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Abstract

We study the computational complexity of finding the
next most preferred solution in some common for-
malisms for representing constraints and preferences.
The problem is computationally intractable for CSPs,
but is polynomial for tree-shaped CSPs and tree-shaped
fuzzy CSPs. On the other hand, it is intractable for
weighted CSPs, even under restrictions on the constraint
graph. For CP-nets, the problem is polynomial when the
CP-net is acyclic. This remains so if we add (soft) con-
straints that are tree-shaped and topologically compati-
ble with the CP-net.

Introduction
In combinatorial satisfaction and optimization, we often
want to find a satisfying or optimal solution, as well as to
decide if one solution is better than another. However, there
are other useful reasoning tasks. One such task is finding the
nextsolution – the solution that comes next according to an
ordering where more preferred solutions are ordered first.
We have therefore started a systematic study of the compu-
tational complexity of computing the next solution in some
common constraint and preference-based formalisms. Our
results cover general CSPs, fuzzy CSPs, weighted CSPs and
CP-nets, as well as their acyclic versions.

We came across this problem when computing stable
marriages (Gusfield and Irving 1989a). This problem has
many practical applications (from matching resident doc-
tors to hospitals, to matching students to schools, to match-
ing applicants to job offers, to any two-sided market). For
large stable marriage problems, we have proposed using for-
malisms like CP-nets which can compactly represent pref-
erences. Computing a stable marriage in an algorithm like
Gale-Shapley’s then requires being able to find the next most
preferred marriage partner in such a preference representa-
tion. However, computing the next solution is useful in many
other scenarios. For instance, it is useful when we ask for the
topk solutions in a web search. As a third example, suppose
we are configuring a product, and the user doesn’t like the
first configuration computed as we only know their prefer-
ences partially. We might choose to compute the next most
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preferred solution according to the preferences that we do
know. Finally, an efficient next operation can be used as a
tool for producing diverse solutions, a feature which is in-
creasingly interesting in practical applications. This paper
summarizes results appearing in (Brafman et al. 2010) and
(Pilotto et al. 2009).

Background

Hard and soft constraints. A constraint satisfaction prob-
lem (CSP) (Dechter 2003) is a set of variables, each with
a domain of possible values, and a set of constraints. Each
constraint involves some of the variables and is satisfied only
by some combination of values of such variables. A solution
of a CSP is an assignment of all variables which satisfies all
constraints.

A soft CSP is a CSP where all constraints are soft. A soft
constraint (Meseguer, Rossi, and Schiex 2005; Bistarelli,
Montanari, and Rossi 1997) assignes a preference value,
taken from a given set, to each instantiation of its variables.
The set of preference values is ordered: a better prerference
is higher in the ordering. Soft CSPs come equipped also with
a combination operator that tells us how to combine the pref-
erences of two or more constraints. In soft CSPs, the pref-
erence of each solution is given by the combination of all
the preferences given by the constraints to the solution. A
solution is optimal if there is no other solution with a better
preference.

Fuzzy CSPs (Meseguer, Rossi, and Schiex 2005) are ob-
tained by considering preference values in [0,1], where a
higher value denotes a better preference, and by combining
them via themin operator: optimal solutions maximize the
minimum preference. Finally, the so-called weighted CSPs
use preferences inR+ that are interpreted as costs, thus a
higher value denotes a worse cost, and costs are combined
via sum: optimal solutions minimize the sum of the costs.

Constraint propagation in classical CSPs reduces variable
domains, improving search performance. For tree-shaped
CSPs, directional arc-consistency (DAC) applied bottom-up
finds a solution without backtracking. Constraint propaga-
tion can be applied also to soft CSPs. DAC is enough to find
the optimal solution to a fuzzy CSP when the problem has a
tree shape (Meseguer, Rossi, and Schiex 2005).



CP-nets. CP-nets (Boutilier et al. 2004a) are a graphical
model for compactly representing conditional and qualita-
tive preference relations. CP-nets are sets ofceteris paribus
(cp) preference statements. A CP-net has a set of features
F = {x1, . . . , xn} with finite domainsD(x1), . . . ,D(xn).
For each featurexi, we are given a set ofparent features
Pa(xi) that can affect the preferences over the values of
xi. This defines adependency graphin which each nodexi

hasPa(xi) as its immediate predecessors. Given this struc-
tural information, the agent explicitly specifies her prefer-
ence over the values ofxi for each complete assignmenton
Pa(xi). This preference is assumed to take the form of to-
tal or partial order overD(xi). An acyclicCP-net is one in
which the dependency graph is acyclic.

The semantics of CP-nets depends on the notion of a
worsening flip. This is the change in the value of a variable to
a less preferred value according to the cp statement for that
variable. One outcomeα is better than another outcomeβ
(writtenα ≻ β) iff there is a chain of worsening flips fromα
toβ. This induces a preorder over the outcomes, and a partial
order if the CP-net is acyclic. In general, finding the optimal
outcome of a CP-net, as well as comparing two outcomes,
is NP-hard (Boutilier et al. 2004a). However, in acyclic CP-
nets, there is only one optimal outcome which can be found
in linear time by sweeping through the dependency graph,
assigning the most preferred values to each variable.

Solution orderings
The constraint and preference-based formalisms introduced
in the previous section generate asolution orderingover
the variable assignments, where solutions dominate non-
solutions, and more preferred solutions dominate less pre-
ferred ones. This can be a total order, a total order with ties,
or even a partial order with ties. However, the problem of
finding the next solution requires a strict linear order. We
may therefore have to linearize the solution ordering.

CSPs generate a solution ordering which is total order
with ties: all the solutions are in a tie (that is, they are
equally preferred), and dominate in the ordering all the non-
solutions, which again are in a tie. If we consider fuzzy or
weighted CSPs, there can be no incomparability (since the
set of preference values is totally ordered), so we have a total
order with ties, and a solution dominates another one if its
preference value is higher. In acyclic CP-nets, the solution
ordering is a partial order.

In the following, given a problem P and a linearization l
of its solution ordering (given implicitely), Next(P,s,l)is the
problem of finding the solution just after s in the lineariza-
tion l. Note that, while there is only one solution ordering
for a problem P, there may be several linearizations of this
solution ordering.

Finding the next solution in CSPs
Let P be a CSP withn variables. Consider any variable or-
deringo = (x1, . . . , xn) and any value orderingso1, . . . , on,
whereoi is an ordering over the values in the domain of vari-
ablexi. We denote byO the set of orderings{o, o1, . . . , on}.
These orderings naturally induce a lexicographical lineariza-

tion of the solution ordering,lex(O), where given two vari-
able assignments,s ands′, we writes ≺lex(O) s′ (that is,
s precedess′) if either s is a solution ands′ is not, ors
precedess′ in the lexicographic order induced byO (that
is, s = (s1, . . . , sn), s′ = (s′1, . . . , s

′

n), and there exists
i ∈ [1, n] such thatsi ≺oi s′i andsj = s′j for all j < i).
For the linearizationlex(O), the problem of finding the next
solution is computationally intractable.

Theorem 1. Computing Next(P,s,lex(O)), whereP is a CSP
ands is one of its solutions, is NP-hard.

This result can be extended to a wider class of orderings.

Theorem 2. Consider any polynomially describable and
computable total orderω over variable assignments whose
top element does not depend on the constraints of the CSP,
and the linearizationl(ω) of the solution ordering induced
byω. Then there exists a CSPP and a solutions such that
computing Next(P,s,l(ω)) is NP-hard.

The proof of both theorems are based on a polynomial
reduction from SAT.

We know that finding an optimal solution becomes poly-
nomial if the constraint graph is a tree. It is therefore natu-
ral to consider this class to see whether also the Next prob-
lem becomes polynomial. In this section we focus on tree-
shaped CSPs. However, the same results hold for bounded
tree-width. For a tree-shaped CSP with variable setX =
{x1, · · · , xn}, let us consider the linearizationtlex(O),
which is the same aslex(O) defined in the previous sec-
tion, with the restriction that the variable orderingo respects
the tree shape: each parent comes before its children.

We have defined an algorithm (called CSP-Next) that,
given as input a directionally arc consistent tree-shaped CSP
P and a solutions for P , either returns the satisfying assign-
ment followings according totlex(O), or detects thats is
the last satisfying assignment in this ordering. The algorithm
works bottom-up in the tree, looking for new values for chil-
dren that are consistent with the value assigned to their par-
ent and successive to the ones assigned ins in the domain
orderings. As soon as it finds a variable for which such a
value exists, it resets all the following variables (according
to the variable orderingo) to their smallest compatible val-
ues w.r.t. the domain orderings.

Theorem 3. ComputingNext(P, s, tlex(O)), whereP is a
tree-shaped and DAC CSP, is polynomial.

In fact, if |D| is the cardinality of the largest domain, it
is easy to see that the worst case complexity of CSP-next is
O(n|D|), since both looking for consistent assignments and
resetting to the smallest consistent assignment takesO(|D|),
and such operations are doneO(n) times. The following re-
sults shows that the choice of the linearization is crucial for
tractability.

Theorem 4. Computing Next(P,s,l), whereP is a tree-
shaped CSP,s is one of its solutions, andl is an arbitrary
linearization, is NP-hard.

The proof is based on a polynomial reduction from the
subset sum problem.



Next on weighted CSPs
With weighted CSP, finding the next solution means that,
given a solution, we return the next assignment in lexico-
graphical order with the same cost or, if there is no such as-
signment, the first assignment in lexicographical order with
the next smallest cost. Unfortunately, the following result
holds:

Theorem 5. Computing Next(P,s,l), whereP is a weighted
CSP ands is one of its solutions, is NP-hard, forany lin-
earizationl.

The proof is based on a polynomial reduction from the
subset sum problem. Note that theorems 4 and 5, whilst hav-
ing similar proofs, have quite different implications. Indeed,
for tree-shaped CSPs computing Next is NP-hard only for
some choices of the linearizationl, while for weighted CSPs
computing Next isalwaysNP-hard, irrespective of the lin-
earization, because the “native” solution ordering is already
sufficient for NP-hardness. However, if we consider just
lexicographical orderings, and weighted CSPs with unary
constraints only, then Next is not strongly NP-hard since a
pseudo-polynomial algorithm exists.

Theorem 6. Given a weighted CSPP with unary con-
straints only, a solutiona, and a linearizationl induced by a
lexicographic ordering, computing Next(P,a,l) is weakly NP-
hard.

The proof uses a simple generalization of the dynamic
programming algorithm for deciding subset sum. Thus, the
complexity here only comes when the weights are large.

Next on tree-shaped fuzzy CSPs
With fuzzy CSPs, Next appears more tractable. In particular,
Next on tree-like fuzzy CSPs is polynomial. The algorithm
proposed in (Brafman et al. 2010) exploits the fact that, in
a fuzzy CSP, a solution can have preferencep only if it in-
cludes a tuple that has preferencep. The worst case time
complexity of the algorithm isO(|T ||D|n), where|T | is the
number of tuples ofP and|D| the cardinality of the largest
domain.

Theorem 7. Given a tree-shaped DAC fuzzy CSPP and a
solutions, computing Next(P,s,lex(O)) is polynomial.

Again, the choice of the order is crucial for the complex-
ity of the algorithm. For instance, Theorem 4 implies that
Next(P,s,l) is NP-hard on tree-shaped fuzzy CSPs in general.

Next on acyclic CP-nets
On acyclic CP-nets, Next is polynomial to compute if we
consider a certain linearization of the solution ordering.We
first define the concept ofcontextual lexicographical lin-
earizationof the solution ordering. Let us consider any or-
dering of the variables where, for any variable, its parentsare
preceding it in the ordering. Let us also consider an arbitrary
total ordering of the elements in the variable domains. For
simplicity, we consider Boolean domains. Given an acyclic
CP-net withn variables, we associate a Boolean vector of
lengthn to each complete assignment, where element in po-
sition i corresponds to variablei (in the variable ordering),

and its value is 0 if the variable has its most preferred value,
given the values of the parents, and 1 otherwise. The optimal
solution thus gives a vector ofn zeros.

To compute such a vector from a complete assignment, we
just need to read the variable values in the variable ordering,
and for each variable we need to check if its value is the most
preferred or not, considering the assignment of its parents.
This is polynomial if the number of parents of all variables
is bounded. Given a vector, it is also polynomial to compute
the corresponding assignment.

Thecontextual lexicographical linearizationof the order-
ing of the solutions linearizes incomparability via a lexico-
graphical ordering over the vectors associated to the assign-
ments. We will call such a linearization acontextual lexico-
graphical linearization. Note that there is at least one such
linearizations for every acyclic CP-net.
Theorem 8. Computing Next(N,s,l), whereN is an acyclic
CP-net,s is one of its solutions, andl is any contextual lexi-
cographical linearization of its solution ordering, is polyno-
mial.

Next on constrained CP-nets
It is often useful to consider problems where CP-nets and
CSPs, or soft CSPs, coexist (Boutilier et al. 2004b). We thus
consider here the notion of aconstrained CP-net, which is
just a CP-net plus some (soft) constraints (Boutilier et al.
2004b). Given a CP-netN and a constraint problemP , we
will write (N,P) to denote the constrained CP-net given by N
and P. Its solution ordering,≺NP , is the ordering given by
the (soft) constraints, where ties are broken by the CP-net
preferences. Unfortunately, computing the next solution is
intractable if we take the lexicographical linearization (given
o, which is an ordering over the variables) of≺np, denoted
by lex(o,≺NP ).
Theorem 9. Computing Next((N,P ), s, lex(o,≺NP )),
where(N,P ) is a constrained CP-net ands is one of its
solutions, is NP-hard.

The proof uses a polynomial reduction from the Next
problem on CSPs.

Next becomes polynomial if we consider acyclic CP-nets,
tree-shaped CSPs, and we add a compatibility condition be-
tween the acyclic CP-net and the constraints. This compat-
ibility condition is related to the topology of the constraint
graph and the dependency graph of the CP-net. Informally,
compatibility means that it is possible to take a tree of the
constraints where the top-down parent-child links, together
with the CP-net dependency structure, do not create cycles.
If the compatibility holds for any root taken from a set S,
then we will write that N and P are S-compatible.
Theorem 10. Consider an acyclic CP-netN and a tree-
shaped CSPP , and assume thatN andP are S-compatible,
where S is a subset of the variables of P. Taken a solu-
tion s for (N,P ), and a variable orderingo which respects
the tree shape ofP whose root is an element of S, then
Next((N,P ), s, lex(o,≺NP )) is polynomial.

Under these same conditions, Next remains polynomial
even if we consider CP-nets constrained by fuzzy CSPs
rather than hard CSPs.



Next for stable marriage problems
The stable marriage problem is a well-known matching-
problem (Gusfield and Irving 1989b). Givenn men andn
women, where each person strictly orders all members of
the opposite sex, we wish to marry the men to the women
such that there is not a man and woman who would both
rather be married to each other than to their current part-
ners. If there is no such couple, the matching is calledstable.
Surprisingly, a stable marriage always exists. A well-known
algorithm to solve this problem is the Gale-Shapley (GS)
algorithm (Gale and Shapley 1962). The algorithm consists
of a number of rounds in which each un-engaged man pro-
poses to the most preferred woman to whom he has not yet
proposed. Each woman receiving a proposal becomes “en-
gaged”, provisionally accepting the proposal from her most
preferred man. The main operations that this algorithm re-
quires are: for a man, to compute his most preferred woman
and, given any woman, the next best one; for a woman, to
compare two men according to her preferences.

In some applications, the number of men and women can
be large. For example, the men and women might represent
combinatorial structures. It may therefore be unreasonable
to assume that each man and woman provides a strict or-
dering of the members of the other sex. Here we assume
that each man and woman has an acyclic CP-net decribing
his/her preferences over the members of the other sex. In this
scenario, the operations needed by the GS algorithm must be
computed on acyclic CP-nets. The existing literature tellsus
that finding the best outcome is easy. The results of the pre-
vious sections assure us that finding the next best woman is
polynomial in the number of features for an appropriate lin-
earization. In this same linearization, it is also easy to com-
pare two outcomes (Pilotto et al. 2009).

We can either precompute the whole linear order, or we
can compute just the part of the ordering that GS needs dur-
ing its execution. In the first scenario, we computeNext
n2 times and then GS can run inO(n2) time. In terms of
space, we need to store all the linearizations, which takes
O(n2) space. In the second scenario, no pre-computation is
required but each step of GS requires additional time to per-
form aNext (and possibly aCompare) operation. GS now
runs inO(n2log(n)) time but justO(nlog(n)) space. We
ran some experiments to see which of these two scenarios
is more effective in practice with randomly generate acyclic
CP-nets.
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Figure 1: Execution time for three versions of GS.

Figure 1 gives the log-scale time needed to run three dif-
ferent version of the GS algorithm: when Next and Compare

are executed on demand (GS1), when the linearization for
the men is precomputed, but Compare for the women is exe-
cuted on demand (GS+pre-m), and when both linearizations
are precompted (GS+pre-mw). We see that is is inefficient
to pre-compute the linearizations in advance, even for just
the men. This is perhaps not too surprising, since computing
the linearizations needs to run the Next operation exactlyn2

(or 2n2) times, while the GS algorithm isO(n2) time in the
worst case but may in practice require only a much smaller
number of proposals. Our tests show that algorithm GS takes
less than 1 second even for CP-nets with 10 features. This is
a practical sized setting as it models problems with about a
thousand members of each sex where it would be unreason-
able to ask each agent to rank all members of the other sex.
By comparison, it is a simple task to ask an user to specify a
CP-net over 10 features.
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