A Divergence Critic

Toby Walsh

INRIA-Lorraine
615, rue du Jardin Botanique, B.P. 101
F-54602 Villers-les-Nancy, France

walsh@loria.fr

Abstract. Inductive theorem provers often diverge. This paper describes
a critic which monitors the construction of inductive proofs attempting
to identify diverging proof attempts. The critic proposes lemmas and
generalizations which hopefully allow the proof to go through without
divergence. The critic enables the system SPIKE to prove many theorems
completely automatically from the definitions alone.

1 Introduction

Rippling is a powerful heuristic developed at Edinburgh for proving theorems
involving explicit induction [6]. The essential idea behind rippling is to remove
the “difference” between the induction conclusion and the induction hypothesis
using a very goal directed form of rewriting. When augmented with a “difference
matching” procedure to identify such differences, rippling has also proved useful
in domains outside of explicit induction. For example, it has been used to sum
series, to prove limit theorems, and to perform normalization [3,15,16]. In this
paper, I describe an experiment to apply rippling and difference matching to a
new domain, the problem of overcoming the divergence of a prover using impli-
cit induction. The experiment is very successful. A critic has been implemented
which is often able to identify diverging proof attempts and to propose lemmas
and generalizations which will allow the proof to go through successfully. Al-
though the critic is designed to work with SPIKE, a theorem prover which uses
implicit induction [4], the critic should also work with other implicit and explicit
induction provers.

Induction in SPIKE is performed by means of test sets. A test set is essentially
a finite description of the initial model. It is a more powerful concept than
the related notion of cover set since, in combination with a ground convergent
rewrite system, a test set can be used to refute false conjectures. The basic idea
in SPIKE is to instantiate induction variables in the conjecture to be proved
with the members of the test set (using the generate rule), and then to use
rewriting to simplify the resulting expressions (using the simplify rules). This
rewriting uses any of the axioms, lemmas and induction hypotheses provided they
are smaller (with respect to a well-founded relation) than the current conjecture.
Although SPIKE has proved several challenging theorems without assistance (eg.
the binomial theorem), its attempts to prove many theorems diverge without an
appropriate generalization or the addition of a suitable lemma. The aim of the

critic described in this paper is to identify when a proof attempt is diverging, and
to speculate a lemma or generalization which would prevent this divergence. The
identification of divergence is described in more detail in the next two sections,
and the speculation of an appropriate generalization or lemma is described in
the following three sections.

2 Divergence Analysis

Several properties of rewrite rules have been identified which give rise to diver-
gence (eg. forwards and backwards crossed systems [8]). However, these proper-
ties fail to capture all diverging rewrite systems since the problem is, in general,
undecidable. The divergence critic proposed here studies just the proof attempt
looking for patterns of divergence; no attempt is made to analyse the rewrite rules
themselves for structures which give rise to divergence. The advantage of this
approach is that the critic need not know the details of the rewrite rules applied,
nor the type of induction being performed, nor the control structure used by the
prover. The critic can thus recognise divergence patterns arising from complex
mutual or multiple inductions with little more difficulty than divergence pat-
terns arising from simple straightforward inductions. The disadvantage of this
approach is that the critic will sometimes identify a “divergence” pattern when
none exists. Fortunately, such cases appear to be rare, and even when they occur,
the critic usually suggests a lemma or generalization which gives a shorter and
more elegant proof.

The divergence critic attempts to find term structure introduced by induc-
tion which is accumulating in an equation and which is preventing simplification.
To do this, the critic partitions the sequence of diverging equations generated by
SPIKE. This is necessary since several diverging sequences can be interleaved in
the prover’s output. Several heuristics are used to reduce the number of parti-
tions considered. The main heuristic is parentage; that is, the critic partitions the
sequence so that each equation in a partition is derived from the previous one.
Other heuristics which can be used include: the function and constant symbols
which occur in one equation occur in the next equation in the partition, and the
weights of the equations in a partition form a simple arithmetic progression. The
critic then attempts to find term structure introduced by induction which is ac-
cumulating at some position in the equation and which is causing divergence. To
identify such accumulating term structure, the critic uses the difference match-
ing procedure introduced in [2]. This is explained in more detail in the next
section. To fix divergence, the critic then speculates a lemma or generalization
of the theorem which moves this accumulating term structure out of the way.

3 An Example

To illustrate the essential ideas behind the critic’s divergence analysis, consider
SPIKE’s attempt to prove the length-append theorem.

len(app(a, b)) = len(app(b, a))

SPIKE begins by applying the generate rule. This instantiates the induction
variables with members of the test set, {nil, cons(h, t)}. Up to variable renaming,
this gives 3 distinct equations, which are rewritten by the simplify rules using
the definitions of len and app to give a simple identity and the following 2
equations,

len(app(b,nil)) = s(len(b))
len(app(a, cons(d, b))) = len(app(b, cons(c, a)))

Since no further simplification can be made, SPIKE performs another induction
by applying the generate rule. After simplification, this gives,

len(app(b, cons(c,nil))) = s(s(len(b)))
len(app(a, cons(f, cons(d, b)))) = len(app(b, cons(e, cons(c, a))))
No further simplification can be performed so SPIKE again applies the generate
rule. Unfortunately, the proof attempt will continue to diverge like this ad infin-
itum.

Using the parentage heuristic, the divergence critic partitions the equations
produced into two sequences. The first sequence is,

len(app(a, b)) = len(app(b, a))
len(app(a, cons(d, b))) = len(app(b, cons(c, a)))
len(app(a, cons(f, cons(d, b)))) = len(app(b, cons(e, cons(c, a))))

The second sequence is,

len(app(b,nil)) = s(len(b))
len(app(b, cons(c,nil))) = s(s(len(b)))
b))))

len(app(b, cons(d, cons(c,nil)))) = s(s(s(len(

The critic then attempts to find the accumulating term structure in each se-
quence which is causing divergence. In this case, in both sequences, cons func-
tions are accumulating on the second argument of append. Since append is
defined recursively on its first argument, SPIKE is unable to simplify such terms,
and the proof diverges. To identify this accumulating term structure, the critic
uses difference matching. This procedure annotates terms with wavefronts, boxes
with holes which mark where the terms differ. For example, taking the first se-
quence, difference matching successive equations gives the annotated sequence,

len(app(a, b)) = len(app(b, a))

len(app(a, [cons(d,)) = len(app(b.[cons(c,))

len(app(a,| cons(f,cons(d, b)) |)) = len(app(b,| cons(e, cons(c, a)) |))

An annotation consists of a wavefront, a box, with a wavehole, an underlined
term. The skeleton is formed by deleting everything that appears in the wave-
front but not in the wavehole. The erasure of an annotated terms is formed by
deleting the annotations but not the terms they contain. In the above sequence,
the skeleton of every annotated equation is identical to the erasure of the previous
equation in the sequence. Difference matching guarantees this; that is, difference
matching s with ¢ annotates s so that its skeleton matches t. More formally, s is
a difference match of s with ¢ with substitution o iff o(skeleton(s")) =t and
erase(s') = s where skeleton(s') and erase(s') build the skeleton and erasure of
the annotated term s'.
Difference matching successive equations in the second sequence gives,

len(app(b,nil)) = s(len(b))
len(app(b,| cons(c,nil)) = | s(s(len(b)))

s(s(s(len(b))))

len(app(b,| cons(d, cons(c, nil)) |))

Note that similar term structure is accumulating on the lefthand side of this
sequence as in the first sequence.

The critic then tries to speculate a lemma which moves the accumulating
and nested term structure out of the way. In this case, the critic speculates a
rule for moving a cons off the second argument of append. That is, the lemma,

len(app(a, cons(d, b)) = s(len(app(a, b)))

With this lemma, SPIKE is able to prove the len-app theorem without diver-
gence. In addition, this lemma is sufficiently simple that SPIKE can prove it
without assistance. The heuristics used by the critic to perform this lemma
speculation are described in more detail in the next two sections.

The divergence analysis performed by the critic can be summarised as follows:

1. There is a sequence of equations s; = t; to which the generate
rule is applied (i =0, 1 ...);

2. There exists (non trivial) G, H such that for each j, difference
matching gives s; = G(U;), and sj11 = G(H(Uj) |)-

Preconditions to the divergence critic.

By “non-trivial” I wish to exclude unhelpful answers like Az.z. H is thus the
accumulating and nested term structure. For the first sequence of equations in
the len-app example, H was Az.cons(y, z), G was Az.app(a, z), and Uy was b. For
simplicity, I have ignored the orientation of equations. In addition, the precondi-
tions can be easily generalised to include multiple and nested annotations. This
allows the critic to recognise multiple sources of divergence in the same equa-
tion. Techniques like those of [7] which identify accumulating term structure by

most specific generalization cannot cope with divergence patterns that give rise
to nested annotations.

The preconditions above leave the length of sequence undefined. If the se-
quence is of length 2, then the critic can be thought of as preemptive. That is, it
will propose a lemma, just before another induction is attempted and divergence
begins. However, using such a short sequence risks identifying divergence when
none exists. On the other hand using a long sequence is expensive to test and
allows the prover to waste time on diverging proof attempts. Empirically, a good
compromise appears to be to look for sequences of length 3. This is both cheap
to test and reliable. To identify accumulating term structure, it also appears to
be sufficient to use ground difference matching with alpha conversion of vari-
able names. There exists a fast polynomial algorithm to perform such difference
matching based upon the ground difference matching algorithm given in [3].

4 Lemma Speculation

One way of removing the accumulating and nested term structure is to apply a
lemma, called a wave rule, which moves this difference to the top of the term
leaving the skeleton unchanged. The hope is that the prover will then be able to
cancel the difference with a similar difference on the other side of the equality.

For the len-app theorem, the divergence pattern suggests a lemma of the
form,

len(app(a,| cons(d, b)) =| F(len(app(a, b)))

The only problem is to determine a suitable instantiation for F'. Two heuristics
are used for this: cancellation and petering out. The cancellation heuristic
uses difference matching to identify term structure accumulating on the opposite
side of the sequence which would allow cancellation to occur; failing that, it
looks for suitable term structure to cancel against in a new sequence (the original
sequence is usually a divergence pattern of a step case, whilst the new sequence is
usually a divergence pattern of a base case). In the len-app example, the successor
functions accumulating at the top of the righthand side of the second sequence
of equations suggests that F' be instantiated to Az.s(z). Thus, as required, the
cancellation heuristic suggests the lemma,

len(app(a,| cons(d,b) |)) = | s(len(app(a, b)))

The other heuristic used is petering out. In moving the differences up to the
top of the term, they may disappear altogether. The petering out heuristic uses
regular matching to identify such situations. Petering out occurs, for example,
in the speculation of the lemma,

sorted(insert(y, z) |) = sorted(x)

This lemma is proposed in the analysis of the diverging proof attempt of the
theorem sorted(isort(z)) where isort is insertion sort and insert(y,z) inserts the

element y into the list z in order. In the case of petering out, F' is instantiated
to the identity function Az.z.

All lemmas speculated are filtered through a conjecture disprover. When a
confluent set of rewrite rules exists for ground terms, exhaustive normalization
of some represenative set of ground instances of the equations is used to filter
out non-theorems. For more sophisticated techniques for disproving conjectures
see [12]. Alternatively, SPIKE itself could be used to filter out non-theorems.

The critic’s lemma speculation can be summarized as follows (using the same
variable names as the preconditions):

1. The critic proposes a lemma of the form,

G(H(W)|) =|F(G(U))

2. F is instantiated by the cancellation or petering out heuristics;

3. Lemmas are filtered through a conjecture disprover;

4. If several lemmas are suggested, the critic deletes any that are
subsumed.

Postconditions for the divergence critic.

As before, this definition can be easily extended to deal with multiple and
nested wavefronts. Note that as the lemma proposed moves the wavefronts to
top of the term, it usually only introduces fresh divergence in the rare cases
that cancellation or fertilization fails. This is unlikely since the cancellation and
petering out heuristics attempt to ensure that cancellation or fertilization can
take place.

5 Generalization

One major cause of divergence is the need to generalize. Although any lemma
proposed by the critic is usually sufficient to fix divergence, attempting to prove
the lemma itself can cause fresh divergence. In addition, several speculated lem-
mas can often be replaced by a single generalization, and a generalized lemma
frequently leads to a shorter, more elegant and natural proof. The critic therefore
attempts to generalize the lemma speculated, using the conjecture disprover to
guard against over-generalization.

The main heuristic used for generalization is an extension of the primary
term heuristic of Aubin [1]. The primary terms are those terms encountered
as a term is explored from the root to the leaves ignoring non-recursive argument
positions to functions. Consider, for example, the theorem,

len(app(a, b)) = len(a) + len(b)

where + is defined recursively on its second argument. The primary terms of the
righthand side are {len(a) + len(b), len(b), b}.

Analysis of SPIKE’s diverging attempt to prove this theorem suggests the
lemma,

s(len(a)) | + len(b) =| s(len(a) + len(d))

A set of candidate terms for generalization is constructed by computing the
intersection of the primary terms of the two sides of the equation. In this case, the
intersection of the primary terms is {len(b), b}. The critic then picks members of
this set to generalize to new variables. Picking b justs gives an equivalent lemma
up to renaming of variables. Picking len(b) gives the generalization,

s(len(a)) |+ vy =| s(len(a) + y)

The reason for considering just primary terms is that the recursive defin-
itions typically provide wave rules for removing differences which accumulate
at these positions. In addition to primary terms, the divergence critic therefore
also considers the positions of the waveholes in the lemma being speculated.
The motivation for this extension is that the speculated lemma will allow differ-
ences to be moved from the wavehole positions; such positions are therefore also
candidates for generalization.

For instance, + in the above example is considered to be “recursive” on
both the first and second arguments since + is recursively defined on its second
argument and the lemma being speculated has a wavehole on the first argument
of +. The terms {len(a), a} are therefore also included in the intersection set of
candidate terms for generalization. Picking a to generalize gives, as before, an
equivalent lemma up to renaming. Picking len(a) gives the generalization,

[s@) |+ y=[s(z+y)

The speculated lemma is now as general as is possible. This lemma allows the
proof to go through without divergence.

The critic also has a heuristic for merging speculated lemmas. For instance,
with the theorem sorted(isort(z)), the critic’s divergence analysis and lemma
speculation actually suggest the lemmas,

sorted(| insert(0, z) |) = sorted(z)
sorted(insert(s(y), z) |) = sorted(x)

The critic identifies that {0, s(y)} is a cover set for the natural numbers and
merges these two lemma, to the give the generalization,

sorted(insert(y, z) |) = sorted(x)

6 Transverse Wave Rules

The lemmas speculated so far have moved differences directly to the top of the
term where they are removed by cancellation or petering out. An alternative

way of removing a difference is to move the difference onto another argument
position where: either it can be removed by matching with a “sink”, a univer-
sally quantified variable in the induction hypothesis; or it can be moved upwards
by rewriting with the recursive definitions. Theorems involving functions with
accumulators provide a rich source of examples where such lemmas prevent di-
vergence.

Consider, for example, the theorem,

qrev(a, b) = app(rev(a), b)

where rev is naive list reversal and grev is tail recursive list reversal which builds
the reversed list on its second accumulator argument. That is,

rev(nil)
rev(cons(h, t))

grev(nil, r)

nil
app(rev(t), cons(h, nil))

"
grev(t, cons(h,))

grev(cons(h, t),r)

SPIKE’s attempt to prove this theorem diverges generating the following se-
quence of equations to which the generate rule are applied,

grev(a, b) = app(rev(a), b)
arev(a,| cons(c, b))) = app(app(rev(a), cons(c, nil)) |,)

grev(a,| cons(c,cons(d, b)) |) = app(| app(app(rev(a), cons(c,nil)), cons(d, nil)) |, b)

Divergence analysis of the righthand side of these equations identifies some accu-
mulating term structure. Rather than move this term structure to the top of the
term, it is much simpler to move it onto the second argument of the outermost
append. The critic therefore proposes a transverse wave rule, which preserves
the skeleton but moves the difference onto a different argument position. In this
example, this is a lemma of the form,

app(| app(rev(a), cons(c,nil)) |, b) = app(rev(a),| F(b) |)

In moving the difference onto another argument position, the difference may
change syntactically. The righthand side of the lemma is therefore only partially
determined. To instantiate F', the critic uses two heuristics: fertilization and
simplification. The fertilization heuristic uses matching to find an instantiation
for F' which enables immediate fertilization. In this case, matching against the
induction hypothesis suggests,

app(app(rev(a), cons(c,nil)) |, b) = app(rev(a),| cons(c, b))

The simplification heuristic uses matching to find an instantiation for F' which
enables the term to be simplified using one of the recursive definitions.

Finally the critic generalizes the lemma using the same primary term heuristic
as before (augmenting recursive positions with wavehole positions). This gives
the lemma,

,b) = app(a,| cons(c, b) |)

app(| app(a, cons|c, nil))

This is exactly the lemma needed by SPIKE to complete the proof. In addition,
the lemma is simple enough to be proved by itself without divergence; this is not
true of the ungeneralized lemma.

The actions of the critic can be summarized as follows,

Preconditions:

1. There is a sequence of equations s; = t; to which the generate
rule is applied (i = 0,1 ...);

2. There exists (non trivial) G, H such that for each j, difference
matching gives s; = G(Uj, Acc) and sj41 = G(H(Uj) |, Acc).

Postconditions:

1. The critic proposes a lemma of the form,
G(H(Uy)), Ace) = G(Uo,[F(Acc))

F is instantiated by the fertilization or simplification heuristics;
The lemma is generalized as much as possible;

Generalized lemmas are filtered through a conjecture disprover;
If several lemmas are suggested, the critic deletes any that are
subsumed.

Cus L

Speculation of transverse wave rules.

The preconditions and postconditions can be easily generalised to include mul-
tiple and nested annotations. The critic also uses an additional cancellation
heuristic to generalize transverse wave rules. This heuristic attempts to cancel
equal outermost functors where possible. For example, consider the theorem,

half(z+ 2) =
From SPIKE’s diverging proof attempt, the critic suggests the lemma,

half(+y) = half(z +| s(y))

The cancellation heuristic deletes the equal outermost function. This gives the

more general lemma,
+y=z+|s(y)

7 Results

The critic described in the previous sections has been implemented in Prolog.
It is successful at identifying divergence and proposing appropriate lemmas and
generalizations for a large number of theorems. A few examples are given in
Table 1. The times given are in seconds for the average of 10 runs on a Sun 4
running Quintus 3.1.1. For brevity, :: is written for infix cons, <> for infix
append, [] for the empty list nil, and [2] for the list cons(z,nil). In addition, + is
defined recursively on its second argument, even is defined by a s(s(x)) recursion,
even,, is defined by a mutual recursion with odd,,, and ro#(n, [) rotates a list [
by n elements.

SPIKE’s proof attempt diverges on each example when given the definitions
alone. In each of the 25 cases, however, the critic is quickly able to suggest a
lemma which overcomes divergence. When multiple lemmas are proposed (with
the exception of 15) any one on its own is sufficient to fix divergence. In every
case (except 9 and 19) the lemmas proposed are sufficiently simple to be proved
automatically without introducing fresh divergence. In many cases, the lemmas
proposed are optimal; that is, they are the simplest possible lemmas which fix
divergence. In the cases when the lemma is not optimal, it is close to optimal.

Example 2 is a simple program verification problem taken from [7]. The
second lemmas proposed in examples 3 and 5 are somewhat surprising; they are
nevertheless just as good at fixing divergence as the first lemmas. Examples 7
and 8 demonstrate that the critic can cope with divergence in theories involving
mutual recursion. In example 9, the proposed lemma is too difficult to be proved
automatically. However, the divergence critic is able to identify the cause of this
difficulty and propose a lemma which allows the proof to go through (example
11). In example 15, the critic identifies two separate divergence patterns. To
overcome divergence, the first lemma plus one or other of the second and third are
therefore needed. Example 19 is the only disappointment; the lemma proposed
fixes divergence but is too difficult to be proved automatically, even with the
assistance of the divergence critic. The problem seems to be that the example
needs the introduction of a derived function like append which does not occur
in the specification of the theorem. Examples 24 and 25 demonstrate that the
critic can cope with divergence in theories containing conditional equations.

Divergence analysis is very quick in each case. The divergence pattern is
recognized usually in less than a second. Most of the time is spent looking for
generalizations and refuting over-generalizations using the conjecture disprover.
Indeed, in the slowest example, less than 1% of the time is spent performing
divergence analysis. Additional heuristics for preventing over-generalization and
a more efficient implementation of the conjecture disprover would thus speed up
the slower examples considerably.

The results are very pleasing. Using the divergence critic, the theorems lis-
ted (with the exception of 19) can all be proved from the definitions alone. For
comparison, the NQTHM system [5] (perhaps the best known explicit induc-
tion theorem prover) when given just the definitions was unable to prove more

|N0| Theorem Lemmas speculated |Time/s|
1 s(x)+x=s(x+x) s(x)+y=s(x+y) 7.8
s(x)+y=x+s(y)
2 dbl(x)=x+x + s(x)+y=s(x+y) 8.2
dbl(0)=0, dbl(s(x))=s(s(dbl(x))) s(x)+y=x+s(y)
3 len(x <>y)=len(y <>x) len(x <>z::y)=s(len(x<>7y)) 3.6
len(x<>z:uy)=len(w:x<>y)
4 len(x <> y)=len(x)+len(y) s(x)+y=s(x+y), s(x)+y=x+s(y) 7.2
5 len(x <> x)=dbl(len(x)) len(x <>z:y)=s(len(x<>y)) 11.6
len(x<>w:uz:y)=s(len(x<>w:y))
6 even(x+x) even(s(s(x))+y)=even(x+y) 5.4
7 even,, (x+x) evel, (s(s(x))+y)=evenm, (x+y) 284
0dd (5(5())-+y)=0ddun (x--y)
8 even,, (x) — half(x)+half(x)=x s(x)+y=s(x+y), s(x)+y=x+s(y) 6.0
9 rot(len(x),x)=x rot(len(x),x <> [y])=y :: rot(len(x),x) 2.4
10 len(rot(len(x),x))=len(x) len(rot(x,z <> [y]))=s(len(rot(x,z))) 4.8
11| rot(len(x),x <> [y])=y :: rot(len(x),x) (x<>[y]) <>z=x<>y:z 86.3
rot(len(x),(x <> [y]) <>z)=y ::rot(len(x),x <> z)
12 len(rev(x))=len(x) len(x <> [y])=s(len(x)) 2.0
13 rev(rev(x))=x rev(x <> [y])=y ::rev(x) 1.2
14 rev(rev(x) <> [y])=y = x rev(x <> [y])=y ::rev(x) 16.0
15 len(rev(x <>y))=len(x)+len(y) len(x <> [y])=s(len(x)) 10.0
s(x)+y=s(x+y), s(x)+y=s(x+y)
16 len(grev(x,[]))=len(x) len(qrev(x,z:: y))=s(len(qrev(x,y))) 2.2
17 grev(x,y)=rev(x) <>y (x<>[y]) <>z=x<>y:z 3.4
18 len(qrev(x,y))=len(x)+len(y) s(x)+y=s(x+y), s(x)+y=x+s(y) 12.0
19 arev(arev G, [)=x qrov(arev G ly]) 2) =y - wev (@rev(x,[),2) 50
20 rev(grev(x,[]))=x rev(grev(x,[y]))=y :: rev(qrev(x,[])) 5.8
21 grev(rev(x),[])=x grev(x <> [y],z)=y :: qrev(x,z) 5.2
22 nth(i,nth(j,x))=nth(j,nth(i,x)) nth(s(i),nth(j,y :: x)) =nth(i,nth(j,x)) 7.4
23|nth(i,nth(jnth(k,x)))= th(,nth(j,nth(ix))) nth(s(i),nth(j,y :: x))=nth(i,nth(j,x)) 7.6
24 len(isort(x))=len(x) len(insert(y,x))=s(len(x)) 2.0
25 sorted (isort(x)) sorted(insert(y,x))=sorted(x) 114
sorted(insert(y,insert(z,x)))=sorted(x)

Table 1. Some lemmas speculated

v the Divergence Critic.

than half these theorems.! Of course, with the addition of some simple lemmas,
NQTHM is able to prove all these theorems. Indeed, in many cases, NQTHM
needs the same lemmas as those proposed by the divergence critic and required
by SPIKE. This suggests that the divergence critic is not especially tied to the
particular prover used nor even to the implicit induction setting. To test this
hypothesis, I presented the output of a diverging proof attempt from NQTHM
to the critic. I chose the commutativity of times as this is perhaps the simplest
theorem which causes NQTHM to diverge. The critic proposed the lemma,

(EQUAL (TIMES Y (ADD1 X)) (PLUS Y (TIMES Y X))))

where TIMES and PLUS are primitives of NQTHM’s logic recursively defined on
their first arguments. This is exactly the lemma needed by NQTHM to prove
the commutativity of times.

8 Related Work

Critics for monitoring the construction of proofs were first proposed in [9] for
“proof planning”. In this framework, failure of one of the proof methods automat-
ically invokes a critic. Various critics for explicit induction have been developed
that speculate missing lemmas, perform generalizations, look for suitable case
splits, etc using heuristics based upon rippling similar to the ones described here
[10]. There are, however, several significant differences. First, the divergence
critic described here works in an implicit (and not an explicit) induction setting.
Second, the divergence critic is not automatically invoked but must identify when
the proof is failing. Third, the divergence critic is less specialized. These last two
differences reflect the fact that critics in proof planning are usually associated
with the failure of a particular precondition to a heuristic. The same divergence
pattern can, by comparison, arise for many different reasons: the need to gen-
eralize variables apart, to generalize common subterms, to add a lemma, etc.
Fourth, the divergence critic must use difference matching to annotate terms;
in proof planning, terms are often already appropriately annotated. Finally, the
divergence critic is less tightly coupled to the the theorem prover’s heuristics.
The critic can therefore exploit the strengths of the prover without needing to
reason about the complex heuristics being used. For instance, the divergence
critic has no difficulty identifying divergence in complex situations like nested
or mutual inductions.

Divergence has been studied quite extensively in completion procedures. Two
of the main novelties of the critic described here are the use of difference match-
ing to identify divergence, and the use of rippling in the speculation of lemmas to
overcome divergence. Dershowitz and Pinchover, by comparison, use most spe-
cific generalization to identify divergence patterns in the critical pairs produced
by completion [7]. Kirchner uses generalization modulo an equivalence relation
to recognise such divergence patterns [11]; meta-rules are then synthesized to de-
scribe infinite families of rules with some common structure. Thomas and Jantke

! To be precise, NQTHM failed on 5, 6, 7, 9, 10, 11, 14, 16, 17, 19, 20, 21, 22, and 23.

use generalization and inductive inference to recognize divergence patterns and
to replace infinite sequences of critical pairs by a finite number of generalizations
[13]. Thomas and Watson use generalization to replace an infinite set of rules by
a finite complete set with an enriched signature [14].

Generalization modulo an equivalence enables complex divergence patterns to
be identified. However, it is in general undecidable. Most specific generalization,
by comparison, is more limited. It cannot recognize divergence patterns which
give nested wavefronts like,

s”(+ x) |

In addition, most specific generalization cannot identify term structure in wave-
holes. For example, consider the divergence pattern of example (20),

rev(grev(z,nil)) = x

rev(greo(a,[cons(y, nil))) = [cons(y, 2)|

rev(grev(z,| cons(z, cons(y, nil)) |)) =| cons(z, cons(y, x))

Most specific generalization of the lefthand side of this sequence gives the term
rev(grev(z, z)) (or, ignoring the first term in the sequence, rev(grev(z, cons(y, 2)))).
Most specific generalization cannot, however, identify the more useful pattern,
rev(grev(x, cons(y,nil)))) which suggests the simpler lemma,

rev(grev(z, cons(y, nil))) = cons(y, rev(qrev(z, nil)))

9 Future Work

There are many other types of divergence which could be incorporated into the
divergence critic. Further research is needed to identify such divergence patterns,
isolate their causes and propose ways of fixing them. This research may take
advantage of the close links between divergence patterns and particular types
of generalization. For instance, I am currently attempting to incorportate two
other divergence patterns into the critic which arise when variables need to be
renamed apart, and common subterms generalized in the theorem being proved.
(Note that the current heuristics already rename variables apart and generalize
common subterms in the speculated lemma.)

To illustrate a divergence pattern associated with the need to rename vari-
ables apart, consider the theorem,

app(z, app(z, ¥)) = app(app(z, z), 7)

SPIKE’s attempt to prove this theorem diverges giving the equations,
app(z, app(z, ©)) = app(app(z,),)

app(a, | cons(y, app(a; | cons(y,z))) = app(app(s

cons(y, z) |),| cons(y, z) ‘)

),

As before difference matching identifies the accumulating term structure. How-
ever, rather than try to speculate a lemma to move this difference out of the way,
the critic generalizes the original theorem so that the difference is not introduced
in the first place. In this case, it is sufficient to rename the first variable apart,

app(z, app(z, z)) = app(app(z z), 7)

SPIKE is able to prove this theorem without difficulty. The task of divergence
analysis here is to isolate the variables to be renamed apart.

To illustrate a divergence pattern associated with the need to generalize
common subterms consider the theorem,

len(rev(rev(z)) = len(rev(z))
SPIKE’s attempt to prove this theorem diverges giving the equations,

len(rev(rev(z)) = len(rev(z))

len(rev(app(rev(z), cons(y,nil)) |)) = len(| app(rev(z), cons(y,nil)) |)

As before difference matching identifies the accumulating term structure. How-
ever, rather than try to speculate some lemma for moving this difference out of
the way, we generalize the common subterm rev(z). This has the effect of chan-

ging the wavefront from,

app(-- -, cons(y,nil)) ‘ to ‘ cons(y,) ‘ The equation

can then be simplified using the definitions of app and len.

10 Conclusions

This paper has described a critic which attempts to identify diverging proof
attempts and to propose lemmas and generalizations which overcome the di-
vergence. The critic has proved very successful; it enables the system SPIKE
to prove many theorems from the definitions alone. The critic’s success can be
largely attributed to the power of the rippling heuristic. This heuristic was ori-
ginally developed for proofs using explicit induction but has since found several
other applications. To apply the rippling heuristic to the divergence of proofs
using implicit induction required the addition of the difference matching proced-
ure. This identifies accumulating term strucure which is causing the divergence.
Lemmas and generalizations are then proposed to move this term structure out
of the way.

Acknowledgments

This research was supported by a Human Captial and Mobility Postdoctoral
Fellowship. I wish to thank: Adel Bouhoula and Michael Rusinowitch for their
invaluable assistance with SPIKE; Pierre Lescanne for inviting me to visit Nancy;
David Basin, Alan Bundy, Miki Hermann, Andrew Ireland, and Michael Rusinow-
itch for their helpful comments and questions; the members of the Eureca and
Protheo groups at INRIA; and the members of the DReaM group at Edinburgh.

References

1.

2.

10.

11.

12.

13.

14.

15.

R. Aubin. Mechanizing Structural Induction. PhD thesis, University of Edinburgh,
1976.

D. Basin and T. Walsh. Difference matching. In D. Kapur, editor, 11th Conference
on Automated Deduction, pages 295-309. Springer Verlag, 1992. Lecture Notes in
Computer Science No. 607.

D. Basin and T. Walsh. Difference unification. In Proceedings of the 13th IJCAL
International Joint Conference on Artificial Intelligence, Chambery, France, 1993.
A. Bouhoula, and M. Rusinowitch. Automatic Case Analysis in Proof by Induc-
tion. In Proceedings of the 13th IJCAIL International Joint Conference on Artificial
Intelligence, Chambery, France, 1993.

R.S. Boyer and J.S. Moore. A Computational Logic. Academic Press, 1979. ACM
monograph series.

A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, and A. Smaill. Rippling: A
heuristic for guiding inductive proofs. Artificial Intelligence, 62:185-253, 1993.

N. Dershowitz and E. Pinchover. Inductive Synthesis of Equational Programs.
In Proceedings of the 8th National Conference on AI, pages 234-239. American
Association for Artificial Intelligence, 1990.

M. Hermann. Crossed term rewriting systems. CRIN Report 89-R-003, Centre de
Recherche en Informatique de Nancy, 1989.

A. Ireland. The Use of Planning Critics in Mechanizing Inductive Proof. In Pro-
ceedings of LPAR’92. Springer-Verlag, 1992. Lecture Notes in Artificial Intelligence
624.

A Treland and A. Bundy. Using failure to guide inductive proof. Technical report
613, Dept. of Artificial Intelligence, University of Edinburgh, 1992.

H. Kirchner. Schematization of infinite sets of rewrite rules. Application to the
divergence of completion processes. In Proceedings of RTA’87, pages 180-191,
1987.

M. Protzen. Disproving conjectures. In D. Kapur, editor, 11th Conference on
Automated Deduction, pages 340-354. Springer Verlag, 1992. Lecture Notes in
Computer Science No. 607.

M. Thomas and K.P. Jantke. Inductive Inference for Solving Divergence in Knuth-
Bendix Completion. In Proceedings of International Workshop AII’89, pages 288—
303, 1989.

M. Thomas and P. Watson. Solving divergence in Knuth-Bendix completion by
enriching signatures. Theoretical Computer Science, 112:145-185, 1993.

T. Walsh, A. Nunes, and A. Bundy. The use of proof plans to sum series.
In D. Kapur, editor, 11th Conference on Automated Deduction, pages 325-339.
Springer Verlag, 1992. Lecture Notes in Computer Science No. 607.

16. T. Yoshida, A. Bundy, I. Green, T. Walsh, and D. Basin. Coloured rippling: the
extension of a theorem proving heuristic. Technical Report, Dept. of Artificial
Intelligence, University of Edinburgh, 1993.

