
A Divergence CriticToby WalshINRIA-Lorraine615, rue du Jardin Botanique, B.P. 101F-54602 Villers-les-Nancy, Francewalsh@loria.frAbstract. Inductive theorem provers often diverge. This paper describesa critic which monitors the construction of inductive proofs attemptingto identify diverging proof attempts. The critic proposes lemmas andgeneralizations which hopefully allow the proof to go through withoutdivergence. The critic enables the system SPIKE to prove many theoremscompletely automatically from the de�nitions alone.1 IntroductionRippling is a powerful heuristic developed at Edinburgh for proving theoremsinvolving explicit induction [6]. The essential idea behind rippling is to removethe \di�erence" between the induction conclusion and the induction hypothesisusing a very goal directed form of rewriting. When augmented with a \di�erencematching" procedure to identify such di�erences, rippling has also proved usefulin domains outside of explicit induction. For example, it has been used to sumseries, to prove limit theorems, and to perform normalization [3, 15, 16]. In thispaper, I describe an experiment to apply rippling and di�erence matching to anew domain, the problem of overcoming the divergence of a prover using impli-cit induction. The experiment is very successful. A critic has been implementedwhich is often able to identify diverging proof attempts and to propose lemmasand generalizations which will allow the proof to go through successfully. Al-though the critic is designed to work with SPIKE, a theorem prover which usesimplicit induction [4], the critic should also work with other implicit and explicitinduction provers.Induction in SPIKE is performed by means of test sets. A test set is essentiallya �nite description of the initial model. It is a more powerful concept thanthe related notion of cover set since, in combination with a ground convergentrewrite system, a test set can be used to refute false conjectures. The basic ideain SPIKE is to instantiate induction variables in the conjecture to be provedwith the members of the test set (using the generate rule), and then to userewriting to simplify the resulting expressions (using the simplify rules). Thisrewriting uses any of the axioms, lemmas and induction hypotheses provided theyare smaller (with respect to a well-founded relation) than the current conjecture.Although SPIKE has proved several challenging theorems without assistance (eg.the binomial theorem), its attempts to prove many theorems diverge without anappropriate generalization or the addition of a suitable lemma. The aim of the



critic described in this paper is to identify when a proof attempt is diverging, andto speculate a lemma or generalization which would prevent this divergence. Theidenti�cation of divergence is described in more detail in the next two sections,and the speculation of an appropriate generalization or lemma is described inthe following three sections.2 Divergence AnalysisSeveral properties of rewrite rules have been identi�ed which give rise to diver-gence (eg. forwards and backwards crossed systems [8]). However, these proper-ties fail to capture all diverging rewrite systems since the problem is, in general,undecidable. The divergence critic proposed here studies just the proof attemptlooking for patterns of divergence; no attempt is made to analyse the rewrite rulesthemselves for structures which give rise to divergence. The advantage of thisapproach is that the critic need not know the details of the rewrite rules applied,nor the type of induction being performed, nor the control structure used by theprover. The critic can thus recognise divergence patterns arising from complexmutual or multiple inductions with little more di�culty than divergence pat-terns arising from simple straightforward inductions. The disadvantage of thisapproach is that the critic will sometimes identify a \divergence" pattern whennone exists. Fortunately, such cases appear to be rare, and even when they occur,the critic usually suggests a lemma or generalization which gives a shorter andmore elegant proof.The divergence critic attempts to �nd term structure introduced by induc-tion which is accumulating in an equation and which is preventing simpli�cation.To do this, the critic partitions the sequence of diverging equations generated bySPIKE. This is necessary since several diverging sequences can be interleaved inthe prover's output. Several heuristics are used to reduce the number of parti-tions considered. The main heuristic is parentage; that is, the critic partitions thesequence so that each equation in a partition is derived from the previous one.Other heuristics which can be used include: the function and constant symbolswhich occur in one equation occur in the next equation in the partition, and theweights of the equations in a partition form a simple arithmetic progression. Thecritic then attempts to �nd term structure introduced by induction which is ac-cumulating at some position in the equation and which is causing divergence. Toidentify such accumulating term structure, the critic uses the di�erence match-ing procedure introduced in [2]. This is explained in more detail in the nextsection. To �x divergence, the critic then speculates a lemma or generalizationof the theorem which moves this accumulating term structure out of the way.3 An ExampleTo illustrate the essential ideas behind the critic's divergence analysis, considerSPIKE's attempt to prove the length-append theorem.len(app(a; b)) = len(app(b; a))



SPIKE begins by applying the generate rule. This instantiates the inductionvariables with members of the test set, fnil; cons(h; t)g. Up to variable renaming,this gives 3 distinct equations, which are rewritten by the simplify rules usingthe de�nitions of len and app to give a simple identity and the following 2equations, len(app(b; nil)) = s(len(b))len(app(a; cons(d; b))) = len(app(b; cons(c; a)))Since no further simpli�cation can be made, SPIKE performs another inductionby applying the generate rule. After simpli�cation, this gives,len(app(b; cons(c; nil))) = s(s(len(b)))len(app(a; cons(f; cons(d; b)))) = len(app(b; cons(e; cons(c; a))))No further simpli�cation can be performed so SPIKE again applies the generaterule. Unfortunately, the proof attempt will continue to diverge like this ad in�n-itum.Using the parentage heuristic, the divergence critic partitions the equationsproduced into two sequences. The �rst sequence is,len(app(a; b)) = len(app(b; a))len(app(a; cons(d; b))) = len(app(b; cons(c; a)))len(app(a; cons(f; cons(d; b)))) = len(app(b; cons(e; cons(c; a))))...The second sequence is, len(app(b; nil)) = s(len(b))len(app(b; cons(c; nil))) = s(s(len(b)))len(app(b; cons(d; cons(c; nil)))) = s(s(s(len(b))))...The critic then attempts to �nd the accumulating term structure in each se-quence which is causing divergence. In this case, in both sequences, cons func-tions are accumulating on the second argument of append. Since append isde�ned recursively on its �rst argument, SPIKE is unable to simplify such terms,and the proof diverges. To identify this accumulating term structure, the criticuses di�erence matching. This procedure annotates terms with wavefronts, boxeswith holes which mark where the terms di�er. For example, taking the �rst se-quence, di�erence matching successive equations gives the annotated sequence,len(app(a; b)) = len(app(b; a))len(app(a; cons(d; b) )) = len(app(b; cons(c; a) ))len(app(a; cons(f; cons(d; b)) )) = len(app(b; cons(e; cons(c; a)) ))



An annotation consists of a wavefront, a box, with a wavehole, an underlinedterm. The skeleton is formed by deleting everything that appears in the wave-front but not in the wavehole. The erasure of an annotated terms is formed bydeleting the annotations but not the terms they contain. In the above sequence,the skeleton of every annotated equation is identical to the erasure of the previousequation in the sequence. Di�erence matching guarantees this; that is, di�erencematching s with t annotates s so that its skeleton matches t. More formally, s0 isa di�erence match of s with t with substitution � i� �(skeleton(s0)) = t anderase(s0) = s where skeleton(s0) and erase(s0) build the skeleton and erasure ofthe annotated term s0.Di�erence matching successive equations in the second sequence gives,len(app(b; nil)) = s(len(b))len(app(b; cons(c; nil) )) = s(s(len(b)))len(app(b; cons(d; cons(c; nil)) )) = s(s(s(len(b))))Note that similar term structure is accumulating on the lefthand side of thissequence as in the �rst sequence.The critic then tries to speculate a lemma which moves the accumulatingand nested term structure out of the way. In this case, the critic speculates arule for moving a cons o� the second argument of append. That is, the lemma,len(app(a; cons(d; b))) = s(len(app(a; b)))With this lemma, SPIKE is able to prove the len-app theorem without diver-gence. In addition, this lemma is su�ciently simple that SPIKE can prove itwithout assistance. The heuristics used by the critic to perform this lemmaspeculation are described in more detail in the next two sections.The divergence analysis performed by the critic can be summarised as follows:1. There is a sequence of equations si = ti to which the generaterule is applied (i = 0, 1 ...);2. There exists (non trivial) G;H such that for each j, di�erencematching gives sj = G(Uj), and sj+1 = G( H(Uj) ).Preconditions to the divergence critic.By \non-trivial" I wish to exclude unhelpful answers like �x:x. H is thus theaccumulating and nested term structure. For the �rst sequence of equations inthe len-app example, H was �x:cons(y; x), G was �x:app(a; x), and U0 was b. Forsimplicity, I have ignored the orientation of equations. In addition, the precondi-tions can be easily generalised to include multiple and nested annotations. Thisallows the critic to recognise multiple sources of divergence in the same equa-tion. Techniques like those of [7] which identify accumulating term structure by



most speci�c generalization cannot cope with divergence patterns that give riseto nested annotations.The preconditions above leave the length of sequence unde�ned. If the se-quence is of length 2, then the critic can be thought of as preemptive. That is, itwill propose a lemma just before another induction is attempted and divergencebegins. However, using such a short sequence risks identifying divergence whennone exists. On the other hand using a long sequence is expensive to test andallows the prover to waste time on diverging proof attempts. Empirically, a goodcompromise appears to be to look for sequences of length 3. This is both cheapto test and reliable. To identify accumulating term structure, it also appears tobe su�cient to use ground di�erence matching with alpha conversion of vari-able names. There exists a fast polynomial algorithm to perform such di�erencematching based upon the ground di�erence matching algorithm given in [3].4 Lemma SpeculationOne way of removing the accumulating and nested term structure is to apply alemma, called a wave rule, which moves this di�erence to the top of the termleaving the skeleton unchanged. The hope is that the prover will then be able tocancel the di�erence with a similar di�erence on the other side of the equality.For the len-app theorem, the divergence pattern suggests a lemma of theform, len(app(a; cons(d; b) )) = F (len(app(a; b)))The only problem is to determine a suitable instantiation for F . Two heuristicsare used for this: cancellation and petering out. The cancellation heuristicuses di�erence matching to identify term structure accumulating on the oppositeside of the sequence which would allow cancellation to occur; failing that, itlooks for suitable term structure to cancel against in a new sequence (the originalsequence is usually a divergence pattern of a step case, whilst the new sequence isusually a divergence pattern of a base case). In the len-app example, the successorfunctions accumulating at the top of the righthand side of the second sequenceof equations suggests that F be instantiated to �x:s(x). Thus, as required, thecancellation heuristic suggests the lemma,len(app(a; cons(d; b) )) = s(len(app(a; b)))The other heuristic used is petering out. In moving the di�erences up to thetop of the term, they may disappear altogether. The petering out heuristic usesregular matching to identify such situations. Petering out occurs, for example,in the speculation of the lemma,sorted( insert(y; x) ) = sorted(x)This lemma is proposed in the analysis of the diverging proof attempt of thetheorem sorted(isort(x)) where isort is insertion sort and insert(y,x) inserts the



element y into the list x in order. In the case of petering out, F is instantiatedto the identity function �x:x.All lemmas speculated are �ltered through a conjecture disprover. When acon
uent set of rewrite rules exists for ground terms, exhaustive normalizationof some represenative set of ground instances of the equations is used to �lterout non-theorems. For more sophisticated techniques for disproving conjecturessee [12]. Alternatively, SPIKE itself could be used to �lter out non-theorems.The critic's lemma speculation can be summarized as follows (using the samevariable names as the preconditions):1. The critic proposes a lemma of the form,G( H(U0) ) = F (G(U0))2. F is instantiated by the cancellation or petering out heuristics;3. Lemmas are �ltered through a conjecture disprover;4. If several lemmas are suggested, the critic deletes any that aresubsumed.Postconditions for the divergence critic.As before, this de�nition can be easily extended to deal with multiple andnested wavefronts. Note that as the lemma proposed moves the wavefronts totop of the term, it usually only introduces fresh divergence in the rare casesthat cancellation or fertilization fails. This is unlikely since the cancellation andpetering out heuristics attempt to ensure that cancellation or fertilization cantake place.5 GeneralizationOne major cause of divergence is the need to generalize. Although any lemmaproposed by the critic is usually su�cient to �x divergence, attempting to provethe lemma itself can cause fresh divergence. In addition, several speculated lem-mas can often be replaced by a single generalization, and a generalized lemmafrequently leads to a shorter, more elegant and natural proof. The critic thereforeattempts to generalize the lemma speculated, using the conjecture disprover toguard against over-generalization.The main heuristic used for generalization is an extension of the primaryterm heuristic of Aubin [1]. The primary terms are those terms encounteredas a term is explored from the root to the leaves ignoring non-recursive argumentpositions to functions. Consider, for example, the theorem,len(app(a; b)) = len(a) + len(b)where + is de�ned recursively on its second argument. The primary terms of therighthand side are flen(a) + len(b); len(b); bg.



Analysis of SPIKE's diverging attempt to prove this theorem suggests thelemma, s(len(a)) + len(b) = s(len(a) + len(b))A set of candidate terms for generalization is constructed by computing theintersection of the primary terms of the two sides of the equation. In this case, theintersection of the primary terms is flen(b); bg. The critic then picks members ofthis set to generalize to new variables. Picking b justs gives an equivalent lemmaup to renaming of variables. Picking len(b) gives the generalization,s(len(a)) + y = s(len(a) + y)The reason for considering just primary terms is that the recursive de�n-itions typically provide wave rules for removing di�erences which accumulateat these positions. In addition to primary terms, the divergence critic thereforealso considers the positions of the waveholes in the lemma being speculated.The motivation for this extension is that the speculated lemma will allow di�er-ences to be moved from the wavehole positions; such positions are therefore alsocandidates for generalization.For instance, + in the above example is considered to be \recursive" onboth the �rst and second arguments since + is recursively de�ned on its secondargument and the lemma being speculated has a wavehole on the �rst argumentof +. The terms flen(a); ag are therefore also included in the intersection set ofcandidate terms for generalization. Picking a to generalize gives, as before, anequivalent lemma up to renaming. Picking len(a) gives the generalization,s(x) + y = s(x+ y)The speculated lemma is now as general as is possible. This lemma allows theproof to go through without divergence.The critic also has a heuristic for merging speculated lemmas. For instance,with the theorem sorted(isort(x)), the critic's divergence analysis and lemmaspeculation actually suggest the lemmas,sorted( insert(0; x) ) = sorted(x)sorted( insert(s(y); x) ) = sorted(x)The critic identi�es that f0; s(y)g is a cover set for the natural numbers andmerges these two lemma to the give the generalization,sorted( insert(y; x) ) = sorted(x)6 Transverse Wave RulesThe lemmas speculated so far have moved di�erences directly to the top of theterm where they are removed by cancellation or petering out. An alternative



way of removing a di�erence is to move the di�erence onto another argumentposition where: either it can be removed by matching with a \sink", a univer-sally quanti�ed variable in the induction hypothesis; or it can be moved upwardsby rewriting with the recursive de�nitions. Theorems involving functions withaccumulators provide a rich source of examples where such lemmas prevent di-vergence.Consider, for example, the theorem,qrev(a; b) = app(rev(a); b)where rev is naive list reversal and qrev is tail recursive list reversal which buildsthe reversed list on its second accumulator argument. That is,rev(nil) = nilrev(cons(h; t)) = app(rev(t); cons(h; nil))qrev(nil; r) = rqrev(cons(h; t); r) = qrev(t; cons(h; x))SPIKE's attempt to prove this theorem diverges generating the following se-quence of equations to which the generate rule are applied,qrev(a; b) = app(rev(a); b)qrev(a; cons(c; b) ) = app( app(rev(a); cons(c; nil)) ; b)qrev(a; cons(c; cons(d; b)) ) = app( app(app(rev(a); cons(c; nil)); cons(d; nil)) ; b)...Divergence analysis of the righthand side of these equations identi�es some accu-mulating term structure. Rather than move this term structure to the top of theterm, it is much simpler to move it onto the second argument of the outermostappend. The critic therefore proposes a transverse wave rule, which preservesthe skeleton but moves the di�erence onto a di�erent argument position. In thisexample, this is a lemma of the form,app( app(rev(a); cons(c; nil)) ; b) = app(rev(a); F (b) )In moving the di�erence onto another argument position, the di�erence maychange syntactically. The righthand side of the lemma is therefore only partiallydetermined. To instantiate F , the critic uses two heuristics: fertilization andsimpli�cation. The fertilization heuristic uses matching to �nd an instantiationfor F which enables immediate fertilization. In this case, matching against theinduction hypothesis suggests,app( app(rev(a); cons(c; nil)) ; b) = app(rev(a); cons(c; b) )



The simpli�cation heuristic uses matching to �nd an instantiation for F whichenables the term to be simpli�ed using one of the recursive de�nitions.Finally the critic generalizes the lemma using the same primary term heuristicas before (augmenting recursive positions with wavehole positions). This givesthe lemma, app( app(a; cons(c; nil)) ; b) = app(a; cons(c; b) )This is exactly the lemma needed by SPIKE to complete the proof. In addition,the lemma is simple enough to be proved by itself without divergence; this is nottrue of the ungeneralized lemma.The actions of the critic can be summarized as follows,Preconditions:1. There is a sequence of equations si = ti to which the generaterule is applied (i = 0, 1 ...);2. There exists (non trivial) G;H such that for each j, di�erencematching gives sj = G(Uj ; Acc) and sj+1 = G( H(Uj) ; Acc).Postconditions:1. The critic proposes a lemma of the form,G( H(U0) ; Acc) = G(U0; F (Acc) )2. F is instantiated by the fertilization or simpli�cation heuristics;3. The lemma is generalized as much as possible;4. Generalized lemmas are �ltered through a conjecture disprover;5. If several lemmas are suggested, the critic deletes any that aresubsumed.Speculation of transverse wave rules.The preconditions and postconditions can be easily generalised to include mul-tiple and nested annotations. The critic also uses an additional cancellationheuristic to generalize transverse wave rules. This heuristic attempts to cancelequal outermost functors where possible. For example, consider the theorem,half(x+ x) = xFrom SPIKE's diverging proof attempt, the critic suggests the lemma,half( s(x) + y) = half(x+ s(y) )The cancellation heuristic deletes the equal outermost function. This gives themore general lemma, s(x) + y = x+ s(y)



7 ResultsThe critic described in the previous sections has been implemented in Prolog.It is successful at identifying divergence and proposing appropriate lemmas andgeneralizations for a large number of theorems. A few examples are given inTable 1. The times given are in seconds for the average of 10 runs on a Sun 4running Quintus 3.1.1. For brevity, :: is written for in�x cons, <> for in�xappend, [] for the empty list nil, and [x] for the list cons(x,nil). In addition, + isde�ned recursively on its second argument, even is de�ned by a s(s(x)) recursion,evenm is de�ned by a mutual recursion with oddm, and rot(n; l) rotates a list lby n elements.SPIKE's proof attempt diverges on each example when given the de�nitionsalone. In each of the 25 cases, however, the critic is quickly able to suggest alemma which overcomes divergence. When multiple lemmas are proposed (withthe exception of 15) any one on its own is su�cient to �x divergence. In everycase (except 9 and 19) the lemmas proposed are su�ciently simple to be provedautomatically without introducing fresh divergence. In many cases, the lemmasproposed are optimal; that is, they are the simplest possible lemmas which �xdivergence. In the cases when the lemma is not optimal, it is close to optimal.Example 2 is a simple program veri�cation problem taken from [7]. Thesecond lemmas proposed in examples 3 and 5 are somewhat surprising; they arenevertheless just as good at �xing divergence as the �rst lemmas. Examples 7and 8 demonstrate that the critic can cope with divergence in theories involvingmutual recursion. In example 9, the proposed lemma is too di�cult to be provedautomatically. However, the divergence critic is able to identify the cause of thisdi�culty and propose a lemma which allows the proof to go through (example11). In example 15, the critic identi�es two separate divergence patterns. Toovercome divergence, the �rst lemma plus one or other of the second and third aretherefore needed. Example 19 is the only disappointment; the lemma proposed�xes divergence but is too di�cult to be proved automatically, even with theassistance of the divergence critic. The problem seems to be that the exampleneeds the introduction of a derived function like append which does not occurin the speci�cation of the theorem. Examples 24 and 25 demonstrate that thecritic can cope with divergence in theories containing conditional equations.Divergence analysis is very quick in each case. The divergence pattern isrecognized usually in less than a second. Most of the time is spent looking forgeneralizations and refuting over-generalizations using the conjecture disprover.Indeed, in the slowest example, less than 1% of the time is spent performingdivergence analysis. Additional heuristics for preventing over-generalization anda more e�cient implementation of the conjecture disprover would thus speed upthe slower examples considerably.The results are very pleasing. Using the divergence critic, the theorems lis-ted (with the exception of 19) can all be proved from the de�nitions alone. Forcomparison, the NQTHM system [5] (perhaps the best known explicit induc-tion theorem prover) when given just the de�nitions was unable to prove more



No Theorem Lemmas speculated Time/s1 s(x)+x=s(x+x) s(x)+y=s(x+y) 7.8s(x)+y=x+s(y)2 dbl(x)=x+x$ s(x)+y=s(x+y) 8.2dbl(0)=0, dbl(s(x))=s(s(dbl(x))) s(x)+y=x+s(y)3 len(x<> y)=len(y<>x) len(x<> z :: y)=s(len(x<>y)) 3.6len(x<> z :: y)=len(w :: x<> y)4 len(x<>y)=len(x)+len(y) s(x)+y=s(x+y), s(x)+y=x+s(y) 7.25 len(x<>x)=dbl(len(x)) len(x<> z :: y)=s(len(x<>y)) 11.6len(x<>w :: z :: y)=s(len(x<>w :: y))6 even(x+x) even(s(s(x))+y)=even(x+y) 5.47 evenm(x+x) evenm(s(s(x))+y)=evenm(x+y) 28.4oddm(s(s(x))+y)=oddm(x+y)8 evenm(x) ! half(x)+half(x)=x s(x)+y=s(x+y), s(x)+y=x+s(y) 6.09 rot(len(x),x)=x rot(len(x),x<> [y])=y :: rot(len(x),x) 2.410 len(rot(len(x),x))=len(x) len(rot(x,z<> [y]))=s(len(rot(x,z))) 4.811 rot(len(x),x<> [y])=y :: rot(len(x),x) (x<> [y])<> z=x<>y :: z 86.3rot(len(x),(x<> [y])<> z)=y :: rot(len(x),x<> z)12 len(rev(x))=len(x) len(x<> [y])=s(len(x)) 2.013 rev(rev(x))=x rev(x<> [y])=y :: rev(x) 1.214 rev(rev(x)<> [y])=y :: x rev(x<> [y])=y :: rev(x) 16.015 len(rev(x<>y))=len(x)+len(y) len(x<> [y])=s(len(x)) 10.0s(x)+y=s(x+y), s(x)+y=s(x+y)16 len(qrev(x,[]))=len(x) len(qrev(x,z :: y))=s(len(qrev(x,y))) 2.217 qrev(x,y)=rev(x)<>y (x<> [y])<> z=x<>y :: z 3.418 len(qrev(x,y))=len(x)+len(y) s(x)+y=s(x+y), s(x)+y=x+s(y) 12.019 qrev(qrev(x,[]),[])=x qrev(qrev(x,[y]),z)=y :: qrev(qrev(x,[]),z) 5.020 rev(qrev(x,[]))=x rev(qrev(x,[y]))=y :: rev(qrev(x,[])) 5.821 qrev(rev(x),[])=x qrev(x<> [y],z)=y :: qrev(x,z) 5.222 nth(i,nth(j,x))=nth(j,nth(i,x)) nth(s(i),nth(j,y :: x))=nth(i,nth(j,x)) 7.423 nth(i,nth(j,nth(k,x)))=nth(k,nth(j,nth(i,x))) nth(s(i),nth(j,y :: x))=nth(i,nth(j,x)) 7.624 len(isort(x))=len(x) len(insert(y,x))=s(len(x)) 2.025 sorted(isort(x)) sorted(insert(y,x))=sorted(x) 114sorted(insert(y,insert(z,x)))=sorted(x)Table 1. Some lemmas speculated by the Divergence Critic.



than half these theorems.1 Of course, with the addition of some simple lemmas,NQTHM is able to prove all these theorems. Indeed, in many cases, NQTHMneeds the same lemmas as those proposed by the divergence critic and requiredby SPIKE. This suggests that the divergence critic is not especially tied to theparticular prover used nor even to the implicit induction setting. To test thishypothesis, I presented the output of a diverging proof attempt from NQTHMto the critic. I chose the commutativity of times as this is perhaps the simplesttheorem which causes NQTHM to diverge. The critic proposed the lemma,(EQUAL (TIMES Y (ADD1 X)) (PLUS Y (TIMES Y X))))where TIMES and PLUS are primitives of NQTHM's logic recursively de�ned ontheir �rst arguments. This is exactly the lemma needed by NQTHM to provethe commutativity of times.8 Related WorkCritics for monitoring the construction of proofs were �rst proposed in [9] for\proof planning". In this framework, failure of one of the proof methods automat-ically invokes a critic. Various critics for explicit induction have been developedthat speculate missing lemmas, perform generalizations, look for suitable casesplits, etc using heuristics based upon rippling similar to the ones described here[10]. There are, however, several signi�cant di�erences. First, the divergencecritic described here works in an implicit (and not an explicit) induction setting.Second, the divergence critic is not automatically invoked but must identify whenthe proof is failing. Third, the divergence critic is less specialized. These last twodi�erences re
ect the fact that critics in proof planning are usually associatedwith the failure of a particular precondition to a heuristic. The same divergencepattern can, by comparison, arise for many di�erent reasons: the need to gen-eralize variables apart, to generalize common subterms, to add a lemma, etc.Fourth, the divergence critic must use di�erence matching to annotate terms;in proof planning, terms are often already appropriately annotated. Finally, thedivergence critic is less tightly coupled to the the theorem prover's heuristics.The critic can therefore exploit the strengths of the prover without needing toreason about the complex heuristics being used. For instance, the divergencecritic has no di�culty identifying divergence in complex situations like nestedor mutual inductions.Divergence has been studied quite extensively in completion procedures. Twoof the main novelties of the critic described here are the use of di�erence match-ing to identify divergence, and the use of rippling in the speculation of lemmas toovercome divergence. Dershowitz and Pinchover, by comparison, use most spe-ci�c generalization to identify divergence patterns in the critical pairs producedby completion [7]. Kirchner uses generalization modulo an equivalence relationto recognise such divergence patterns [11]; meta-rules are then synthesized to de-scribe in�nite families of rules with some common structure. Thomas and Jantke1 To be precise, NQTHM failed on 5, 6, 7, 9, 10, 11, 14, 16, 17, 19, 20, 21, 22, and 23.



use generalization and inductive inference to recognize divergence patterns andto replace in�nite sequences of critical pairs by a �nite number of generalizations[13]. Thomas and Watson use generalization to replace an in�nite set of rules bya �nite complete set with an enriched signature [14].Generalization modulo an equivalence enables complex divergence patterns tobe identi�ed. However, it is in general undecidable. Most speci�c generalization,by comparison, is more limited. It cannot recognize divergence patterns whichgive nested wavefronts like, sn( sn(x) + x) :In addition, most speci�c generalization cannot identify term structure in wave-holes. For example, consider the divergence pattern of example (20),rev(qrev(x; nil)) = xrev(qrev(x; cons(y; nil) )) = cons(y; x)rev(qrev(x; cons(z; cons(y; nil)) )) = cons(z; cons(y; x))...Most speci�c generalization of the lefthand side of this sequence gives the termrev(qrev(x; z)) (or, ignoring the �rst term in the sequence, rev(qrev(x; cons(y; z)))).Most speci�c generalization cannot, however, identify the more useful pattern,rev(qrev(x; cons(y; nil)))) which suggests the simpler lemma,rev(qrev(x; cons(y; nil))) = cons(y; rev(qrev(x; nil)))9 Future WorkThere are many other types of divergence which could be incorporated into thedivergence critic. Further research is needed to identify such divergence patterns,isolate their causes and propose ways of �xing them. This research may takeadvantage of the close links between divergence patterns and particular typesof generalization. For instance, I am currently attempting to incorportate twoother divergence patterns into the critic which arise when variables need to berenamed apart, and common subterms generalized in the theorem being proved.(Note that the current heuristics already rename variables apart and generalizecommon subterms in the speculated lemma.)To illustrate a divergence pattern associated with the need to rename vari-ables apart, consider the theorem,app(x; app(x; x)) = app(app(x; x); x)



SPIKE's attempt to prove this theorem diverges giving the equations,app(x; app(x; x)) = app(app(x; x); x)app(x; cons(y; app(x; cons(y; x) )) ) = app(app(x; cons(y; x) ); cons(y; x) )...As before di�erence matching identi�es the accumulating term structure. How-ever, rather than try to speculate a lemma to move this di�erence out of the way,the critic generalizes the original theorem so that the di�erence is not introducedin the �rst place. In this case, it is su�cient to rename the �rst variable apart,app(z; app(x; x)) = app(app(z; x); x)SPIKE is able to prove this theorem without di�culty. The task of divergenceanalysis here is to isolate the variables to be renamed apart.To illustrate a divergence pattern associated with the need to generalizecommon subterms consider the theorem,len(rev(rev(x)) = len(rev(x))SPIKE's attempt to prove this theorem diverges giving the equations,len(rev(rev(x)) = len(rev(x))len(rev( app(rev(x); cons(y; nil)) )) = len( app(rev(x); cons(y; nil)) )...As before di�erence matching identi�es the accumulating term structure. How-ever, rather than try to speculate some lemma for moving this di�erence out ofthe way, we generalize the common subterm rev(x). This has the e�ect of chan-ging the wavefront from, app(� � �; cons(y; nil)) to cons(y; � � �) . The equationcan then be simpli�ed using the de�nitions of app and len.10 ConclusionsThis paper has described a critic which attempts to identify diverging proofattempts and to propose lemmas and generalizations which overcome the di-vergence. The critic has proved very successful; it enables the system SPIKEto prove many theorems from the de�nitions alone. The critic's success can belargely attributed to the power of the rippling heuristic. This heuristic was ori-ginally developed for proofs using explicit induction but has since found severalother applications. To apply the rippling heuristic to the divergence of proofsusing implicit induction required the addition of the di�erence matching proced-ure. This identi�es accumulating term strucure which is causing the divergence.Lemmas and generalizations are then proposed to move this term structure outof the way.
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