
Di�erence Matching�David BasinMax-Planck-Institut f�ur InformatikIm Stadtwald, Saarbr�ucken, Germany Toby WalshDepartment of AI, Edinburgh UniversityEdinburgh, ScotlandAbstractDi�erence matching is a generalization of �rst-order matching where termsare made identical both by variable instantiation and by structure hiding.After matching, the hidden structure may be removed by a type of controlledrewriting, called rippling, that leaves the rest of the term unaltered. Ripplinghas proved highly successful in inductive theorem proving. Di�erence match-ing allows us to use rippling in other contexts, e.g., equational, inequational,and propositional reasoning. We present a di�erence matching algorithm, itsproperties, several applications, and suggest extensions.1 IntroductionA central problem in theorem proving is showing that one equality follows fromothers or more generally that one formula is entailed by others. Many techniqueshave been developed for this purpose, for example, the use of canonical sets ofrewrite rules and resolution theorem proving. Within inductive theorem proving, thisproblem arises in the proof that the induction conclusion follows from the inductionhypothesis. Boyer and Moore, in their theorem prover NQTHM [4, 5], approach thisproblem essentially by normalizing both the induction hypothesis and conclusionusing the same set of rewrite rules. Their approach works remarkably well; however,their normalization procedure (actually, a combination of procedures) is complex,contains a large amount of heuristic information, and is di�cult to detach fromtheir theorem prover itself. Motivated by their success, Bundy suggested in [7]an alternative approach based not on exhaustive heuristic based normalization butinstead upon the application of structure preserving rewrite rules; he called thisrewriting rippling.1The ideas behind rippling are fairly straightforward. In an inductive proof, theinduction conclusion is an image of the induction hypotheses except for the appear-ance of certain function symbols applied to the induction variable in the conclusion.�The �rst author was supported, while at Edinburgh, by SERC grant GR/F/71799, the secondby a SERC PostDoctoral Fellowship. We would like to thank the other members of the EdinbrughMathematical Reasoning Group for their feedback on this project.1The name rippling comes from rippling-out a term coined by Aubin [1], a student of Boyerand Moore's, during his study of generalization in inductive theorem proving. It is based onan observation that one can iteratively unfold (as in [10]) recursive functions in the inductionconclusion, preserving the structure of the induction hypothesis while unfolding.

We call these function symbols wave-fronts (terminology and notation will be form-ally de�ned in Section 2). The rest of the induction conclusion, which is an exactimage of the induction hypothesis is called the skeleton. For example, if we wish toprove that a proposition P (x) is true for all natural numbers, we assume it is truefor n and attempt to show it is true for s(n). That is, we show P (s(n)) follows fromthe hypothesis P (n). The hypothesis and the conclusion are identical except forthe successor function applied to the induction variable n. We mark this wave-frontby placing a box around it, and underlying the subterm contained in the skeleton,P (s(n)). Rippling then applies just those rewrite rules, called wave-rules, whichmove the di�erence out of the way leaving behind the skeleton. In their simplestform, wave-rules are rewrite rules of the form:�(�(
))) �(�(
))By design, the skeleton �(
) remains unaltered by their application. We eventuallyhope to rewrite the conclusion, P (s(n)) using such wave-rules into some functionof P (n); that is, into f(P (n)) (f may be the identity) and then call upon theinduction hypothesis.Rippling, and its extensions (e.g., rippling in other directions than out, and moregeneral forms of wave-rules) are presented in [8] and are employed in the Oyster-Clam system. Many of the same ideas were developed independently by Hutter [14],from ideas in [7], and employed in the INKA system. Both systems have enjoyeda high degree of success. Clam, for example, has been tested on 68 examples fromthe Boyer-Moore corpus and proved all but 3 of them.2 This success seems to stemfrom three properties of rippling (a more detailed analysis of these properties canbe found in [9]):1. Rippling involves little search. In rippling, the wave-fronts in the pattern mustcorrespond to wave-fronts in the instance. This leads to a very controlledapplication of rewrite rules that gives very low branching rates.2. Rippling terminates. Rippling always makes progress moving wave-fronts in adesired direction; hence termination is guaranteed, even when applying rewriterules that would normally, without wave-front annotation, lead to loops.3. Rippling applies only \good" rewrites. As wave-rules are structure preserving,if rippling terminates successfully, the hypothesis can be used to prove orsimplify the conclusion. This use of induction hypotheses is often called fertil-ization.From these properties, we can see that rippling is an attractive kind of rewriting.Inductive theorem proving is well suited for rippling because, in the induction step,there is a natural annotation of the conclusion so that its skeleton is identical to theinduction hypothesis.3 However, there is no reason why rippling cannot be used as a2The failures resulted from essentially trivial features of the object-level logic, Martin-L�of typetheory, not from limitations of rippling itself.3This is for constructor style induction schemas; for destructor schemas one could ripple onhypotheses or move the wave-fronts into the conclusion. See [9].

general rewrite procedure when one term has the same skeleton as another; its onlyprecondition is that it is applied to a term with wave-front annotations.In this report we introduce di�erence matching, a procedure that supports thegeneral application of rippling in theorem proving and term simpli�cation. A di�er-ence matcher takes as inputs two terms (or formulas) s and t. It returns s annotatedwith wave-fronts, and a set of substitutions such that the skeleton of the annotatedterm equals t under substitution. Although di�erence matching generalizes �rst-order matching, it is much more than matching. It is an attempt to make two termsidentical not just by variable instantiation, but also by structure hiding; the hiddenstructure is the part of the term within the wave-front that serves to direct rippling.A brief example will illustrate the spirit of how di�erence matching and ripplingcan be combined. The example is simple enough to describe quickly (more complexexamples are given in the experience section) and has the virtue of illustrating aninteresting special case of di�erence matching where there are no match variables tobe instantiated. Unlike �rst-order matching, which degenerates to syntactic identity,di�erence matching remains non trivial and interesting in the absence of matchvariables. We will, however, give examples of di�erence matches involving variableinstantiation in Section 4.Suppose we wish to demonstrate thats(y) + x < s(y) � s(y) (1)follows from x < y � y: (2)Here x and y are skolem constants and s is the successor function. An informal proofmight �rst add s(y) to each side of Equation 2 and then y to the lefthand side.s(y) + x < s(y) + y � y< s(y) + y � y + y= s(y) � s(y)Hence Equation 1 follows. Automating such a proof would seem to require searchto select which terms to add. It would also require reasoning about the propertiesof addition, multiplication, and basic monotonicity and inequality reasoning.An alternative is to use di�erence matching and rippling. That is, to �nd anannotation of Equation 1 so that its skeleton is the same as Equation 2; afterwards,rippling will hopefully reduce the equation to its skeleton which is our given hypo-thesis.We shall need some basic wave-rules that relate plus, times, and less-than.Z +X < Z + Y) X < Y (W1)X < Y + Z) X < Y (W2)s(X) � Z) X � Z + Z (W3)Z � s(X)) Z + Z �X (W4)

Note that) stands for rewriting as opposed to implication. Since we will reasonbackwards, a wave-rule �) is justi�ed by an implication ! �; that is, if wecan prove , then we can also prove �. For example, W2 is a valid rule only in thedirection shown. These wave-rules could be supplied as ordinary rewrite rules andhave wave-front annotation automatically added (as in Edinburgh Clam system).4Wave-rules can also be automatically synthesized from function de�nitions (as inthe INKA system and also in Clam).Di�erence matching Equation 1 with 2 will annotate the former ass(y) + x < s(y) � s(y)and rippling will apply wave-rules W4, W1, W3, and W2 to the above which resultsin the following inequalities.s(y) + x < s(y) + s(y) � yx < s(y) � yx < y � y + yx < y � ySince the �nal inequality is Equation 2, our hypothesis, the proof is completed. Notethat explosive search was not required as rippling provided the key ideas needed totransform the conclusion into its skeleton, the hypothesis. More complex examplesof this kind of rewriting are found in Section 4.The idea behind the combination of di�erence matching and rippling is rathergeneral. The combination captures a basic problem solving strategy of �nding dif-ferences or mismatches between terms and working to eliminate those di�erences.Di�erence identi�cation and reduction are also central themes in the research of[3, 11, 16]. In their work, a partial uni�cation results in a special kind of resolutionstep (E and RUE-resolution) where the failure to completely unify gives rise to newinequalities that represent the di�erences between the two terms. This leads to acontrolled application of equality reasoning where paramodulation is only used whenneeded. This is analogous to our use of di�erence matching and rippling as a meansof controlling the use of general rewrite rules. A di�erent strategy for removing dif-ferences between two terms is to seek a generalization for the two; there may also beconnections between di�erence matching (and its extensions) to anti-uni�cation[18],although we have not explored this direction.The remainder of our paper is organized as follows. In Section 2, we presentde�nitions and necessary background. In Section 3, we present the formal propertiesrequired of a di�erence match and give an algorithm which returns exactly thematches with these properties. We analyze some other properties of our algorithm,and formally prove its correctness. In Section 4, we report on experience using4Automatically annotating rewrite rules as wave-rules can be seen as a special case of di�erenceuni�cation (see Section 5) between the right and left hand sides of the rewrite rule with universallyquanti�ed variables treated as constants. Clam implements such \wave-rule parsing" by simplyenumerating annotations and comparing resulting skeletons.

di�erence matching in �nding the sums of series. These results are interesting notonly as exercises in equality reasoning, but also in demonstrating the use of di�erencematching and rippling in solving non-inductive problems. In the �nal section, wesketch directions for extensions and draw conclusions.2 Terms and AnnotationTermsThe algorithm we present acts on both terms and formulas. To facilitate this wework in a simple �rst-order sorted framework (as in [13]) in which sorts can be usedto distinguish between such syntactic categories. This is important so that we canguarantee the well-formedness of skeletons.A sort is the name of a set of syntactic entities called constants. For S a set ofsorts, types are speci�ed by �nite sequences of members of S which we shall writeas S1 � :::: � Sn ! S where the Si range over S (notational conventions are givenat end of this section). A signature � over S consists of a set � of operators anda typing function, Ty, from operators to types. For the remainder of this paper weshall assume that we are given a set of sorts S and a signature � over S.Object level variables of sort s are members of VS , where VS is one of a S-indexedfamily of sets. We let V denote the union of these sets. Object level terms of sorts are members of the set TS(�;V) which is the smallest set of terms that includesVS and for all f 2 �, if Ty(f) = S1 � ::: � Sn ! S then f(t1; :::; tn) is in TS(�;V)whenever ti 2 TSi(�;V). The terms over � are members of T (�;V), which is theS-indexed union of the TS(�;V). Whenever possible, we will omit sorts and typeswhen these are immaterial or context makes our meaning clear.Let MS be a denumerable set of meta-variables of sort S and M the union ofthese sets. These variables may be thought of (and are sometimes referred to in theliterature) as match-variables or logic-variables. A meta-level term (of sort S) is amember of T (�;V [M) (respectively TS(�;V [M). We shall call both object andmeta-level terms simply terms when there is no danger of confusion. A ground meta-level term is one containing no meta-variables, although it may contain members ofV , and is ground from the standpoint of the matching algorithm that we will de�ne.Indeed, in de�ning this di�erence matching and analyzing its correctness, we willsimplify matters by treating members of VS as if they were constants of sort S.Given a meta-level term t, Vars(t) will denote the members of M that occur in t.AnnotationAn object-level W-term is a member of T (�;V) that may contain contain wave-fronts. A wave-front is a term t with a proper sub-term t0 deleted. The deletedsubterm may itself contain wave-fronts. We represent it by an annotation of t whichencloses t in a box and underlines the sub-term t0. We let WT (�;V) representthe set of such W-terms. For example, we can annotate f(a; b) as f(a; b) whenTy(f) = S1 � S2 ! S1. A meta-level W-term is de�ned analogously to object-levelW-terms except over T (�;V [M).

There are various alternative ways W-terms may be represented on paper orin a computer. We shall display them using the new Edinburgh \box-and-hole"notation[9]; however, the older Edinburgh \box" notation[8] and Hutter's repres-entation of his C-terms[14] are other possible options. All that we require of anyimplementation is that we can tell which parts of the term are \deleted" by a wave-front and hence do not contribute to the skeleton. To this end, if t is a subtermof a W-term, let the predicate InWave(t) hold when the entire subterm is within awave-front and HdInWave(t) hold if t is a function application and the leading func-tion symbol is within a wave-front. For example, if t is f(a; b) then HdInWave(t)and InWave(b) both hold and neither HdInWave(a) nor InWave(a) hold. In theremainder of this paper we will not distinguish between annotations that appeardi�erent but are indistinguishable to the predicates InWave and HdInWave. E.g.,s(s(0)) and s(s(0)) . This is sensible as in systems like Clam and INKA it ispossible to represent internally both annotated terms and wave-rules in a normalform where each wave-front has an immediate subterm deleted (e.g., the second termin the above example) and there is no loss of generality in rippling with such a rep-resentation. Our algorithm, given in the following section returns terms annotatedthis way.We now de�ne two functions from W-terms into terms. The �rst, Skel, returnsthe unannotated (not boxed) part of an annotated term. It is de�ned recursively bycases. Since the de�nition of W-terms disallows an annotated constant or variableto itself be a W-term (since there are no proper subterms to be \deleted") we musthave in the base case that Skel(X) = X when X a constant, variable, or meta-variable. In the step case, if the leading function is not in a wave-front (that is, if:HdInWave(f(t1; : : : ; tn))) we haveSkel(f(t1; : : : ; tn)) = f(Skel(t1); : : : ;Skel(tn));alternatively if HdInWave(f(t1; : : : ; tn)), it must be the case that for some j 2 f1::ng:InWave(tj), and then Skel(f(t1; : : : ; tn)) = Skel(tj):For example, Skel(f(f(a; b) ; b)) = Skel(f(f(a; b); b)) = f(a; b)Skeleton preserving rewrite rules are called wave-rules by Bundy and C-equationsby Hutter.The second function we de�ne, Erase, simply removes wave-front annotationbut leaves the term otherwise unchanged. E.g., Erase(f(f(a; b) ; b)) = f(f(a; b); b).For a W-term t, we call the term computed by Erase(t) the body of t and the partreturned by Skel(t) its skeleton. Note that, since wavefronts are deleted, the skeletonmay not well-typed. Additionally, even if a skeleton can be typed, its type may bedi�erent to that of the body. In the rest of the paper, we shall restrict ourselves toW-terms t whose skeletons are well-typed and in which Ty(Skel(t)) = Ty(Erase(t)).

A substitution is a sort respecting partial function of type M ! T (�;V) thattakes values on only �nitely many members of M. Substitutions are extended toterms in the standard way. If � is a substitution, let Dom(�) be those elements ofM for which � takes a value and ��(�) the value of � on �. We shall representa substitution � by a �nite set of pairs fh�1; t1i; : : : h�n; tnig where ti 2 TSi(�;V),�i 2 MSi . We combine substitutions �1 and �2 using the operator [which takesthe set-theoretic union of the sets representing the two substitutions. This returnsa well-de�ned substitution provided that8� 2 (Dom(�1) \ Dom(�2)): ��1(�) = ��2(�)For brevity, we will write this condition as compatible(�1; �2). We shall also writeSub to represent the set of substitutions.NotationWe will use the following notational conventions. We shall let S range over sorts; �will range over types; � will range over substitutions; a; b; c; : : : will range over (pos-sibly annotated) constants; f; g; h; : : : will range over (possibly annotated) membersof �; x; y; z; : : : will range over (possibly annotated) members of V ar; Greek letterssuch as �; �;
; : : : will range over members of M; r; s; t; : : : will range over both(possibly annotated) terms and meta-level terms. These variables may be sub orsuper-scripted. The empty set symbol, ;, shall denote both the empty set and thesubstitution with empty domain.3 Di�erence MatchingThe AlgorithmThe input to a di�erence matcher is a term s, possibly containing meta-variables,called the pattern, and a term t called the instance. The di�erence matcher returnsannotated terms r, and substitutions � such that r is an annotation of s and theskeleton of r matches t under substitution �. As the output to a di�erence matcheris not always unique, we shall give an an algorithm for di�erence matching in alogic programming like language that computes terms satisfying the relation of typeTS(�;V [M)� TS(�;V)�WT S(�;V)� Sub. An implementation of this relation,dm(s; t; r; �)should satisfy the property P1, Erase(r) = s;the property P2, �(Skel(r))) = t;and the property P3, Dom(�) = Vars(Skel(r)):

The �rst property insists that r is simply an annotation of s. The second insiststhat the skeleton of r equals t under substitution �. The last property enforces akind of minimality on substitutions and allows us to ignore those with \extraneous"assignments. As shorthand, we will let MatchRel(s; t; r; �) represent the conjunctionof these three properties, P1 ^ P2 ^ P3.The following is a speci�cation of a relation dm that has these properties.% Di�erence Matching% Clause 1, Meta-Variable:dm(�; t; �; fh�; tig)(Ty(�) = Ty(t):% Clause 2, Constant (or member of V):dm(a; a; a; ;):% Clause 3, equal outer functors (j > 0):dm(f(s1; : : : ; sj); f(t1; : : : ; tj); f(r1; : : : ; rj); �)(8i 2 f1::jg: dm(si; ti; ri; �i);if 8i; i0 2 f1::jg: compatible(�i; �i0) then � = [ji=1�i:% Clause 4, (possibly) di�erent outer functors (j > 0)dm(fs(s1; : : : ; sj); ft(t1; : : : ; tk); fs(s1; : : : ; si�1; ri; si+1 : : : sj) ; �)(9i 2 f1::jg: dm(si; ft(t1; : : : ; tk); ri; �):The program notation we use is similar to that of Prolog. We have used somesyntactic sugar such as ellipsis and bounded universal and existential quanti�ca-tion which have the obvious \intended meaning" and can be coded in Prolog in astraightforward way. When translated into a Prolog program (wich we have done),the algorithm may be executed in in mode(+,+,?,?). We shall call the �rst two ar-guments, s and t, the inputs and those pairs of r and � that satisfy dm the outputs.As an example of di�erence matching, the following table contains the outputswhich di�erence match with the pattern x+ 1 < (�+ 1) � (� + 1) and the instancex < (y + 1) � (y + 1).Annotations Substitutionsx+ 1 < (�+ 1) � (�+ 1) fh�; yigx+ 1 < (�+ 1) � (�+ 1) fh�; y + 1igx+ 1 < (�+ 1) � (� + 1) fh�; (y + 1) � (y + 1)igx+ 1 < (�+ 1) � (� + 1) fh�; (y + 1) � (y + 1)igPropertiesSeveral properties of dm are immediately apparent. First, the dm program canbe decomposed into de�nitions of several logical relations. Clauses 2 and 3 de�nethe relationship of syntactic identity. Adding Clause 1 de�nes the relationship of(sorted) �rst-order matching. That is, if inputs s and t �rst-order match, i.e. thereis a substitution � such that �(s) = t, then there is a unique r and � that satis�es

the relation de�ned by the �rst three clauses. Adding Clause 4 instead of Clause 1,yields an algorithm for ground di�erence matching, illustrated in the introduction.The union of the four clauses de�nes a relationship more general than �rst-ordermatching. For example, when the pattern s contains meta-variables of the same sortas s, a di�erence match is always possible (and one for each such meta-variable).For instance, if Ty(f) = Ty(g) = S1 ! S1 and Ty(�) = Ty(b) = S1 thendm(f(�); g(b); f(�) ; fh�; g(b)ig):Also unlike standard matching, for a given input, there may be, in the worstcase, exponentially many (in the size of the pattern) outputs that satisfy the di�er-ence matching relation. However, such bad behavior is unusual; in practice thereare only a few successful matches. But because there are exponentially many pos-sible ways of annotating a term, di�erence matching appears more di�cult than�rst order matching. The complexity of the algorithm given, in mode(+,+,{ ,{)is exponential because of the j-ary branching in Clause 4. Note that it is linear inmode(+,+,+,+), hence given a pair of inputs, �nding a pair of outputs which satisfythe di�erence matching relation is in NP since we can check if a guessed annotationsatis�es MatchRel in time linear in the size of the pattern. Of course, there may befaster implementations of di�erence matching than the one we have given; we havenot analyzed the problem's exact complexity.What is less obvious is that dm returns all and only all those matches that satisfyP1, P2, and P3.Lemma 1 Soundness for dm: dm(s; t; r; �)) MatchRel(s; t; r; �).Proof: By structural induction on the pattern s. In the base case, s is either a meta-variable or a constant and MatchRel is obviously satis�ed by the only applicableclauses, 1 and 2 respectively.In the step case we have s = fs(s1; : : : ; sj). Suppose Clause 3 applies. Thent = fs(t1; : : : ; tj) and r = fs(r1; : : : rj). Moreover for i 2 f1::jg, dm(si; ti; ri; �i) andby the induction hypothesis MatchRel holds of these smaller instances. SoErase(r) = Erase(fs(r1; : : : ; rj)) = fs(Erase(r1); : : : ;Erase(rj)) = fs(s1; : : : ; sj) = s:Also, by the induction hypothesis �i(Skel(ri)) = ti, and, by Clause 3, � = [i�i.Hence�(Skel(r)) = �(Skel(fs(r1; : : : ; rj)) = fs(�1(Skel(r1)); : : : �j(Skel(rj))) = t:Finally since the Vars(Skel(r)) = [iVars(Skel(ri)), then Dom(�) = Vars(Skel(r)).Alternatively, suppose that Clause 4 applies, so t = ft(t1; : : : ; tk). Now there issome i 2 f1::jg and some r0 where dm(si; ft(t1; : : : ; tk); r0; �). Now by the inductionhypothesis, Erase(r0) = si, so we haveErase(r) = Erase(fs(s1; : : : ; si�1; r0; si+1 : : : sj))= Erase(fs(s1; : : : ; si; : : : ; sj))= fs(s1; : : : ; si; : : : ; sj) = s

Similarly, P2 holds because by the induction hypothesis �(Skel(r0)) = ft(t1; : : : ; tk),so �(Skel(r)) = �(Skel(fs(s1; : : : ; si�1; r0; si+1 : : : ; sj))) = �(Skel(r0)) = t:Moreover, as Skel(r0) = Skel(r) and Dom(�) = Vars(Skel(r0))), then Dom(�) =Vars(Skel(r)). 2To prove the converse, we use a few facts which may be easily veri�ed by thediligent reader.Fact 1 If s = fs(s1; : : : ; sj), t = ft(t1; : : : ; tk), r = fr(r1; : : : ; rl), MatchRel(s; t; r; �),and :HdInWave(r), then fs = ft = fr, j = k = l, 8i 2 f1::jg:MatchRel(si; ti; ri; �i),� = [ji=1�i and Dom(�i) = Vars(Skel(ri)).Fact 2 If s = fs(s1; : : : ; sj), t = ft(t1; : : : ; tk), r = fr(r1; : : : ; rl), MatchRel(s; t; r; �),and HdInWave(r), then fs = fr, j = l, and 9i 2 f1::jg:MatchRel(si; t; ri; �) ^ 8k 2f1::jg: k 6= i) InWave(rk).Lemma 2 Completeness for dm: MatchRel(s; t; r; �)) dm(s; t; r; �).Proof: Proof by structural induction on s. There are two base-cases. In the �rst,s is a meta-variable � of the same sort as t. So by P1, r must also be � and, byP2 and P3, � must be the substitution fh�; tig. But then we have Clause 1 of dmsatis�ed. In the second base-case, s is a constant a or the same sort as t. By P1,t = a and, by P3, since V ar(t) = ;, we have � = ;. So Clause 2 of dm is satis�ed.In the step case we must have s = fs(s1; : : : ; sj), t = ft(t1; : : : ; tk) and r =fr(r1; : : : ; rl). But by P1 we must have that the bodies of s and r are the same sofr equals fs and j = l. Now fr may or may not be within a wave-front and we spliton these two cases. In the �rst case, :HdInWave(r), so we may apply Fact 1 andconclude that 8i 2 f1; ::jg:MatchRel(si; ti; ri; �i). From the induction hypothesis itfollows that dm(si; ti; ri; �i) and since, by Fact 1, � = [�i we conclude dm(s; t; r; �)using Clause 3. In the second case, HdInWave(r), we have by P1 that the body ofr and s are identical and, by Fact 2, 9i 2 f1::jg:8k 2 f1::jg: k 6= i) InWave(rk).So r must look like r = fs(s1; : : : ; si�1; ri; si+1 : : : sj) :Moreover,MatchRel(si; t; ri; �) holds, so by the induction hypothesis dm(si; t; ri; �).Hence dm(s; t; r; �) by Clause 4. 24 ExperienceWe have explored the use of di�erence matching and rippling in several domains:equational reasoning arising in hardware veri�cation, summing series, and calcu-lating products, derivatives and integrals. This section will focus on examples insumming series.Although an inductive proof can be used to show that a sum (or a product)has a certain closed form, we have been investigating non-inductive methods for

discovering the sum. For example, one method for summing a series is to manipulatethe sum into some function of known standard results. This is analogous to thesituation in inductive theorem proving where we try to manipulate the inductionconclusion into some function of the induction hypothesis. Consider:sn = nXi=0 a � bi+1 (3)One slight complication is that to represent equations involving summation re-quires an extension of term syntax as summation is actually a functional, one ofwhose arguments is a function of the summation index. We shall not go into de-tails here (see [?]), but representing patterns involving sums uses higher-order matchvariables in an essentially trivial way5 and we can make direct use of our di�erencematcher to �nd substitution instances for such expressions.In summing series, we will call upon various standard results like:NXI=0C = (N + 1) � C (4)NXI=0 I = N(N � 1)2 (5)NXI=0CI = CN+1 � 1C � 1 C 6= 1 (6)= N + 1 C = 1where C is a constant. Additionally, we will need various wave-rules for manipulatingseries and algebraic expressions. Some of these rules include:BXI=A (U + V)) BXI=AU + BXI=AVBXI=A C � U) C � BXI=AUX Y + 1) X �XYAgain where C is a constant. We begin by di�erence matching our goal (3) againstknown standard results. In this case, we can successfully di�erence match and rippleagainst all three of the standard results given above. However, there only exist wave-rules for moving the wave-front annotations returned by di�erence matching against5Even more trivial than Miller and Nipkow's higher-order patterns[15, 17] as each match variablewithin the body of the sum is a function precisely of the single binding variable representing thesummation index.

(6): nXi=0 a � b i+ 1Of course, we are not always so lucky; sometimes, we can successfully di�erencematch against several di�erent standard results. This introduces an element ofsearch (although in practice the search space is rather small).Rippling can now be used to move these wave-fronts out of the way:sn = nXi=0 a � b i+ 1= nXi=0 a � b � bi= a � nXi=0 b � bi= a � b � nXi=0 biFinally, we fertilize with the closed form solution (6):sn = � a � b � bn+1�1b�1 if b 6= 1a � b � (n+ 1) if b = 1Di�erence matching and rippling play important roles in several other methodswe have investigated for summing series. For example, another method using di�er-ence matching and rippling perturbates the sum by one term. This is closely relatedto induction. Consider, for example, trying to sum the geometric progression ofEquation 6 from �rst principles. sn = nXi=0 biWe begin by perturbing this sum by one term:sn+1 = sn + bn+1Now, we can also strip o� not the last term but the �rst term:sn+1 = b0 + nXi=0 bi+1Combining the last two equations, we get:sn + bn+1 = b0 + nXi=0 bi+1

This is nearly an equation in sn. If we di�erence match the sum in the righthandside of the equation against sn, we get the wave-fronts:nXi=0 b i+ 1If we ripple these wave-fronts out of the way, we will have an equation just in snwhich we can algebraically solve:sn + bn+1 = b0 + nXi=0 b i+ 1= b0 + nXi=0 b � bi= b0 + b �Pni=0 bi= b0 + b � snThus, sn + bn+1 = b0 + b � snSolving this last equation (using the collect and isolate methods developed in thealgebraic problem solver PRESS [6]) gives:sn = bn+1 � 1b� 1 b 6= 1The case for b = 1 is trivial.These and other methods based on di�erence matching for summing series havebeen implemented in the Oyster-Clam system [19]. They successfully sum a largenumber of di�erent series. For example, they can tackle most of those problems givein the introductory chapters of a freshman text like Concrete Mathematics[12] (e.g.P im, P(i + 1) � ai, P sin(i � �)). We can also solve all those sums reported byHutter in [14]. Note that, unlike Hutter, we are discovering the closed form for thesums as opposed to verifying the answer using induction.5 Conclusion and Future WorkThis paper presents a di�erence matching algorithm and proves various propertiesit possesses (like soundness and completeness). Di�erence matching appears to be apromising means of marking di�erences between terms such that they can be madesimilar through rippling or some other means of selective simpli�cation. It appearsto be a key idea enabling the use of rippling as a controlled means of rewriting in avariety of inductive and non-inductive domains.There are a number of directions for extensions that we have just begun toconsider. Below we list several of the more promising directions.

Equational Matching: In the previous section we required that matching respectbound variables but other obvious extensions include full second and higher-order matching as well as �rst-order equational matching.Uni�cation: Matching can be extended by allowing match variables in both thepattern and instance. Another interesting \uni�cation" extension is to returnannotations of both the pattern and the instance. This would enable rippling tosimplify both hypothesis and conclusion. As previously indicated, a di�erenceuni�cation algorithm can also serve as a wave-rule parser.Annotated Substitutions: Di�erence matching could also be extended to returnannotated substitutions. This will generate a much larger set of matches (whenthe inputs have at least one solution, they will have in�nitely many) so there isa control problem of picking or e�ciently enumerating useful matches. How-ever, this extension is simple to implement and involves only an extension tothe base-case of the di�erence matcher.General Wave Annotations: Currently we allow no more than one sub-term tobe deleted within a wave-front; however, returning \multi-wave annotations"(see [8]) requires this restriction to be weakened.References[1] R. Aubin. Some generalization heuristics in proofs by induction. In G. Huet andG. Kahn, editors, Actes du Colloque Construction: Amelioration et veri�cationde Programmes. Institut de recherche d'informatique et d'automatique, 1975.[2] David A. Basin and Toby Walsh. �0-di�erence matching. In Preparation.[3] Karl Hans Bl�asius and J�org H. Siekmann. Partial uni�cation for graph basedequational reasoning. In 9th International Conference On Automated Deduc-tion, pages 397 { 414, Argonne, Illinois, 1988. Springer-Verlag.[4] Robert S. Boyer and J. Strother Moore. A Computational Logic. AcademicPress, 1979.[5] Robert S. Boyer and J. Strother Moore. A Computational Logic Handbook.Academic Press, 1988. Perspectives in Computing, Vol 23.[6] Alan Bundy. The Computer Modelling of Mathematical Reasoning. AcademicPress, 1983.[7] Alan Bundy. The use of explicit plans to guide inductive proofs. In 9th Interna-tional Conference On Automated Deduction, pages 111{120, Argonne, Illinois,1988.[8] Alan Bundy, Frank van Harmelen, Alan Smaill, and Andrew Ireland. Exten-sions to the rippling-out tactic for guiding inductive proofs. In M.E. Stickel,editor, 10th International Conference on Automated Deduction, pages 132{146.Springer-Verlag, 1990. Lecture Notes in Arti�cial Intelligence No. 449.

[9] A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, and A. Smaill. Rippling: Aheuristic for guiding inductive proofs. Research Paper 567, Dept. of Arti�cialIntelligence, Edinburgh, 1991. Submitted to Arti�cial Intelligence.[10] R.M. Burstall and J. Darlington. A transformation system for developing recurs-ive programs. Journal of the Association for Computing Machinery, 24(1):44{67, 1977.[11] Vincent J Digricoli. The management of heuristic search in boolean experimentswith RUE resolution. In 9th IJCAI, pages 1154 { 1161, Los Angeles, California,1985.[12] R.L. Graham, D.E. Knuth, and O. Patashnik. Concrete Mathematics. Addison-Wesley, 1989.[13] G�erard Huet and D.C. Oppen. Equations and rewrite rules: a survey. InR. Book, editor, Formal Languages: Perspectives and Open Problems. AcademicPress, 1980.[14] D. Hutter. Guiding inductive proofs. In M.E. Stickel, editor, 10th InternationalConference on Automated Deduction, pages 147{161. Springer-Verlag, 1990.Lecture Notes in Arti�cial Intelligence No. 449.[15] Dale Miller. A logic programming language with lambda-abstraction, functionvariables, and simple uni�cation. Technical Report ECS-LFCS-01-159, Univer-sity of Edinburgh, LFCS, May 1991.[16] J. Morris. E-resolution: an extension of resolution to include the equality rela-tion. In Proceedings of the IJCAI-69, 1969.[17] Tobias Nipkow. Higher-order critical pairs. In Symposium on Logic in ComputerScience, 1991.[18] Gordon D. Plotkin. A note on inductive generalization. Machine Intelligence,5:153-163, 1970.[19] Toby Walsh, Alex Nunes, and Alan Bundy. The use of proof plans to sum series.In D. Kapur, editor, 11th International Conference on Automated Deduction.Springer-Verlag, 1992.

