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tertwine the properties of structure preservation and the reduction of a well-founded measure (see [3] and x7). As these properties may be established inde-pendently, our de�nition of wave-rules separates these two concerns. Our mainfocus is on new measures. We present a family of measures that, despite theirsimplicity, admit strictly more wave-rules than the considerably more complexspeci�cation given in [3].This work has several practical applications. By allowing rippling to be com-bined with new termination orderings, the power of rippling can be greatly exten-ded. Although rippling has been designed primarily to prove inductive theoremsit has recently been applied to other problem domains. We show that in rippling,as in conventional rewriting, the ordering used should be domain dependent. Weprovide several new orderings for applying rippling to new domains within in-duction (e.g. domains involving mutually recursive functions) and outside ofinduction (e.g. PRESS style equational problem solving). In doing so, we showfor the �rst time how rippling can be combined with conventional rewriting.Another practical contribution is that our work greatly simpli�es the imple-mentation of systems based on rippling. Systems like Clam [4] require a pro-cedure, called a wave-rule parser, to annotate rewrite rules. Clam's parser isbased upon the complex de�nition of wave-rules in [3] and as a result is itselfextremely complex. We show how, given a simple modular order, we can buildsimple modular wave-rule parsers. We have implemented such parsers and theyhave pleasant properties that current implementations lack (e.g. notions of cor-rectness and completeness); our work hence leads to a simpler and more 
exiblemechanization of rippling.The paper is organized as follows. In x2 we give a brief overview of rippling.In x3 we de�ne an order on a simple kind of annotated term and use this inx4 to build orderings on general annotated terms. Based on this we show in x5how rewrite rules may be automatically annotated. In x6 we describe how neworders increase the power and applicability of rippling. In x7 we compare thiswork to previous work in this area and discuss some practical experience. Finallywe draw conclusions.2 BackgroundWe provide a brief overview of rippling. For a complete account please see [3].Rippling arose out of an analysis of inductive proofs. For example, if wewish to prove P (x) for all natural numbers, we assume P (n) and attempt toshow P (s(n)). The hypothesis and the conclusion are identical except for thesuccessor function s(:) applied to the induction variable n. Rippling marks thisdi�erence by the annotation, P ( s(n) "). Deleting everything in the box that isnot underlined gives the skeleton, which is preserved during rewriting. The boxedbut not underlined term parts are wavefronts, which are removed by rippling.Formally, a wavefront is a term with at least one proper subterm deleted.We represent this by marking a term with annotation where wavefronts areenclosed in boxes and the deleted subterms, called waveholes, are underlined.



Schematically, a wavefront looks like �(�1; :::; �n) , where n > 0 and �i maybe similarly annotated. The part of the term not in the wavefront is called theskeleton. Formally, the skeleton is a set of terms de�ned as follows.De�nition 1 (Skeleton)1. skel(t) = ftg for t a constant or variable2. skel(f(t1; :::; tn)) = ff(s1; :::; sn)j8i: si 2 skel(ti)g3. skel( (f(t1; :::; tn) ) = skel(t1) [ ::: [ skel(tn) for the ti in waveholes.We call a term simply annotated when all its wavefronts contain only a singlewavehole and generally annotated otherwise. In the simply annotated case, theskeleton function returns a singleton set whose member we call the skeleton. E.g.the skeleton of f( s(a) ; s(b) ) is f(a; b).We de�ne wave-rules to be rewrite rules between annotated terms that meettwo requirements: they are skeleton preserving and measure decreasing. This is asimpler and more general approach to de�ning wave-rules than that given in [3]where these requirements were intertwined into the syntactic speci�cation of awave-rule.1 Skeleton preservation in the simply-annotated case means that boththe LHS (left-hand side) and RHS (right-hand side) of the wave-rule have anidentical skeleton. In the multi-hole case we demand that some of the skeletonson the LHS are preserved on the RHS and no new skeletons are introduced, i.e.skel(LHS) � skel(RHS).Wavefronts in wave-rules are also oriented. This is achieved by marking thewavefront with an arrow indicating if the wavefront should move up throughthe skeleton term tree or down towards the leaves. Oriented wavefronts dictatea measure on terms that rippling decreases. The focus of this paper is on thesemeasures.Below are some examples of wave-rules (s is successor and <> is in�x ap-pend). s(U) " � V ) (U � V ) + V " (1)s(U) " � s(V ) " ) U � V (2)U + V " �W ) U �W + V �W " (3)( U <> V ") <> W ) U <> ( V <> W #) (4)U <> ( V <> W ")) (U <> V ) <> W " (5)U + V " = W + Z " ) U =W ^ V = Z " (6)(1) and (2) are typical of wave-rules based on a recursive de�nitions. The re-mainder come from lemmas. Methods for turning de�nitions and lemmas into1 This generalization is, however, brie
y discussed in their further work section.



wave-rules is the subject of x5. Note that annotation in the wave-rules mustmatch annotation in the term being rewritten. This allows use of rules like as-sociativity of append, (4) and (5), in both directions; this would loop in con-ventional rewriting. Note also that in (6) the skeletons of the RHS are a strictsubset of those of the LHS.As a simple example of rippling, consider proving the associativity of multi-plication using structural induction. In the step-case, the induction hypothesisis, (x� y)� z = x� (y � z)And the induction conclusion is,( s(x) " � y)� z = s(x) " � (y � z):The wavefronts in the induction conclusion mark the di�erences with the in-duction hypothesis. Rippling on both sides of the induction conclusion using (1)yields (7) and then with (3) on the LHS gives (8).( x� y + y ")� z = (x� (y � z)) + y � z " (7)((x� y)� z) + y � z " = (x� (y � z)) + y � z " (8)As the wavefronts are now at the top of each term, we have successfully rippled-out both sides of the equality. We can complete the proof by simplifying withthe induction hypothesis.The example illustrates how rippling preserves skeletons during rewriting.Provided rippling does not get blocked (no wave-rule applies yet we are not com-pletely rippled-out), we are guaranteed to be able to simplify with the inductionhypothesis (called fertilization in [2]). This explains the highly goal directednature of rippling. In inductive theorem proving we can also ripple wavefrontstowards the position of universally quanti�ed variables in the induction hypo-thesis. Such positions are called sinks because wavefronts can be absorbed there;when we appeal to the induction hypothesis, universally quanti�ed variables willbe matched with the content of the sinks. Rippling towards sinks at the leavesof terms is called rippling-in. Wavefronts are oriented with arrows pointing out(upwards) or in (downwards) indicating if they are moving towards the root orleaves. Transverse wave-rules like (4) are used to turn outward directed wave-fronts inwards.3 Ordering Simple Wave-RulesThe measures we propose here are for inductive theorem proving. They aresimilar, though simpler, to those given by Bundy et. al. in [3]. We propose severalmeasures based on the notion of annotation position and weight. The idea is thatrippling moves di�erences through the skeleton and the measures de�ne a well-founded notion of progress on these weights. In this section we consider only



simply annotated terms (whose wavefronts have only a single wavehole) and inthe next section we generalize these to generally annotated terms. The measureswe give are simple but they su�ce to order all the wave-rules given in [3] and inaddition allow rule orientations not possible using the measure given there (seex7).We begin with de�nitions. A position is simply a path address (written\Dewey decimal style") in the term tree and the subterm of t at position pis denoted by t=p. If s is a subterm of t at position p, its depth is the length of p.The height of t, written jtj, is the maximal depth of any subterm in t. Becausewe are interested in measures based on weight relative to the skeleton, duringthe remainder of this paper the above de�nitions are relative to the skeletonof t. For example, f(s(f(a; s(b))); c) " has skeleton f(a; s(b)) and the deepestsubterm is b at address 2.1. This subterm is of depth 2, and hence the heightof the annotated term is 2. Weight is a function of wavefront structure. Thesimplest kinds of weights measure width and size of the wavefront. Width is thenumber of nested function symbols between the root of the wavefront and thewavehole. Size is the number of function symbols and constants in a wavefront.For example, the annotated term above has one wavefront with width 2, and size3. For simplicity, we will consider just the width unless otherwise stated. For tan annotated term, the out-weight of a position p is the sum of the weights ofthe (possibly nested) outwards oriented wavefronts directly above t=p (i.e. abovet=p but not above t=q for q a pre�x of p). The in-weight is de�ned identicallyexcept for inward directed wavefronts. We now de�ne a measure on terms basedon weights of annotation relative to their depths.De�nition 2 (Out/In Measure) The out-measure, MO(t) (in-measure, MI(t))of an annotated term t is a list whose i-th element is the sum of out-weights (in-weights) for all term positions in t at depth i.For example, in the following palindrome function over lists (\::" is in�x cons)palin( H :: T "; Acc)) H :: palin(T; H :: Acc) #) " (9)the skeleton of both sides is palin(T;Acc) and the out-measure of the LHS is[0,1] and the RHS is [1,0]. The in-measures are [0,0] and [0,1] respectively.We now de�ne a well-founded ordering on these measures which re
ects theprogress that we want rippling to make during rewriting. To understand this or-dering, it is perhaps easier to think of annotated terms as Christmas trees wherethe tree represents the skeleton and the wavefronts are square boxes decoratingthe tree. Consider, a simple wave-rule like (1),



�� @@@�� ��U V"s(::) =) ��� @@@�� ��U V" ::+ V
Rippling progresses if at least one out-oriented wavefront moves upwards (or dis-appears), while nothing deeper moves downwards. If the out-measure on a termbefore rippling is [l1; :::; lk] and after [r1; :::; rk] then there must be some depth jwhere lj > rj and for all i > j we have li = ri. This is simply the lexicographicorder on the reverse of the two lists (compared with > on the natural numbers).2Progress for in-oriented wavefronts is similar and re
ects that these wavefrontsshould move towards leaves; that is, we use the lexicographic order on the in-measures. Of course, both outward and inward oriented wavefronts may occurin the same rule. For example, consider (9),�� @@@�� �palinT Acc"H :: :: =) ��� @ @�� �palinT Acc# H :: ::" H :: ::
As in [3], we de�ne a composite ordering on terms which re
ects that we ripple-out before rippling-in. It is desirable to order rippling-out before rippling-in sincerippling-out �rst increases the number of leaves to which we can later ripplewavefronts inwards.De�nition 3 (Composite Ordering) t � s i� hMO(t);MI(t)i >o hMO(s);MI(s)iwhere >o is the lexicographic order on pairs whose �rst components are comparedwith >revlex and the second with >lex, the reversed and unreversed lexicographicorder on lists of equal length.Given the well-foundedness of > on the natural numbers and that lexico-graphic combinations of well-founded orders are well-founded we can concludethe following.Lemma 1 The composite ordering is well-founded.We lack space here to discuss implementations of rippling. Two di�erentimplementations are considered in [3] and [11]. For both calculi, � (and �� ofthe next section) is monotonic and stable over the substitutions produced duringrippling. It follows from standard techniques that if all wave-rules are orientedso that l � r then rippling terminates [7].2 Note that these lists are the same length as the skeletons of both sides are identical;however, when we generalize the measure to multi-holed waves, the skeletons mayhave di�erent depths and we pad with trailing zeros where necessary.



4 Ordering Multi-Wave-RulesWe now generalize our order for simply annotated terms to those with gener-alized annotation, that is, multiple waveholes in a single wavefront. Wave-rulesinvolving such terms are called multi-wave-rules in [3] and we have already seenan example of this in (6). The binomial equation is another example.binom( s(X) "; s(Y ) ") = binom(X; s(Y ) ") + binom(X;Y ) " (10)We de�ne orders for generally annotated terms in a uniform way from theprevious ordering by reducing generally annotated terms to sets of simply an-notated terms and extending � to such sets. This reduction is accomplished byconsidering ways that general annotation can be weakened to simple annotationby \absorbing" waveholes. Weakening a multi-wave term like (10) erases someof the waveholes (underlining) though always leaving at least one wavehole. Awavefront is maximally weak when it has exactly one wavehole. A term is max-imally weak when all its wavefronts are maximally weak. Maximally weak termsare simply annotated and this allows us to use the previously de�ned measure� on these terms.Returning to the binomial example, (10) has only the following two weaken-ings. binom( s(X) "; s(Y ) ") = binom(X; s(Y ) ") + binom(X;Y ) " (11)binom( s(X) "; s(Y ) ") = binom(X; s(Y )) + binom(X;Y ) " (12)Both of these are maximally weak as each wavefront has a single hole.Let weakenings(s) be the set of maximal weakenings of a term s. We nowde�ne an ordering on generally annotated terms l and r.De�nition 4 (General ordering) l �� r i� weakenings(s) �� weakenings(t)where �� is the multiset ordering over the order � on simply annotated terms.This order is sensible as all the elements of the weakening sets are simply an-notated and can be compared with �. Also observe that if l and r are simplyannotated then their weakenings are flg and frg and l �� r agrees with l � r.In general, we will drop the superscript on �� and use context (e.g., at least oneargument has multiple holes) to disambiguate.As the multi-set extension of a well-founded ordering is well-founded [9] weimmediately have the following lemma.Lemma 2 �� is well-founded.As an example, consider (10). The LHS weakenings are,fbinom( s(X) "; s(Y ) ")g



The RHS weakenings are,f binom(X; s(Y ) ") + binom(X;Y ) "; binom(X + s(Y )) + binom(X;Y ) "gThe sole member of the �rst set is �-greater than both members of the secondset. This equation is measure decreasing and hence a wave-rule used left to right.5 ParsingThese orders are simple and admit simple mechanization. We begin with simplyannotated terms and then sketch the generalization to multi-waves. We have im-plemented the routines we describe and in x7 we report on practical experience.A wave-rule l ! r must satisfy two properties: the preservation of the skel-eton, and a reduction of the measure. We achieve these separately. An annotationphase �rst annotates l and r with unoriented wavefronts so their skeletons areidentical; this guarantees that rippling is skeleton preserving. An orientationphase then orients the wavefronts so that l � r. We sum this up by the slogan,WAVE-RULE = ANNOTATION +ORIENTATION (13)5.1 AnnotationTo annotate terms we can use the ground di�erence uni�cation algorithm givenin [1]. However, terms in rewrite rules are normally small and parsing is an o�-line computation (performed once before theorem proving), hence it is reasonableto �nd skeleton preserving annotation via generate-and-test: generate candidateannotations and test if the resulting terms have the same skeleton. Consider, forexample, annotating the recursive de�nition of the palindrome function. Thereare four possible skeletons: palin(T;Acc), T , Acc, and H . The �rst of thesecorresponds to the annotation,palin( H :: T ;Acc)) H :: palin(T; H :: Acc) ) : (14)The remaining annotations are trivial in that both sides are completely withinwavefronts except for some subterm at the leaves. For example,palin(H :: T;Acc) ) H :: palin(T;H :: Acc)) :Such trivial wave-rules can usually be ignored as they they make no progressmoving wavefronts (although they can be used for wavefront normalization, seex6.1).



5.2 OrientationGiven annotated, but unoriented rules, we must now orient them by placingarrows on the wavefronts. We do this by picking an orientation for wavefrontson the LHS of the wave-rule and �nding an orientation on the RHS such thatl � r. In Clam the wave-rules used are oriented with wavefronts on the LHSexclusively out or in. Other combinations are, of course, possible. In general thenumber of wavefronts, n in the LHS is very small, typically one or two; hence,it is not much extra e�ort to consider all 2n orientations and for each of thesegenerate an orientation for the RHS.3 In practice this is manageable; see x7.For each orientation of l we must orient r. If l contains at least one outwardoriented wavefront there will always be a measure decreasing orientation of r,namely with all wavefronts oriented in. However, orienting wavefronts in prohib-its later rippling out whilst orienting out does not. If rippling-out blocks, we canalways redirect wave-rules inwards with the rewrite rule. F (X) " ) F (X) #.This rule is structure preserving and mesure decreasing. Hence, we would liketo orient r's annotation so that it is measure decreasing and �-maximal; thatis, for all orientations ro, if l � ro then r � ro (� is the union of the identityrelation with �).One can �nd a maximal orientation using generate and test, but it is possibleto do much better. Below we sketch an algorithm, linear in jrj. Its input is twoannotated terms l and r where l is oriented and r unoriented. The output isr oriented and �-maximal. In what follows, suppose jlj (and hence jrj) equalsk. Let t"i be the sum of out-weights at depth i, t#i be the sum of in-weights atdepth i, and flip(t; d; n) be the operation that non-deterministically 
ips down narrows in t at depth d (there may be multiple choices corresponding to di�erentbranches or multiple wavefronts at the same position). We assume below thatl has at least one wavefront oriented up. If this is not the case then all of r'swavefronts must be oriented down and this is a maximal orientation i� l � r.Otherwise orientation proceeds as follows. We �rst orient all the wavefronts in rupwards and then execute the �rst of the following statements that succeeds.1. choose the maximum i such that l"i > r"i and 8j 2 fi+1::kg:f lip(r; j; r"j� l"j)2. 8i 2 f0::kg:f lip(r; i; r"i � l"i ) and succeed if MI(l) >lex MI(r)3. choose the minimum i such that l"i 6= 0, flip(r; i; r"i � l"i � 1) and 8j 2fi+ 1::kg:f lip(r; j; r"j � l"j)Each of the three statements can be executed in linear time. Note that the�rst two may fail (there does not exist a maximum i in the �rst case, or in thesecond the test MI(l) >lex MI(r) fails) but the third case will always succeed.Lemma 3 The orientation algorithm computes all �-maximal r where l � r.Proof (sketch): If the �rst statement succeeds then 8j 2 fi + 1::kg:l"j = r"jand l"i > r"i so MO(l) >revlex MO(r) and r is maximal. Otherwise, 8i:l"i � r"i3 This requires of course an implementation that e�ciently indexes wave-rules so thatextra wave-rules do not degrade the performance of rippling.



so we 
ip arrows down to equate out-orders and test MI(l) >lex MI(r). If thissucceeds, we have a maximal r. Otherwise we still have 8i:l"i � r"i but 
ippingarrows in r to equate out-orders is insu�cient as r then has a larger in-order.However, by assumption, l has at least one outward wavefront with a least depthi, so we can 
ip enough arrows at this depth so ri = li � 1. Thus l � r and r ismaximal. utThis parser for simply annotated terms is correct (it only returns wave-rules)and complete (it returns all maximal wave-rules under the orderings we de�ne).As an example, consider (9) with the LHS oriented all out. We begin by ori-enting both wavefronts in the RHS out. The two sides thus have the measuresh[0; 1]; [0; 0]i and h[1; 1]; [0; 0]i respectively. Hence step 1 fails. Moreover, if weequate the out-measures by turning down the annotation at depth 0, this givesthe RHS a measure of h[0; 1]; [1; 0]i so step 2 fails. Finally we succeed in step 3by turning down the arrow at depth 1 giving the RHS a measure of h[1; 0]; [0; 1]i.The resulting oriented annotation is given in (9).5.3 Multi-waves and sinksThe above ideas generalize easily to multi-wave-rules. For reasons of space weonly sketch this. We generate skeleton preserving annotations analogous to thesingle-hole case but allow multi-holed wavefronts. Usually both sides are simplyannotated and we may use the above orientation algorithm. Alternatively, after�xing an orientation for the LHS of the wave-rule we may orient the RHS bycycling through possible orientations. For each orientation we compare the weak-enings of the two sides under the multi-set ordering over our measure and wepick the RHS orientation with the greatest measure. There are various waysthe e�ciency of this can be enhanced. E.g. we need only compute weakeningsof each side once; with \orientation variables" we may propagate the di�erentorientations we select for the RHS to orientations on the weakening set beforecomparison under the multi-set measure.One kind of annotation we haven't yet discussed in our measures is sinks (seex2). This is deliberate as we can safely ignore sinks in both the measure and theparser. Sinks only serve to decrease the applicability of wave-rules by creatingadditional preconditions; that is, we only ripple inwards if there is a sink under-neath the wavefront. But if rippling terminates without such a precondition, itterminates with it as well. Sinks (and also recent additions to rippling such ascolours [14]) can be seen as not e�ecting the termination of rippling but ratherthe utility of rippling. That is, they increase the chance that we will be able tofertilize with the hypothesis successfully.6 Extensions to RipplingBy introducing new termination orders for rippling, we can combine rippling withconventional term rewriting. Such extensions greatly extend the power and ap-plicability of rippling both within and outwith induction. In addition, by design,



our orderings are not dependent upon rippling preserving skeletons. This allowsus to use rippling in new domains involving, for example, mutual recursion orde�nition unfolding where the skeleton needs to be modi�ed; such applicationswere previously outside the scope of rippling. We feel that these extensions o�erthe promise of the \best of both worlds": that is, the highly goal directed natureof rippling combined with the 
exibility and uniformity of conventional rewrit-ing. To test these ideas, we have implemented an Annotated Rewrite System, asimple PROLOG program which manipulates annotated terms, and in which wecan mix conventional term rewriting and rippling. All the examples below havebeen proven by this system.6.1 UnblockingRippling can sometimes become blocked. Usually the blockage occurs due to thelack of a wave-rule to move the di�erences out of the way; in such a situation thewave-rule may be speculated automatically using techniques presented in [12].However, sometimes the proof becomes blocked because a wavefront needs to berewritten so that it matches either a wave-rule (to allow further rippling) or asink (to allow fertilization). This is best illustrated by an example.Consider the following theorem, where rev is naive reverse, qrev is tail-recursive reverse using an accumulator, <> is in�x append, and :: in�x cons,8L;M: qrev(L;M) = rev(L) <> M (15)To prove this theorem, we perform an induction on L. The induction hypothesisis, qrev(l;M) = rev(l) <> MThe induction conclusion isqrev( h :: l "; bmc) = rev( h :: l ") <> bmc (16)where m is a skolem constant which sits in a sink, annotated with \b c".We will use wave-rules taken from the recursive de�nition of qrev, and rev,rev( H :: T ")) rev(T ) <> (H :: nil) " (17)qrev( H :: T "; L)) qrev(T; H :: L #) (18)On the LHS, we ripple with (18) to giveqrev(l;� h :: m #�) = rev( h :: l ") <> bmc :On the RHS, we ripple with (17) and then (4), the associativity of <> to getqrev(l;� h :: m #�) = rev(l) <> (� (h :: nil) <> m #�): (19)



Unfortunately, the proof is now blocked. We can neither further ripple nor fertil-ize with the induction hypothesis. The problem is that we need to simplify thewavefront on the righthand side. Clam currently uses an ad-hoc method to tryto perform wavefront simpli�cation when rippling becomes blocked. In this case(19) is rewritten to,qrev(l;� h :: m #�) = rev(l) <> (� h :: m #�)Fertilization with the induction hypothesis can now occur.In general, unblocking steps are not sanctioned under the measure proposedearlier, or that given in [3]; their uncontrolled application during rippling can leadto non-termination. But we can easily create new orders where unblocking stepsare measure decreasing. These new orders allows us to combine rippling withconventional rewriting of wavefronts in an elegant and powerful way. Namely,unblocking rules will be measure decreasing wave-rules accepted by the parserand applied like other wave-rules.We de�ne an unblocking ordering by giving (as before) an ordering on simplyannotated terms, which can then be lifted to an order on multi-wave terms. Toorder simply annotated terms, we take the lexicographic order of the simplewave-rule measure proposed above (using size of the wavefront as the notion ofweight) paired with >wf , an order on the contents of wavefronts. As a simplyannotated term may still contain multiple wavefronts, this second order is liftedto a measure on sets of wavefronts by taking its multi-set extension. The �rstpart of the lexicographic ordering will ensure that anything which is normallymeasure decreasing remains measure decreasing and the second part will allowus to orient rules that only manipulate wavefronts. This combination providesa termination ordering that allows us to use rippling to move wavefronts aboutthe skeleton and conventional rewriting to manipulate the contents of thesewavefronts.For the reverse example, the normalization ordering is very simple; we mustadmit the following as wave-rules.nil <> L # ) L (20)(H :: T ) <> L # ) H :: (T <> L) # (21)The �rst is already a wave-rule under our standard measures. The second doesn'tchange the size of the wavefront or its position but only its form. Hence we wantthis to be decreasing under some normalization ordering. There are many suchorderings; here we take >wf to be the recursive path ordering [6] on the terms inthe wavefront where <> has a higher precedence than :: and all other functionsymbols have an equivalent but lower priority. The measure of the LHS of (21)is now greater than that of the RHS as its wavefront is (H :: T ) <> � which isgreater than H :: (T <> �) in the recursive path ordering (note that waveholesare marked with the new symbol * to enable comparison).



Unblocking steps which simplify wavefronts are useful in many proofs en-abling both immediate fertilization (as in this example) and continued rippling.Wavefronts can even be unblocked using a di�erent set of rules to that used forrippling.6.2 Mutual Recursion and Skeleton Simpli�cationRippling can also become blocked because the skeleton (and not a wavefront)needs to be rewritten. This happens in proofs involving mutually recursive func-tions, de�nition unfolding, and other kinds of rewriting of the skeleton. Consider8x: even(s(s(0))� x)where even has the following wave-rules.even( s(U) ")) odd(U) (22)odd( s(U) ")) even(U) (23)Note that (22) and (23) are not wave-rules in the conventional sense since theyare not skeleton preserving. However, they do decrease the annotation measure.Rules (22) and (23) can be viewed as a more general type of wave-rule of the formLHS ) RHS which satisfy the constraint skeleton(LHS) � skeleton(RHS)where � is some equivalence relation. In this case, the equivalence relation in-cludes the granularity relation in which even(x) and odd(x) are in the sameequivalence class. Rippling with this more general class of wave-rules still givesus a guarantee of termination. However weakening the structure preservation re-quirement can reduce the utility of rippling since now we are only guaranteed torewrite the conclusion into a member of the equivalence class of the hypothesis.To prove the theorem, we will also need the following wave-rules.s(U) " + V ) s(U + V ) " (24)U + s(V ) " ) s(U + V ) " (25)The theorem can be proved without (25) but this requires a nested inductionand generalization, complications which need not concern us here.The proof begins with induction on x. The induction hypothesis iseven(s(s(0))� n)and the induction conclusion iseven(s(s(0))� s(n) "): (26)



Unfortunately rippling is immediately blocked. To continue the proof, we simplifythe skeleton of the induction conclusion by exhaustively rewriting (26) using theunannotated version of (1) and the following rules.0� V ) 0 (27)0 + V ) V (28)This gives even( s(n) " + s(n) "): (29)Note that the skeleton was changed by this rewriting. The induction hypothesiscan, however, be rewritten using the same rules so that it matches the skeletonof (29). Of course, arbitrary rewriting of the skeleton may not preserve the ter-mination of rippling. To justify these unblocking steps we therefore introduce anew termination order which combines lexicographically a measure on the skel-eton with the measure on annotations.4 We then admit rewrite rules providedtheir application decreases this combined measure. This new order allows us tocombine rippling with conventional rewriting of the skeleton in an elegant andpowerful way. In this case, the recursive path order on skeletons (with precedence� > + > s > 0) is again adequate. Note that though termination is guaran-teed, again skeleton preservation has been weakened. Since the skeleton can bechanged during rippling, we are no longer able to guarantee that we can fertilizeat the end of rippling. However, provided the skeleton is rewritten identically inboth the hypotheses and the conclusion, we will still be able to fertilize.To return to the proof, rippling (29) with (24) giveseven( s(n+ s(n) ") "):Then with (25) gives even( s(s(n+ n)) "):We now ripple with the mutually recursive de�nition of even, (22),odd( s(n+ n) "):Note that this step also changes the skeleton. However, as the measure decreases,such rewriting is permitted. Finally rippling with (23) giveseven(n+ n):This matches the (rewritten) induction hypothesis and so completes the proof.4 With more complex theorems, the height of the skeleton may increase; the additionof the height of the skeleton to the order ensures termination in such situations.



The power of rippling is greatly enhanced by its combination with traditionalrewriting. For example, proofs involving mutually recursive functions, or otherkinds of skeleton simpli�cation (e.g., de�nition unfolding) were not previouslypossible with rippling. The use of conventional term rewriting to simplify theskeleton is a natural dual to the use of conventional rewriting to simplify wave-fronts; indeed they are orthogonal and can be combined to allow even moresophisticated rewriting.6.3 Other ApplicationsRippling has found several novel uses of outside of induction. For example, it hasbeen used to sum series [13], to prove limit theorems [14], and guide equationalreasoning [10]. However, new domains, especially non-inductive ones, require neworderings to guide proof. For example, consider the Press system [5].5 To solvealgebraic equations, Press uses a set of methods which apply rewrite rules. Thethree main methods are: isolation, collection, and attraction. Below are examplesof rewrite rules used by each of these methods.ATTRACTION : log(U) + log(V ) " ) log(U � V ) "COLLECTION : U � U " ) U2 "ISOLATION : U2 " = V ) U = �pV #Press uses preconditions and not annotation to determine rewrite rule ap-plicability. Attraction must bring occurrences of unknowns closer together. Col-lection must reduce the number of occurrences of unknowns. Finally, isolationmust make progress towards isolating unknowns on the LHS of the equation.These requirements can easily be captured by annotation and Press can thus beimplemented by rippling. The above wave-rules suggest how this would work.Press wave-rules are structure preserving, where the preserved structure is theunknowns. The ordering de�ned on these rules re
ects the well-founded progressachieved by the Press methods. Namely, we lexicographically combine orderingson the number of waveholes for collection, their distance (shortest path betweenwaveholes in term tree) for attraction, and our width measure on annotationweight for isolation.7 Related Work and ExperienceThe measures and orders we give are considerably simpler than those in [3].There, the properties of structure preservation and the reduction of a measureare intertwined. Bundy et al. describe wave-rules schematically and show thatany instance of these schemata is skeleton preserving and measure decreasing5 Due to space constraints, we only sketch this application. The idea of reconstructingPress with rippling was �rst suggested by Alan Bundy and Nick Free.



under an appropriately de�ned measure. Mixing these two properties makes thede�nition of wave-rules very complex. For example, the simplest kind of wave-rule proposed are so-called longitudinal wave-rules (which ripple-out) de�ned asrules of the form,�( �1(�11; : : : ; �p11 ) "; : : : ; �n(�1n; : : : ; �pnn ) ")) �(�($11 ; : : : ; $1n); : : : ; �($k1 ; : : : ; $kn)) "that satisfy a number of side conditions. These include: each $ji is either anunrippled wavefront, �i(�1i ; : : : ; �pii ) , or is one of the waveholes, �li; for each j,at least one$ji must be a wavehole. �, the �is, and � are terms with distinguishedarguments; � may be empty, but the �is and � must not be. There are otherschemata for traverse wave-rules and creational wave-rules6. These schemata arecombined in a general format, so complex that in [3] it takes four lines to print. Itis notationally involved although not conceptually di�cult to demonstrate thatany instance of these schemata is a wave-rule under our size and width measures.Consider the longitudinal schema given above. It is clear that evey skeletonon the RHS is a skeleton of the LHS because of the constraint on the $ij . Whatis trickier to see is that it is measure decreasing. Under our order this is thecase if LHS �� RHS. We can show something stronger, namely, for every r 2weakenings(RHS): 9l 2 weakenings(LHS): l � r. To see this observe that anysuch r must be a maximal weakening of an r0 = �(�($j1; : : : ; $jn)) " for somej 2 f1::kg. Corresponding to r0 is an l0 which is a weakening of the LHS wherel0 = �(t1; :::; tn) and the ti correspond to the ith subterm of � in r0: if $ji is anunrippled wavefront then ti = $ji = �i(�1i ; : : : ; �pii ) , and alternatively if $ji awavehole �li then ti = �i(�li) . Now r is a maximal weakening of r0 so there is aseries of weakening steps from r to r0. Each of these weakenings occurs in a $jiand we can perform the identical weakening steps in the corresponding ti in l0leading to a maximal weakening l. As l and r are maximally weak they may becompared under �. Their only di�erences are that r has an additional wavefrontat its root and is missing a wavefront at each $ji corresponding to a wavehole.The depth of $ji is greater than the root and at this depth the out-measure ofl is greater than r (under any of the weights de�ned in x3) and at all greaterdepths they are identical. Hence l � r.Similar arguments hold for the other schemata given in [3] and from this wecan conclude that wave-rules acceptable under their de�nition are acceptableunder ours. Moreover it is easy to construct simple examples that are wave-rules6 Creational wave-rules are used to move wavefronts between terms during inductionproofs by destructor induction. They complicate rippling in a rather specialized anduninteresting way. This kind of rippling is not currently supported by Clam and wehave omitted it from our presentation.



under our formalism but not theirs; for examplef( s(s(x)) ")) f( s(x) ")is measure decreasing under our width or size measure but is not an instance oftheir schema.Aside from being more powerful, there are additional advantages to the ap-proach taken here. Our notion of wave-rules and measures are signi�cantly sim-pler and therefore easier to understand. As a result, they are easier to implement.The de�nition of wave-rules given in [3] is not what is recognized by the Clamwave-rule parser as it returns invalid wave-rules under either our de�nition orthat of [3] and misses many valid ones. For example, Clam's current parser failsto �nd even wave-rules as simple as the following.divides( X + Y "; Y )) s(divides(X;Y )) "We have therefore implemented the parser described in x5. The parser issimple, just a couple of pages of Prolog, yet allows new orderings based ondi�erent annotation measures to be easily incorporated. Although parsing is inthe worst case exponential in the size of the rewrite rule, the parser typicallytakes under 5 seconds to return a complete set of maximal wave-rules (whichseems reasonable for an o�-line procedure). The parser is part of our annotatedrewrite system and will be shortly integrated into the Clam theorem prover.8 ConclusionsAn ordering for proving the termination of rippling along with a schematic de-scription of wave-rules was �rst given in [3]. We have simpli�ed, generalized andimproved both this termination ordering, and the description of wave-rules. Inaddition, we have shown that di�erent termination orderings for rippling can bepro�tably used within and outwith induction. Such new orderings can combinethe highly goal directed features of rippling with the 
exibility and uniformityof more conventional term rewriting. We have, for example, given two new or-derings which allow unblocking, de�nition unfolding, and mutual recursion tobe added to rippling in a principled (and terminating) fashion; such extensionsgreatly extend the power of the rippling heuristic. To support these extensions,we have implemented a simple Annotated Rewrite System which annotates andorients rewrite rules, and with which we can rewrite annotated terms. We haveused this system to perform experiments combining rippling and conventionalterm rewriting. We con�dently expect that this combination of rippling and termrewriting has an important rôle to play in many areas of theorem proving andautomated reasoning.References1. D. Basin and T. Walsh. Di�erence uni�cation. In Proceedings of the 13th IJCAI.International Joint Conference on Arti�cial Intelligence, 1993.
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