some of the ground inferences
between steps 53 (unabstraction of line 27) and 58 (unabstraction of line 29)
translate diag(el) into all(x,diag(x)). Finally, we need to add a new datatype
to represent the steps in an outline since they do not have the same status as steps
in a proof. The steps in an outline may not be derivable as mapping back is not
guaranteed. They are merely conjectures. To represent such steps we therefore
introduce a new datatype called try. A try may contain parameters (which we
will instantiate) and may not follow immediately from earlier tries.

ABSFOL allows for mapping back the whole of an abstract proof into a complete
outline.

absmaths:: MAPBACK ALL BY goedel;

However, let us consider, as an example, the pointwise mapping back and refine-
ment of the last two lines of the abstract proof.

absmaths:: SHOW PROOF;

30 valid(™ d) and not provable(™ d)
31 exists F. (valid(F) and not provable(F))

We first map lines 30 and 31 back to ground conjectures.

absmaths:: MAPBACK 31 BY goedel;

31.0 exists F. (valid(F) and not provable(F))
absmaths:: MAPBACK 30 BY goedel;

30.0 valid(~ d) and not provable(™ 4)

A try, like a proof line, is numbered. In this case, the tries are numbered 30.0
and 31.0. To add extra steps between these tries, ABSFOL would use line numbers
of the form 30.n. Note that 31.0 is the unique unabstraction of line 31 in the
abstract proof. It represents the conjecture that we can prove the existence of
a valid but unprovable formula. Line 30, by comparison, has several possible
unabstractions. The formula displayed for try 30.0 is meant to represent one
of a set of ground formulae which abstract onto line 30. In refining the outline,
we must chose an instantiation for this parameter. In this case, we decide to
instantiate it to the term, all(x,diag(x)).

maths:: INSTT 30.0 ~ d:all(x,diag(x)) BY goedel;
30.0 valid(all(x,diag(x))) and not provable(all(x,diag(x)))

10



Try 31.0 now follows immediately from 30.0. To show this we perform an exis-
tential introduction on 30.0, and match the result of this existential introduction
with 31.0.

maths:: TRYEXISTI 30.0 all(x,diag(x)):F;

30.1 exists F. (valid(F) and not provable(F))
maths:: MATCHTRY 30.1 31.0;

30.1 has been bound to 31.0

When one try does not follow immediately from previous tries, refinement also
consists of adding in extra tries.

4 Conclusions

There are many different abstractions and uses of abstractions. However, we have
shown that it is possible to envisage a general, abstraction independent, reasoner
with abstraction called ABSFOL. The definition of this reasoner is based on the
distinction between logic and control and on the interactive use of abstraction.
Using ABSFOL avoids implementing abstraction from scratch. It also suggests a
new use of abstraction where interactivity can be exploited to overcome some of
the traditional problems with using abstraction.

References

[BGVW93] A. Bundy, F. Giunchiglia, A. Villafiorita, and T. Walsh. Godel’s
Incompleteness Theorem via Abstraction. Technical Report 9302-15,
IRST, Trento, Italy, 1993. Also DAI Research Paper, University of
Edinburgh.

[BGWO91] A. Bundy, F. Giunchiglia, and T. Walsh. Calculating criticalities.
Technical report, Dept. of Artificial Intelligence, University of Edin-
burgh, University of Edinburgh, 1991. Submitted to Artificial Intel-
ligence. Also IRST-Technical Report 9112-23, December 1991.

[Bun88] A. Bundy. The Use of Explicit Plans to Guide Inductive Proofs. In
R. Luck and R. Overbeek, editors, Proc. of the 9th Conference on
Automated Deduction, pages 111-120. Springer-Verlag, 1988. Longer
version available as DAI Research Paper No. 349, Dept. of Artificial
Intelligence, Edinburgh.

11



[CAB*86]

[GG8S]

[Giu92]

[GMW79]

[GWS9]

[GWO1]

[GW92a]

[GW92b)

[GW92c]

[GW93]

R.L. Constable, S.F. Allen, H.M. Bromley, et al. Implementing Math-
ematics with the NuPRL Proof Development System. Prentice Hall,
1986.

F. Giunchiglia and E. Giunchiglia. Building complex derived infer-
ence rules: a decider for the class of prenex universal-existential for-
mulas. In Proc. 7th European Conference on Artificial Intelligence,
pages 607-609, 1988. Extended version available as DAI Research
Paper 359, Dept. of Artificial Intelligence, Edinburgh.

F. Giunchiglia. The GETFOL Manual - GETFOL version 1. Technical
Report 92-0010, DIST - University of Genova, Genoa, Italy, 1992.

M.J. Gordon, A.J. Milner, and C.P. Wadsworth. FEdinburgh LCFE -
A mechanized logic of computation, volume 78 of Lecture Notes in
Computer Science. Springer Verlag, 1979.

F. Giunchiglia and T. Walsh. Theorem Proving with Definitions. In
Proc. of the 7th Conference of the Society for the Study of Artificial
Intelligence and Simulation of Behaviour, pages 175-183, 1989. Also
IRST-Technical Report 8901-03 and DAI Research Paper No 429,
University of Edinburgh.

F. Giunchiglia and T. Walsh. Using abstraction. In Proc. of the 8th
Conference of the Society for the Study of Artificial Intelligence and
Stmulation of Behaviour, Leeds, UK, 1991. Also IRST-Technical Re-
port 9010-08 and DAI Research Paper 515, University of Edinburgh.

F. Giunchiglia and T. Walsh. Theories of Abstraction: a Histori-
cal Perspective. In Proc. AAAI Workshop on Approximation and
Abstraction of Computational Theortes, San Jose’, CA, 1992. Also
IRST-Technical Report 9206-23, IRST, Trento, Italy.

F. Giunchiglia and T. Walsh. A Theory of Abstraction. Artificial In-
telligence, 56(2-3):323-390, 1992. Also IRST-Technical Report 9001-
14, IRST, Trento, Italy.

F. Giunchiglia and T. Walsh. Tree subsumption: Reasoning with
outlines. In Proc. 10th European Conference on Artificial Intelligence
ECAI-92, pages 77-81, Vienna, Austria, 1992. Also IRST-Technical
Report 9205-01, IRST, Trento, Italy.

F. Giunchiglia and T. Walsh. The inevitability of inconsistent ab-
stract spaces. Journal of Automated Reasoning, 11:23-41, 1993. Also
IRST-Technical Report 9006-16, IRST, Trento, Italy.

12



[HMMS6]

[Hob85]

[Kno90]

[Kno91]
[Kor87]
[KowT79]

[KS92]

[McC90]

[Mel87]

[Paus9)]
[P1as0]
[P1a90]
[P1us87]

[SacT3]

R. Harper, D. McQueen, and Robin Milner. Standard ML. LFCS
report series ECS-LFCS-86-2, Laboratory for Foundations of Com-

puter Science, Dept. of Computer Science, University of Edinburgh,
1986.

J.R. Hobbs. Granularity. In Proc. of the 9th International Joint
Conference on Artificial Intelligence, pages 432-435, 1985.

C. A. Knoblock. Abstracting the Tower of Hanoi. In Working Notes
of AAAI-90 Workshop on Automatic Generation of Approximations
and Abstractions, pages 13-23. AAAIL 1990.

C.A. Knoblock. Automatically Generating Abstractions for Problem
Solving. PhD thesis, School of Computer Science, 1991.

R.E. Korf. Planning as search: A quantitative approach. Artificial
Intelligence, 33:65-88, 1987.

R. Kowalski. Algorithm = logic 4+ control. Communications of the
ACM, 22(7):424-436, 1979.

H. Kautz and B. Selman. Forming Concepts for Fast Inference. In
Proc. of the 10th National Conference on Artificial Intelligence, pages
786-793, 1992.

W. W. McCune. Otter 2.0 users guide. Technical Report ANL-90/9,
Maths and CS. Division, Argonne National Laboratory, Argonne,
Mlinois, 1990.

T.F. Melham. Abstraction mechanisms for hardware verification.
Technical Report 106, University of Cambridge, Computer Labora-
tory, 1987.

L.. Paulson. The Foundation of a Generic Theorem Prover. Journal

of Automated Reasoning, 5:363-396, 1989.

D.A. Plaisted. Abstraction mappings in mechanical theorem proving.
In 5th Conference on Automated Deduction, pages 264-280, 1980.

D. Plaisted. Mechanical Theorem Proving. In Formal Techniques in

Artificial Intelligence. Elsevier Science Publishers B.V., 1990.

D. Plummer. Gazing: Controlling the Use of Rewrite Rules. PhD
thesis, Dept. of Artificial Intelligence, University of Edinburgh, 1987.

E.D. Sacerdoti. Planning in a Hierarchy of Abstraction Spaces. In
Proceedings of the 3rd International Joint conference on Artificial
Intelligence, 1973.

13



[Seb93]
[Ten88]

[URSY]

[Wel91]

[Wey80]

R. Sebastiani. Astrazione: dalla Teoria alla Realizzazione di un Ab-

stract Proof Checker. AI*IA Notizie, 2:41-53, 1993.

J.D. Tenenberg. Abstraction in Planning. PhD thesis, Computer
Science Department, University of Rochster, 1988. Also TR 250.

A. Unruh and P. Rosenbloom. Abstraction in problem solving and
learning. In Proc. of the 11th International Joint Conference on

Artificial Intelligence, pages 681-687, 1989.

D.S. Weld. Reasoning about model accuracy. Technical Report 91-
05-02, University of Washington, Dept. Computer Science and Engi-
neering, 1991.

R.W. Weyhrauch. Prolegomena to a Theory of Mechanized Formal
Reasoning. Artificial Intelligence, 13(1):133-176, 1980.

14



