
Istituto per la Ricerca Scientifica e TecnologicaI 38100 Trento � Loc. Pant�e di Povo � tel. 0461�814444Telex 400874 ITCRST � Telefax 0461�810851
A General Purpose Reasoner forAbstractionFausto GiunchigliaRoberto SebastianiAdolfo Villa�oritaToby WalshJanuary 1993Technical Report # 9301-08Publication Notes: Also DIST-Technical Report 93-0016.Istituto Trentino di Cultura

A General Purpose Reasoner for Abstraction�Fausto Giunchiglia1;2 Roberto Sebastiani3 Adolfo Villa�orita3;4 Toby Walsh11 I.R.S.T., 38050 Povo, Trento, Italy.2 University of Trento, Via Inama 5, 38100 Trento, Italy.3 D.I.S.T., viale Causa 13, 16146 Genoa, Italy4 University of Ancona, via Brecce Bianche, 60131 Ancona, Italyfausto@irst.itc.it rseba@dist.unige.it adolfo@dist.unige.it toby@irst.itc.ittel: ++39.(0)461.314359fax: ++39.(0)461.314591Content areas: abstraction,automated reasoning, interactive theorem provingAbstractThe goal of the work described in this paper is the development of a sys-tem, called ABSFOL, which allows the user to state declaratively abstractionsand to use them according to the desired control strategy. ABSFOL has beensuccessfully tested on many examples. So far we have failed to �nd an in-teresting abstraction whose implementation requires a major programminge�ort.
�Alan Bundy provided much of the inspiration for the solution of the Goedel ex-ample. The authors' names are purely alphabetical.1

1 IntroductionBy \reasoning with abstraction" we mean the process by which, starting from arepresentation of problem (called the \ground space"), we construct a new andsimpler problem representation (called the \abstract space") and use it to helpthe solution of the original problem. This informal de�nition is very general andidenti�es as \abstraction" a large number of applications in areas like problemsolving, planning, reasoning by analogy, learning, qualitative and model basedreasoning, common sense reasoning, approximate reasoning and hardware andsoftware veri�cation. In [GW92b] we have developed a theory of abstraction andused it to capture all these di�erent applications inside the same framework.The goal of the work partially described in this paper is to develop a generalreasoner with abstraction, called ABSFOL. 1 By \general" we mean that all theforms of abstraction must be de�nable and executable inside ABSFOL. Any userwanting to reason by abstraction will be able to state it declaratively withoutgoing through the pain of another re-implementation from �rst principles (e.g. theLisp primitives). The de�nition and implementation of such a general reasonerpresents many problems. The uniformity highlighted by the theory presented in[GW92b] hides a lot of di�erences which made all previous implementations verydi�erent. The following is a list of the possible di�erent abstractions and uses ofabstraction.� Almost all abstractions preserve provability [GW92b, GW92a]. Howeverprovability can be preserved in many di�erent ways [Wel91, GW92b].� There are many di�erent techniques to forget details and still preserve prov-ability in the same way. As proved in [GW92b], one set of such techniquesis: deleting preconditions in operators [Sac73], collapsing constants [Hob85],collapsing predicate or function symbols [Pla80, GW89, Ten88], droppingarguments to function or predicate symbols [Mel87].� For each such technique there are many ways of deciding exactly whichdetails to forget. For instance, [BGW91, Kno91] discuss various ways forautomatically forgetting preconditions.� Finally, there is a choice of how to intermix reasoning in the ground spaceand reasoning in the abstract space. For instance, in SOAR, abstraction isused only when the system is at an impasse [UR89].1ABSFOL is implemented on top of GETFOL [Giu92], an interactive theorem proverwhich is a re-implementation/ extension of the FOL system [Wey80].1

ABSFOL allows for all the possible abstractions and uses of abstractions listedabove and has been successfully tested on many abstractions de�ned in the past(all those listed in [GW92b]). In section 2 we describe the main idea underlyingABSFOL, namely that abstraction is implemented as logic plus control. In section 3we describe the logic of abstraction. This is done by showing, as an example, theproof of a statement closely related to G�odel's incompleteness theorem.2 Abstraction = Logic + ControlWe formalize abstraction as a mapping of a representation of a problem ontoa new representation. An abstraction f from a ground space �1 to an abstractspace �2, written f : �1) �2 , is de�ned as a triple h�1;�2; f�i consisting of twoaxiomatic formal systems, �1 and �2 and a total function, f�, which maps thelanguage of �1 onto that of �2. (We use the words \space", \theory", \context"and \formal system" as synonyms).In order to build a general reasoner for abstraction we must somehow make surethat the implementation does not depend upon assumptions which prevent anyof the possibilities listed in the previous section. This is achieved by making asharp distinction between what we do with abstraction and how we do it; that is,we make a clear distinction between the calculus and the control. The calculusde�nes all the forms of abstraction that can be used, whilst the control de�nesall the possible uses and control strategies. In this perspective, a particularalgorithm for using abstraction becomes \algorithm = logic + control" [Kow79].The situation is similar to that of �rst order logic or production rules. It is morecomplex because of the inherent complexity of reasoning with abstraction.Let us start with the logic. We must have an operation of abstraction declara-tion, which allows to de�ne an abstraction f as f = h�1;�2; f�i. An operationalde�nition of f� allows the construction of �2 from �1. We call the operationof generating �2, abstraction application. In general we need to construct thedeductive machinery and the axioms of �2. In this paper, for lack of space, weconsider only abstractions where �2 has the same inference rules as �1 and itsaxioms are mapped from those of �1 via f�. We shall prove goals by theoremproving. As we have ground and abstract goals we need to perform theorem prov-ing in both spaces. We call these two operations ground and abstract reasoning.It must also be possible to make the reasoning in the two spaces interact, i.e. tomake assertions in �1 just because certain facts hold in �2. We call this opera-tion, mapping back. The information that is mapped back strongly in
uences theground reasoning. The ground reasoning can be seen as the process of \re�ning"2

f()

f()

OutlineGround Proof

Ground Goal Abstraction Abstract Goal

f()

Abstract Proof

(ii) abstract(i) abs. declare

(v) refine (iv) map back

(iii) abstract
 reason

Ground Context Abstract Context

ϕ
ϕ

ϕ

ϕϕ ϕFigure 1: A calculus for abstraction.the information obtained from the abstract space until the goal is proved. Thisis why we also call it, re�nement. These �ve steps are graphically represented inFigure 1. The arrows describe the temporal order of activation in the (simplest)case of reasoning without bactracking. That is, we de�ne the abstraction, we useit to build the abstract space, we prove the abstract goal which we then mapback and re�ne until the original goal is proved.However the simplicity of Figure 1 should not mislead the reader. Each of the�ve steps requires the application of many simpler operations. Thus, declaringan abstraction requires the declaration of the two spaces involved and of howthe logic and the alphabet are translated. Generating �2 means generating itsalphabet, axioms and inference rules, the goal and often some of its theorems.Finding the abstract proof requires the application of the inference rules of theabstract space. The mapping back is particularly complicated as there are manypossible strategies for extracting the information contained in an abstract proof.At one extreme only the abstract theorem is mapped back (as in e.g. [GG88]). Insome cases no mapping back is performed at all, and the proof (or disproof) ofthe abstract theorem is taken as an approximation of the proof (disproof) of theground theorem (as in e.g. [KS92]). At the opposite extreme, the entire abstractproof is mapped back (as in e.g. [Kno90]). There are also intermediate situations,for instance in [Plu87, GW89] only the partial order of unfoldings of de�nitionsin the abstract proof is used. All these possible ways to perform the mappingback strongly in
uence the re�nement as well. For instance the re�nement of anabstract proof requires bridging the gaps among its nodes. This process is quite3

complicated to formalize as it involves reasoning from the middle out (see theexample in section 3).For each step we must therefore de�ne a set of operations, i.e. a set of inferencerules which de�ne the calculus for that step. The logic of abstraction is the unionof these �ve sub-calculi plus the prescription for when the inference rules of eachcalculus can be applied. One problem is that the inference rules which can beused depends on the abstraction and in particular on how provability is preservedacross abstraction spaces. For instance, an abstract theorem in general cannotbe used to assert its unabstraction as a ground theorem. It can only be taken asa \suggestion" of this fact. This is the case with TI abstractions. An abstractionf = h�1;�2; f�i is TI i�`�1 ' =) `�2 f�(') for any w� ' in �1:However with TD abstractions,`�2 f�(') =) `�1 ' for any w� ' in �1;and the unabstraction of an abstract theorem can be directly asserted as a theo-rem. There is no need for re�nement.The control of abstract reasoning rises many problems as well. The key fact isthat the temporal order suggested by Figure 1 is rarely followed in practice. Forinstance the abstract space may be generated only partially, this may requirethat we apply the rules of step (ii) after having done some abstract reasoning.It may happen that steps (iii) and (iv) are iterated. This kind of backtrackinghappens very often, e.g. any time we realize that we do not know how to re�nethe unabstraction of the abstract proof into a ground proof. We may iterate theentire process, e.g. perform step (i) (if we want to use a new abstraction) or step(ii) after step (v). In practice it is possible to envisage cases where the inferencerules of the calculi of steps (i) - (v) are applied in any order.The main consequence is that no ad hoc control strategy can be hardwired inABSFOL. Our solution is to move from a completely automatic use of abstraction(as it has always been in the past) to one where abstraction is used interactivelyand the user can tell the system the exact sequence of operations to perform.ABSFOL is therefore built as an interactive system. However this is not an optimalsolution as it still leaves the user with too much, often tedious, work to do.As is very common in interactive theorem proving (see e.g. [GMW79, Pau89,CAB+86]), we propose a solution where ABSFOL is provided with an ML-likemetalanguage for writing programs which implement search control strategies[HMM86, GMW79]. We call such programs, tactics. Automated theorem proving4

can then be implemented by writing complicated tactics. The user does not haveto write the control strategy from scratch as the system is provided with a libraryof tactics implementing (some of) the most useful strategies. For a list of theadvantages of this approach see [GMW79] and also [Bun88]. This issue is notfurther described in this paper.Two observations are worth making. First, the implementation of a calculusand a control metalanguage for abstraction is quite complex and rises manytheoretical and practical problems. The main point is one of correctness. Thismeans not only that the underlying code does the right things but also that theuser interface prevents the user from doing bad things, e.g. from asserting non-theorems. This implies a lot of code structuring and hiding that it is not necessaryin ad hoc implementations. Second, the interactive use of abstraction, as wellas allowing the construction of a general reasoner also has another importantadvantage. Despite some promising theoretical and experimental results (see forinstance [Kor87, Kno91, GW91]) abstraction has proved, in automatic theoremproving at least, less useful than expected [GW91, Pla90]. The integration of userinteraction and sophisticated heuristics can lessen some of the problems whichhave been found in the use of abstraction. For instance we think that it is veryhard (if not impossible) to �nd a general heuristic which would automaticallygenerate the abstraction used in section 3.3 A calculus of abstractionThe goal of this section is to describe some of the details of the �ve sub-calculiof the logic of abstraction. We do this by describing the use of a TI abstractionaccording to the strategy where \we �rst abstract the goal, we prove its abstractedversion and then use the structure of the resulting proof as an outline (or plan) tohelp construct the proof of the original goal. This is the hardest use of abstractionto provide a calculus for. It is also the most common use of abstraction in theoremproving, problem solving and planning" [GW92b].We describe this use of abstraction via the proof of a theorem closely related toG�odel's First Incompleteness theorem. 2 This is an interesting example per se, forat least two reasons. First, the proof of this theorem is a subtle piece of math-ematics well beyond the reach of current automatic theorem provers. Second,the proof shows how the interactive use of abstraction allows the construction ofproofs which are much easier to understand and to explain. The precise state-ment of the goal is \9F : valid(F) ^ :provable(F)". That is, there exists a2The complete proof hinted in this paper can be found in [BGVW93].5

formula F which is valid in the standard model of arithmetic but not provablein the standard axiomatization of Peano arithmetics (PA from now on). Thisproblem is posed in a context called maths which knows of e.g. validity, provabil-ity, consistency of PA. Consider for instance the following sequence of ABSFOL'scommands.noname:: NAMECONTEXT maths;maths:: AXIOM m4: forall F. provable(F) imp valid(F);Teletype font is used to write input and output to ABSFOL. (Input and outputhave been slightly edited to make them more readable.) \<string>::" is theABSFOL prompt. The string before \::" is the name of the current context, thatis the theory we are working in. NAMECONTEXT names the current context. AXIOMadds an axiom to the current context. Axiom m4 says that any theorem of PAis true in the standard model of arithmetics. For simplicity, we assume that theG�odel numbering has been de�ned and that the diagonalisation lemma has beenproved.maths:: AXIOM diag: provable(diag(x) IFF ~ prf(formno(diag(x)),x));where formno(F) is the G�odel number of the formula F, diag(x) is the G�odelformula constructed by diagonalization (which asserts its own unprovability),prf(Fn,Pn) is true i� Pn is the G�odel number of a proof of the formula whoseG�odel number is Fn. Although these assumptions simplify the theorem greatly,the proof is still long and complicated. Indeed, our experiments suggest that theproof is well beyond the reach of a state of the art resolution theorem prover likeOtter [McC90].3.1 Declaring an abstractionWe have provided ABSFOL with the following tools for de�ning abstractions: alanguage expressive enough to allow the de�nition of all the abstractions de�nedin the past (plus more), an interpreter for such a language which allows for theautomatic (partial or total, see next section) generation of the abstract space, anda library of abstraction prototypes which can be easily instantiated to the desiredapplication [Seb93]. At the moment the library contains all the most importantabstractions de�ned in the past. The abstraction we consider here is adaptedfrom a proposal by Alan Bundy. The main idea is to collapse the distinctionbetween (the name of a) formula and its diagonalizing term. This is performedvia the following many-to-one mapping on terms which collapses together termswhich are semantically similar, 6

diag(x), diag(el), all(x,diag(x)),~prf(formno(diag(x),x)),~prf(formno(diag(x),el))) ~dprf(formno(diag(x),x)), prf(formno(diag(x),el))) dIn ABSFOL this abstraction is de�ned with the following commandmaths:: MAKECONTEXT absmaths;maths:: ABSTRACTION goedel:maths => absmaths BY...f(A and B) := f(A) and f(B)f(A or B) := f(A) or f(B)f(A imp B) := f(A) imp f(B)f(A iff B) := f(A) iff f(B)f(not A) := not f(A)f(forall X.A) := forall X. f(A)f(exists X.A) := exists X. f(A)f(P(T1,...Tn)) := P(f(T1),...f(Tn))f(diag(T)) := ~df(all(x,diag(x)) := ~d...;goedel is the name of the abstraction. MAKECONTEXT creates a new context ofname its �rst argument. maths and absmaths are the names of the groundand the abstract spaces. The second line onwards de�ne the abstraction. f�is declaratively de�ned using a set of (terminating) rewrite rules. Notice thatgoedel preserves the logical structure of expressions and only abstracts atomicw�s (in particular, on terms). In fact goedel is an atomic abstraction and isTI [GW92b]. Notice that most (statistically more than ninety per cent) of theabstractions proposed in the past are atomic.3.2 Applying an abstractionA �rst option is to give ABSFOL the following commandmaths:: ABSTRACT CONTEXT BY goedel;This would cause the complete generation of the language, the axioms and theinference rules of absmaths. However it is often useful to build the abstract spaceonly partially (e.g. to save time or to make the abstract search space smaller).ABSFOL provides commands which generate the components of the abstract spaceone by one, or by subsets. 7

maths:: ABSTRACT ALPHABET BY goedel;maths:: ABSTRACT GOALvalid(all(x,diag(x))) and not provable(all(x,diag(x))) BY goedel;valid(~d) and not provable(~d) is the abstract goal.maths:: ABSTRACT AXIOM diag BY goedel;adiag: provable(~d IFF ~d)maths: ABSTRACT AXIOM m4 BY goedel;am4: forall F. provable(F) imp valid(F)(The lines which follow \;" and are before the prompt are ABSFOL's output).The �rst command completely generates the language of absmaths. The secondabstracts the goal. The third and the fourth abstract two axioms. Notice thatthe argument of provable in diag collapses into a tautology (diag can thereforebe forgotten), while m4 translates unmodi�ed.3.3 Abstract reasoningStep (iii) consists of \standard" theorem proving and can therefore be performedusing GETFOL's logic [Giu92]. Finding a proof in absmaths is much easier than�nding a proof in maths. In fact, the abstract proof requires just 7 of the 22abstract axioms and it does not require any of the complicated axioms like thediagonalization lemma. Indeed, experiments have shown that it is well within thereach of current resolution theorem provers. Otter, for example, is able to �nd itin 0.67 seconds on a Sun/4 generating just 183 clauses (of which 125 are kept).The most important steps of the abstract proof are reported in Figure 2. The linenumbers on the left are automatically associated by GETFOL to each new theorem.Each context has its own distinct numbering sequence. The numbers are used forfuture reference to the indexed theorems. The abstract proof divides naturallyinto two halves. In the �rst half we show that ~d is unprovable (line 15); in thesecond half, we show that ~d is, however, valid (line 29). Note that the abstractspace is inconsistent; indeed at line 15 we demonstrate not provable(~d)whilstlater on, at line 27, we prove provable(~d). In [GW93] we demonstrate thatthe fact that the abstract space might be inconsistent cannot be avoided with TIabstractions like goedel. However, provided we are careful not to exploit thisinconsistency in our proofs, this does not cause problems [GW93]. For example,although it is able to determine the inconsistency of the abstract space withrelative ease, Otter does not use this fact when proving the abstract goal.8

Abstract Proof Ground Proof1 provable(d) 1 provable(diag(x))15 not provable(~d) 32 not provable(all(x,diag(x))20 not provable(d) 38 not provable(prf(formno(diag(x),el))27 provable(~d) 53 provable(diag(el))29 valid(~d) 58 valid(all(x,diag(x))30 valid(~d) and 59 valid(all(x,diag(x))) andnot provable(~d) not provable(all(x,diag(x)))Figure 2: Outlines of the abstract and the ground proofs.3.4 Mapping back and re�nementWe want to use the abstract proof to help guide the construction of the groundproof. The idea is that the abstract proof should be shorter and easier to constructthan the ground. It should also be \similar". These intuitions are formalized bya monotonicity relation between proof trees, called \tree subsumption" [GW92c].Informally, we say that a tree �1 subsumes a tree �2, written \�1 � �2", i� thesame w�s occur in �2 as in �1 with the same global ordering. �2 can therefore beobtained from �1 simply by adding nodes. The intuition is that the unabstractionof the abstract proof should subsume the ground proof. In this case we say thatit is an outline. Outlines can be re�ned simply by adding nodes. In general wehave to perform more complex operations, e.g. deleting nodes. However this isnot the case for a very large class of abstractions including atomic abstractions[GW92c].An outline of the ground proof which results from the mapping back and there�nement of the abstract proof is reported in Figure 2. The line numbers showthat the ground proof is much longer than the abstract proof. They also showthat the two proofs have the same global structure (if a node is above/ below/adjacent another in the abstract proof, the same holds for their unabstractionsin the ground proof).The implementation of the calculi for the mapping back and the re�nement risessome non trivial problems. First, from the abstract proof we can only build aparametric outline of the ground proof. This outline is not a proof in the groundspace since it contains parameters which represent choices in unabstracting the(many-to-one) mapping function. In the example, the user is called upon in topick unabstractions for d and ~d. Thus, the abstract formula ~d which is validbut not provable (lines 15, 29 and 30 of the abstract proof) corresponds to the9

ground formula all(x,diag(x)). By comparison, the abstract formula ~d atline 27, which is provable and from which we derive the validity of ~d at line 29,corresponds to the ground formula diag(el) (where el is a random element ofthe standard model of PA). Second, the unabstraction of the abstract proof is nota ground proof since the abstract proof only contains deductions correspondingto the key steps in the ground proof. For instance some of the ground inferencesbetween steps 53 (unabstraction of line 27) and 58 (unabstraction of line 29)translate diag(el) into all(x,diag(x)). Finally, we need to add a new datatypeto represent the steps in an outline since they do not have the same status as stepsin a proof. The steps in an outline may not be derivable as mapping back is notguaranteed. They are merely conjectures. To represent such steps we thereforeintroduce a new datatype called try. A try may contain parameters (which wewill instantiate) and may not follow immediately from earlier tries.ABSFOL allows for mapping back the whole of an abstract proof into a completeoutline.absmaths:: MAPBACK ALL BY goedel;However, let us consider, as an example, the pointwise mapping back and re�ne-ment of the last two lines of the abstract proof.absmaths:: SHOW PROOF;...30 valid(~ d) and not provable(~ d)31 exists F. (valid(F) and not provable(F))We �rst map lines 30 and 31 back to ground conjectures.absmaths:: MAPBACK 31 BY goedel;31.0 exists F. (valid(F) and not provable(F))absmaths:: MAPBACK 30 BY goedel;30.0 valid(~ d) and not provable(~ d)A try, like a proof line, is numbered. In this case, the tries are numbered 30.0and 31.0. To add extra steps between these tries, ABSFOLwould use line numbersof the form 30.n. Note that 31.0 is the unique unabstraction of line 31 in theabstract proof. It represents the conjecture that we can prove the existence ofa valid but unprovable formula. Line 30, by comparison, has several possibleunabstractions. The formula displayed for try 30.0 is meant to represent oneof a set of ground formulae which abstract onto line 30. In re�ning the outline,we must chose an instantiation for this parameter. In this case, we decide toinstantiate it to the term, all(x,diag(x)).maths:: INSTT 30.0 ~ d:all(x,diag(x)) BY goedel;30.0 valid(all(x,diag(x))) and not provable(all(x,diag(x)))10

Try 31.0 now follows immediately from 30.0. To show this we perform an exis-tential introduction on 30.0, and match the result of this existential introductionwith 31.0.maths:: TRYEXISTI 30.0 all(x,diag(x)):F;30.1 exists F. (valid(F) and not provable(F))maths:: MATCHTRY 30.1 31.0;30.1 has been bound to 31.0When one try does not follow immediately from previous tries, re�nement alsoconsists of adding in extra tries.4 ConclusionsThere are many di�erent abstractions and uses of abstractions. However, we haveshown that it is possible to envisage a general, abstraction independent, reasonerwith abstraction called ABSFOL. The de�nition of this reasoner is based on thedistinction between logic and control and on the interactive use of abstraction.Using ABSFOL avoids implementing abstraction from scratch. It also suggests anew use of abstraction where interactivity can be exploited to overcome some ofthe traditional problems with using abstraction.References[BGVW93] A. Bundy, F. Giunchiglia, A. Villa�orita, and T. Walsh. G�odel'sIncompleteness Theorem via Abstraction. Technical Report 9302-15,IRST, Trento, Italy, 1993. Also DAI Research Paper, University ofEdinburgh.[BGW91] A. Bundy, F. Giunchiglia, and T. Walsh. Calculating criticalities.Technical report, Dept. of Arti�cial Intelligence, University of Edin-burgh, University of Edinburgh, 1991. Submitted to Arti�cial Intel-ligence. Also IRST-Technical Report 9112-23, December 1991.[Bun88] A. Bundy. The Use of Explicit Plans to Guide Inductive Proofs. InR. Luck and R. Overbeek, editors, Proc. of the 9th Conference onAutomated Deduction, pages 111{120. Springer-Verlag, 1988. Longerversion available as DAI Research Paper No. 349, Dept. of Arti�cialIntelligence, Edinburgh.11

[CAB+86] R.L. Constable, S.F. Allen, H.M. Bromley, et al. Implementing Math-ematics with the NuPRL Proof Development System. Prentice Hall,1986.[GG88] F. Giunchiglia and E. Giunchiglia. Building complex derived infer-ence rules: a decider for the class of prenex universal-existential for-mulas. In Proc. 7th European Conference on Arti�cial Intelligence,pages 607{609, 1988. Extended version available as DAI ResearchPaper 359, Dept. of Arti�cial Intelligence, Edinburgh.[Giu92] F. Giunchiglia. The GETFOL Manual - GETFOL version 1. TechnicalReport 92-0010, DIST - University of Genova, Genoa, Italy, 1992.[GMW79] M.J. Gordon, A.J. Milner, and C.P. Wadsworth. Edinburgh LCF -A mechanized logic of computation, volume 78 of Lecture Notes inComputer Science. Springer Verlag, 1979.[GW89] F. Giunchiglia and T. Walsh. Theorem Proving with De�nitions. InProc. of the 7th Conference of the Society for the Study of Arti�cialIntelligence and Simulation of Behaviour, pages 175{183, 1989. AlsoIRST-Technical Report 8901-03 and DAI Research Paper No 429,University of Edinburgh.[GW91] F. Giunchiglia and T. Walsh. Using abstraction. In Proc. of the 8thConference of the Society for the Study of Arti�cial Intelligence andSimulation of Behaviour, Leeds, UK, 1991. Also IRST-Technical Re-port 9010-08 and DAI Research Paper 515, University of Edinburgh.[GW92a] F. Giunchiglia and T. Walsh. Theories of Abstraction: a Histori-cal Perspective. In Proc. AAAI Workshop on Approximation andAbstraction of Computational Theories, San Jose', CA, 1992. AlsoIRST-Technical Report 9206-23, IRST, Trento, Italy.[GW92b] F. Giunchiglia and T. Walsh. A Theory of Abstraction. Arti�cial In-telligence, 56(2-3):323{390, 1992. Also IRST-Technical Report 9001-14, IRST, Trento, Italy.[GW92c] F. Giunchiglia and T. Walsh. Tree subsumption: Reasoning withoutlines. In Proc. 10th European Conference on Arti�cial IntelligenceECAI-92, pages 77{81, Vienna, Austria, 1992. Also IRST-TechnicalReport 9205-01, IRST, Trento, Italy.[GW93] F. Giunchiglia and T. Walsh. The inevitability of inconsistent ab-stract spaces. Journal of Automated Reasoning, 11:23{41, 1993. AlsoIRST-Technical Report 9006-16, IRST, Trento, Italy.12

[HMM86] R. Harper, D. McQueen, and Robin Milner. Standard ML. LFCSreport series ECS-LFCS-86-2, Laboratory for Foundations of Com-puter Science, Dept. of Computer Science, University of Edinburgh,1986.[Hob85] J.R. Hobbs. Granularity. In Proc. of the 9th International JointConference on Arti�cial Intelligence, pages 432{435, 1985.[Kno90] C. A. Knoblock. Abstracting the Tower of Hanoi. In Working Notesof AAAI-90 Workshop on Automatic Generation of Approximationsand Abstractions, pages 13{23. AAAI, 1990.[Kno91] C.A. Knoblock. Automatically Generating Abstractions for ProblemSolving. PhD thesis, School of Computer Science, 1991.[Kor87] R.E. Korf. Planning as search: A quantitative approach. Arti�cialIntelligence, 33:65{88, 1987.[Kow79] R. Kowalski. Algorithm = logic + control. Communications of theACM, 22(7):424{436, 1979.[KS92] H. Kautz and B. Selman. Forming Concepts for Fast Inference. InProc. of the 10th National Conference on Arti�cial Intelligence, pages786{793, 1992.[McC90] W. W. McCune. Otter 2.0 users guide. Technical Report ANL-90/9,Maths and CS. Division, Argonne National Laboratory, Argonne,Illinois, 1990.[Mel87] T.F. Melham. Abstraction mechanisms for hardware veri�cation.Technical Report 106, University of Cambridge, Computer Labora-tory, 1987.[Pau89] L. Paulson. The Foundation of a Generic Theorem Prover. Journalof Automated Reasoning, 5:363{396, 1989.[Pla80] D.A. Plaisted. Abstraction mappings in mechanical theorem proving.In 5th Conference on Automated Deduction, pages 264{280, 1980.[Pla90] D. Plaisted. Mechanical Theorem Proving. In Formal Techniques inArti�cial Intelligence. Elsevier Science Publishers B.V., 1990.[Plu87] D. Plummer. Gazing: Controlling the Use of Rewrite Rules. PhDthesis, Dept. of Arti�cial Intelligence, University of Edinburgh, 1987.[Sac73] E.D. Sacerdoti. Planning in a Hierarchy of Abstraction Spaces. InProceedings of the 3rd International Joint conference on Arti�cialIntelligence, 1973. 13

[Seb93] R. Sebastiani. Astrazione: dalla Teoria alla Realizzazione di un Ab-stract Proof Checker. AI*IA Notizie, 2:41{53, 1993.[Ten88] J.D. Tenenberg. Abstraction in Planning. PhD thesis, ComputerScience Department, University of Rochster, 1988. Also TR 250.[UR89] A. Unruh and P. Rosenbloom. Abstraction in problem solving andlearning. In Proc. of the 11th International Joint Conference onArti�cial Intelligence, pages 681{687, 1989.[Wel91] D.S. Weld. Reasoning about model accuracy. Technical Report 91-05-02, University of Washington, Dept. Computer Science and Engi-neering, 1991.[Wey80] R.W. Weyhrauch. Prolegomena to a Theory of Mechanized FormalReasoning. Arti�cial Intelligence, 13(1):133{176, 1980.

14

