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Abstract. The SEQUENCE constraint is useful in modelling car sequencing, ros-
tering, scheduling and related problems. We introduce half a dozen new encod-
ings of the SEQUENCE constraint, some of which do not hinder propagation. We
prove that, down a branch of a search tree, domain consistency can be enforced
on the SEQUENCE constraint in just O(n2 log n) time. This improves upon the
previous bound of O(n3) for each call down the tree. We also consider a gener-
alization of the SEQUENCE constraint – the Multiple SEQUENCE constraint. Our
experiments suggest that, on very large and tight problems, domain consistency
algorithms are best. However, on smaller or looser problems, much simpler en-
codings are better, even though these encodings hinder propagation. When there
are multiple SEQUENCE constraints, a more expensive propagator shows promise.

1 Introduction

Global constraints are an important factor contributing to the success of constraint pro-
gramming. They capture common modelling patterns and provide efficient propagators
for these patterns. Research has started to show that some global constraints can be
efficiently and effectively encoded and propagated using a small number of building
blocks. For instance, a wide range of useful global constraints like AMONG, ATMOST,
LEX, and STRETCH can be efficiently and effectively encoded using Pesant’s REGULAR

constraint [1]. Such REGULAR constraints can themselves be efficiently and effectively
encoded into ternary transition constraints [2].

Encoding global constraints in this way offers several advantages. First, it is easy to
incorporate such encodings into existing solvers. Second, encodings can provide effi-
cient incremental propagators. For example, with the ternary encoding of the REGULAR

constraints, only those ternary constraints involving variables whose domains have
changed need wake up. Third, encodings can make it easier to construct nogoods for
learning and backjumping. Fourth, the encoding gives heuristics an ability to “look in-
side” the global constraint when making branching decisions.

In this paper we propose and compare half a dozen different encodings of the
SEQUENCE constraint. The SEQUENCE constraint was introduced by Beldiceanu and
Contejean [3]. It constrains the number of values taken from a given set in any se-
quence of k variables. It is useful in staff rostering to specify, for example, that every
employee has at least 2 days off in any 7 day period. Another application is car sequenc-
ing problems (prob001 in CSPLib). The SEQUENCE constraint can be used to specify,



for example, that at most 1 in 3 cars along the production line can have a sun-roof fit-
ted. Several propagators for the SEQUENCE constraint have previously been proposed
against which we will compare these new encodings.

2 Background

A constraint satisfaction problem (CSP) consists of a set of variables, each with a finite
domain of values, and a set of constraints specifying allowed combinations of values
for subsets of variables. We use capital letters for variables (e.g. X , Y and S), and
lower case for values (e.g. d and di). A solution is an assignment of values to the vari-
ables satisfying the constraints. Constraint solvers typically explore partial assignments
enforcing a local consistency property using either specialized or general purpose prop-
agation algorithms. A support for a constraint C is a tuple that assigns a value to each
variable from its domain which satisfies C. A bounds support is a tuple that assigns
a value to each variable which is between the maximum and minimum in its domain
which satisfies C. A constraint is domain consistent (DC) iff for each variable Xi, every
value in the domain of Xi belongs to a support. A constraint is bounds consistent (BC)
iff for each variable Xi, there is a bounds support for the maximum and minimum value
in its domain. A CSP is DC/BC iff each constraint is DC/BC. A CSP is singleton do-
main consistent (SDC) iff for each variable Xi, we can assign any value in the domain
of Xi and make the resulting subproblem domain consistent. Consider, for example, a
problem with two constraints: X1 6= X2, X1 + X2 = X3, where D(X1) = {0, 1, 2},
D(X2) = {1, 3} and D(X3) = {1, 2, 3}. All constraints are domain consistent, but
enforcing SDC on these constraints removes the value 1 from the domain of X1 and
the value 2 from the domain of X3. A CSP is singleton bounds consistent (SBC) iff for
each variable Xi, we can assign the maximum (minimum) value of Xi and make the
resulting subproblem bounds consistent. In the previous example enforcing SBC does
not prune any values. A constraint is monotone iff there exists a total ordering ≺ of the
domain values such that for any two values v, w if v ≺ w then v can be replaced by w
in any support for C.

We will compare local consistency properties applied to sets of constraints, c1 and
c2, that are logically equivalent. As in [4], a local consistency property Φ on c1 is as
strong as Ψ on c2 iff, given any domains, if Φ holds on c1 then Ψ holds on c2; Φ on
c1 is stronger than Ψ on c2 iff Φ on c1 is as strong as Ψ on c2 but not vice versa; Φ on
c1 is equivalent to Ψ on c2 iff Φ on c1 is as strong as Ψ on c2 and vice versa; they are
incomparable otherwise. For the complexity results, we assume the propagation engine
wakes each propagator whose variables are changed in constant time per propagator,
and that the propagation cost for a linear constraint on n variables is O(n). Modern
propagation engines respect this.

3 The SEQUENCE constraint

The AMONG constraint restricts the number of occurrences of some given values in a
sequence of k variables. More precisely, AMONG(l, u, [X1, X2, . . . , Xk], v) holds iff
l ≤ |{i | Xi ∈ v}| ≤ u. That is, between l and u of the variables take values in v.
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The AMONG constraint can be encoded by channelling into 0/1 variables using Yi ↔

Xi ∈ v and l ≤
∑k

i=1 Yi ≤ u. Since the constraint graph of this encoding is Berge-
acyclic, this does not hinder propagation. Consequently, except in Section 5 we will
simplify notation and consider AMONG (and SEQUENCE) on Boolean variables Y with
v = {1}. If l = 0, AMONG becomes an ATMOST constraint. If u = k, AMONG

becomes an ATLEAST constraint. ATMOST (and ATLEAST) is monotone since given a
support, we also have support for any larger (smaller) value [5].

The SEQUENCE constraint is a conjunction of overlapping AMONG constraints.
More precisely, SEQUENCE(l, u, k, [X1, X2, . . . , Xn], v) holds iff for 1 ≤ i ≤ n−k+1,
AMONG(l, u, [Xi, Xi+1, . . . , Xi+k−1], v) holds. We shall refer to the decomposition of
the SEQUENCE constraint into a sequence of AMONG constraints as the AMONG de-
composition (AD). Clearly, this decomposition hinders propagation. However, if the
AMONG constraint is monotone then enforcing DC on the decomposition is equivalent
to enforcing DC on the SEQUENCE constraint [5]. An extension proposed in [6] is that
each AMONG constraint can have different parameters (l, u and k). All the encodings
proposed here can easily be extended to deal with this generalization.

Several filtering algorithms exist for SEQUENCE constraints. Régin and
Puget propose a filtering algorithm for the Global Sequencing constraint (GSC)
that combines a SEQUENCE and a Global Cardinality constraint (GCC) [7].
GSC([X1, . . . , Xn], l, u, v, k, [l1, . . . , lm], [u1, . . . , um]) is satisfied iff for each i ∈
{1, . . . , m}, li ≤ |{j | Xj = i}| ≤ ui and for each p ∈ {1, . . . , n − k},
l ≤ |{j | Xj ∈ v & p ≤ j ≤ p+k−1}| ≤ u. They encode the GSC constraint into a set
of GCC constraints. This encoding hinders propagation as domain consistency on the
encoding may not achieve domain consistency on the original SEQUENCE constraint.
Beldiceanu and Carlsson propose a greedy filtering algorithm for the CARDPATH con-
straint that can be used to propagate the SEQUENCE constraint, but this again may not
achieve domain consistency [8]. Régin proposes decomposing GSC into a set of variable
disjoint AMONG and GCC constraints [9]. Again, this decomposition hinders propaga-
tion. Bessière et al. [5] encode SEQUENCE using a SLIDE constraint, and give a domain
consistency propagator that runs in O(ndk−1) time (d is the maximal domain size).
Finally, van Hoeve et al. [6] propose two filtering algorithms that establish domain con-
sistency. The first algorithm is based on an encoding into a REGULAR constraint and
runs in O(n2k) time, whilst the second is based on computing cumulative sums and
runs in O(n3) time (we call this HPRS after the initials of the authors). One of our
contributions here is to improve on this bound.

3.1 Domain consistency filtering algorithms based on REGULAR (LO)

As mentioned above, van Hoeve et al. give an encoding using the REGULAR constraint
[6]. The states of the automata used in this encoding record which of the last k values
encountered are from the set v. We can improve upon this encoding very slightly by
having states record just the last k−1 values encountered. A transition is then permitted
iff the last k−1 values encountered plus the current variable have the correct frequency
of values from the given set.

We now give an alternative encoding using the REGULAR constraint. The
REGULAR ([X1, . . . , Xn],A) constraint ensures that the string defined by the sequence
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of variables X1, . . . , Xn is accepted by the deterministic finite automaton (DFA) A.
The encoding exploits two features of many car sequencing and staff rostering prob-
lems. First, such problems typically only place upper bounds on occurrences (e.g. at
most 1 in 3 cars can have the sun-roof). Second, in many problems the lower and up-
per bounds are typically small (e.g. in all data files in Prob001 in CSPLib, u ≤ 2 and
k ≤ 5).

Suppose we wish to ensure that at most 1 in k Boolean variables Yi take the value
1. Consider an automaton whose states record the minimum of k and the distance back
to the last occurrence of 1. If 1 has not yet occurred, the distance is taken to be k. The
transition function from the state q on seeing Yi is t(q, Yi) = min(k, q + 1) if Yi = 0
and t(q, Yi) = 1 if q = k and Yi = 1. The initial state of the automaton is k and any
state is accepting (Figure 1(a)). A similar automaton can be constructed for u > 1, but
we need states to record the distances back to the last u occurrences of value 1. Now,
suppose we wish to ensure at least 1 in k variables take the value 1. The states of the
automaton record the distance back to the last occurrence of 1. If 1 has not yet occurred,
the distance is taken to be the number of variables seen so far. The transition function
from the state q on seeing Yi is t(q, Yi) = q + 1 if Yi = 0 and q < k, and t(q, Yi) = 1
if q ≤ k and Yi = 1. The initial state of the automaton is 1 and any state is accepting
(Figure 1(b)).
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Fig. 1. (a) An automaton for the ATMOSTSEQ constraint with u = 1 and k = 3. (b) An automa-
ton for the ATLEASTSEQ constraint with l = 1 and k = 3.

Thus, to encode a SEQUENCE constraint, we convert it into a sequence of ATLEAST

and ATMOST constraints. We can convert the sequence of ATLEAST constraints into
a sequence of ATMOST constraints (or vice versa depending on which representation
gives smaller complexity) by inverting the value being counted. For example,the con-
straint that at least 3 in any 5 days must be work days is equivalent to at most 2 in 5 days
are rest days. Finally, we construct the product of the automata for the two sequences
of ATMOST or ATLEAST constraints. The complexity of enforcing domain consistency
on SEQUENCE using this encoding is O(nkmin(l,k−l)+min(u,k−u)). We will refer to this
encoding as LO as the automaton records the last occurrence(s).

3.2 Domain consistency filtering algorithm based on cumulative sums (CS)

Our next encoding is based on computing cumulative sums. We introduce a sequence
of cumulative sum integer variables Sj where Sj =

∑j

i=1 Yi, each with domain [0, j].
We encode this linearly as S0 = 0 and Si = Yi + Si−1 for 1 ≤ i ≤ n. We then post
Sj ≤ Sj+k − l and Sj+k ≤ Sj +u for 1 ≤ j ≤ n−k+1. We call this the CS encoding.
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Not surprisingly, this encoding hinders propagation. However, if we enforce a slightly
stronger level of local consistency on the encoding, propagation is unhindered.

Theorem 1. Singleton bounds consistency on CS enforces domain consistency on
SEQUENCE and takes O(n3) time to enforce down a branch of a search tree.

Proof. It is easy to show that if CS is BC then setting each Si variable to its upper
bound ui, and setting each Yi = ui − ui−1 gives a solution of CS and the SEQUENCE

constraint. Hence SBC on CS clearly enforces DC of SEQUENCE.
For the complexity argument, first note that propagation for CS is O(n2) having

O(n) constraints which can wake at most O(n) times each. A priori it would appear that
enforcing SBC at each node down the search tree is O(n3) since we must check O(n)
assignments. But we can show for each assignment, either incremental propagation is
O(n) or it is O(n2) and the assignment causes failure. Since each failure fixes an Yi

variable in any forward computation this can occur at most O(n) times. Hence the
total complexity down the tree is O(n3). Using shadow variables for the Yi we can
disconnect the SBC propagation of the CS encoding from the rest of the problem. Since
copying from the Yi to their shadows and back is O(n) the implementation of SBC is
O(n3).

Incremental BC of CS after fixing a single Yi variable proceeds to modify upper and
lower bounds of Sj variables. Either every bound is modified at most once, in which
case the propagation is O(n), or some bound is modified twice. We can use the sequence
of propagations that cause the bound to be modified twice to modify it again. Applying
this sequence repeatedly we eventually wipe out a domain and detect failure. ut

Consider, for example, SEQUENCE(1, 2, 2, [Y1, Y2, Y3, Y4], {1}), D(Y3) = {0} and
D(Yi) = {0, 1}, i ∈ {1, 2, 4}. Corresponding cumulative sum variables S have the fol-
lowing domains: S0 ∈ {0}, S1 ∈ {0, 1}, S2, S3 ∈ {1, 2}, S4 ∈ {2, 3}. All constraints
in CS are bounds consistent. However, enforcing singleton bounds consistency on CS
prunes the value 0 from the domains of Y2 and Y4. We can see SBC applied to CS as a
reworking of the original HPRS algorithm in different terms, with a tighter complexity
argument.

3.3 Domain consistency filtering algorithm based on difference constraints (CD)

The key constraints in the CS encoding are difference constraints of the form S ≤
S′ + d, a well studied class with connections to shortest path algorithms [10]. We can
modify the encoding to use only reified difference constraints, and then use efficient
methods for handling these constraints. We replace each constraint Si = Yi + Si−1 by
the equivalent Si ≤ Si−1 + 1, Si−1 ≤ Si, Yi ⇔ Si−1 ≤ Si − 1. We denote this the CD
encoding.

We can convert a conjunction of difference constraints C into a weighted directed
graph GC = (NC , EC) defined as NC = vars(C) and EC = {S

c
→ S′ | S ≤ S′ + c ∈

C}, where S
c
→ S′ is a directed edge from S to S ′ with weight c.

The connection with shortest path algorithms is well known:

Proposition 1. (Theorem 1 from [10]) C is satisfiable iff GC contains no negative
length cycles. Assuming C is satisfiable then C implies S ≤ S ′ + c iff the shortest
path from S to S′ in GC is length c′ ≤ c. ut
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We construct a DC propagator by using the current Y assignment to construct a
conjunction of difference constraints C. After checking the satisfiability of C, we then
check whether C implies Si−1 ≤ Si − 1 in which case we set Yi = 1, or if it implies
Si ≤ Si−1 (the negation of Si−1 ≤ Si − 1) in which case we set Yi = 0.

Theorem 2. The difference constraints propagator on the CD encoding enforces do-
main consistency of SEQUENCE in O(n2 log n) time down a branch of a search tree.

Proof. Suppose that Yi = 1 has no support given the current domains. Since each
solution of the SEQUENCE constraint can be extended to a solution of CD, there can be
no solution to CD with Yi = 1. Hence the difference constraints will imply Si ≤ Si−1

and the algorithm will set Yi = 0. The reasoning is analogous for Yi = 0.
Cotton and Maler [10] define incremental algorithms for (a) detecting negative cy-

cles in a weighted directed graph after addition of a new edge in O(|E| + |N | log |N |),
and (b) checking whether the shortest path has changed after addition of a new edge
for a set P of pairs of nodes in O(|E| + |N | log |N | + |P |). For the CD encoding
P = {(Si, Si−1), (Si−1, Si) | 1 ≤ i ≤ n} and |NC |, |EC |, and |P | are all O(n); hence
the complexity of incremental propagation after adding a single edge (e.g. when Yi is
fixed) is O(n log n). Since we only add O(n) edges overall, the total complexity over a
branch of the search tree is O(n2 log n). ut

Our current implementation of CD uses incremental all-pairs shortest path algo-
rithms, rather than the single-source shortest path algorithms of [10]. Let sij be the
shortest path from Si to Sj for 1 ≤ i, j ≤ n. Adding a single new arc Sk

c
→ Sl then

there exists a negative cycle iff slk + c < 0. If no negative cycle exists then we can
update all shortest paths variables sij by sij = min{sij , sik + c + slj}. The cost for
adding a single arc is then O(n2) and hence O(n3) down a branch of the search tree.

Consider, for example, SEQUENCE(1, 2, 2, [Y1, Y2, Y3, Y4], {1}), D(Yi) = {0, 1},
i ∈ {1, . . . , 4}. The initial constraint graph and the corresponding transitive closure of
its adjacency matrix are presented in Figure 2(a). Assigning Y3 to 0 causes addition of
the edge from S3 to S2 with cost 0. After updating all shortest path variables s, we get
that s1,2 and s3,4 are equal to −1. Consequently, value 0 can be pruned from domains
of Y2 and Y4 (Figure 2(b)).

3.4 Domain consistency filtering algorithm based on partial sums (PS)

The fourth encoding is arguably the simplest encoding which gives domain consistency.
The PS encoding simply decomposes the constraint into a set of equations based on
partial sums: Pi,j =

∑j

l=i Yl each with domain [0, min(u, j− i+1)]. The PS encoding
of the SEQUENCE constraint is Pi,i+k−1 ≤ u and Pi,i+k−1 ≥ l for 1 ≤ i ≤ n − k + 1
as well as Pi,i = Yi for 1 ≤ i ≤ n and most importantly, all possible ways of adding
two of these variables to create another: Pi,j = Pi,m + Pm+1,j for 1 ≤ i ≤ m < j ≤
n, j ≤ i + k − 1. Note there are O(nk2) constraints of the last form.

Lemma 1. Bounds consistency on the PS encoding enforces domain consistency of the
SEQUENCE constraint in O(nk2u) down a branch of a search tree.
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Fig. 2. The CD encoding for SEQUENCE(1, 2, 2, [Y1, Y2, Y3, Y4], {1}), D(Yi) = {0, 1}, i ∈
{1, . . . , 4}. (a) The initial constraint graph and the transitive closure of its adjacency matrix.
(b) The constraint graph and the transitive closure of its adjacency matrix after assigning Y3 to 0.

Proof. Define domain D to bounds capture C if for each Yi + · · · + Yj ≤ c ∈ C,
maxD(Pi,j) ≤ c and for each Yi + · · · + Yj ≥ c ∈ C, min D(Pi,j) ≥ c. Clearly the
domain resulting from BC applied to PS bounds captures the AD encoding.

We show that if D is BC with PS and bounds captures C then it also bounds captures
C ′ which results from eliminating the least (or greatest) indexed variable Yi.

We consider the least variable Yi, the greatest is similar. Consider Fourier elimi-
nation of Yi. For each pair of constraints in C of the form Yi + · · · + Yj1 ≤ c1 and
Yi + · · · + Yj2 ≥ c2, Fourier elimination creates the constraint (a) if j1 > j2 then
Yj2+1 + · · ·+ Yj1 ≤ c1 − c2, (b) if j1 < j2 then Yj1+1 + · · ·+ Yj2 ≥ c2 − c1, or (c) if
j1 = j2 then 0 ≤ c1−c2. Now since D bounds captures C we have maxD(Pi,j1 ) ≤ c1

and min D(Pi,j2) ≥ c2. For case (a) by BC on the constraint Pi,j1 = Pi,j2 + Pj2+1,j1

we have maxD(Pj2+1,j1) ≤ c1 − c2, for (b) BC on Pi,j2 = Pi,j1 + Pj1+1,j2 gives
min D(Pj1+1,j2) ≥ c2 − c1, and for (c) the new constraint is true since otherwise
D(Pi,j1 ) = ∅. Hence the new constraint is bounds captured by D.

To prove DC of SEQUENCE, let C be the AD encoding plus inequalities fixing Y
variables in the current domain D (which we assume is BC with PS). Clearly D bounds
captures C. Consider any variable Yi, and eliminate from C in order Y1, . . . , Yi−1, Yn,
Yn−1, . . . , Yi+1 to obtain C ′. Now C ′ only involves the variable Yi. By the correctness
of Fourier elimination4 there are solutions of C extending any solution of C ′. Since
D bounds captures C ′ by repeated use of the above argument we have that there are
solutions to C for each d ∈ D(Yi).

For the complexity argument, we note that the domains of the variables in each
constraint Pi,j = Pi,m+Pm+1,j can change at most 3u times in a forward computation.
Each propagation is O(1) hence the overall complexity down a branch is O(nk2u). ut

4 While Fourier is for real variable elimination, it coincides with integer elimination on C.
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3.5 A log based encoding of SEQUENCE (LG)

Our final encoding, called LG, is based on a simple dynamic program that builds up
partial sums on counts. We introduce variables Li,j with domain [0, min(u, 2i−1)] for

the partial sums
∑j+2i−1

k=j Yk where 0 ≤ i ≤ blog kc and 1 ≤ j ≤ n − 2i + 1.
Note that Li,j = Pj,j+2i−1. This requires the constraints L0,j = Yj , 1 ≤ j ≤ n and
Li,j = Li−1,j + Li−1,j+2i−1 , 1 ≤ j ≤ n, i > 0. Suppose k =

∑m

i=1 2ai where
a1 < . . . < am (in other words, ai is the ith bit set in the binary representation of k).
We also need the vector Z1 to Zn−k+1, each with domain [l, u], and the constraint

Zj =

m∑

i=1

L[ai, j +

i−1∑

k=1

2ak ].

Figure 3 shows the intra-variable dependencies for an example.
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Fig. 3. Dependencies between partial sum variables L and Y and their initial domains for the
SEQUENCE(2, 3, 5, [Y1, . . . , Y7]) constraint.

We have O(n log k) variables L that are subject to O(n log k) ternary constraints
and O(n) variables Z that are subject to O(n) linear constraints of arity O(log k).
The constraint propagation cost equals the number of invocations of the filtering al-
gorithm for this constraint times the cost of one invocation. The number of invoca-
tions is bounded by the number of values in the domains of the variables. Hence,
the propagation cost of a ternary constraint is O(u). For all ternary constraints we
have a cost of O(u)O(n log k) = O(nu log k). Also, we have O(n) variables Z
that are subject to O(n) linear constraints. We split linear constraints of the form
a = b1 + b2+, . . . , +bp−2 + bp−1 + bp into ternary constraints as follows: a =
b1 + (b2 + (, . . . , (bp−2 + (bp−1 + bp)))). Each parenthesised expression creates an ad-
ditional variable. Instead of having O(n) linear constraints of arity O(log k), we have
O(n log k) ternary constraints. The cardinality of each variable domain in these con-
straints is O(u). Consequently, the propagation cost for the original linear constraints is
O(u)O(n log k) = O(nu log k). Therefore we can enforce bounds consistency on this
encoding in O(nu log k) + O(nu log k) = O(nu log k) time down a branch of a search
tree. However, this may not achieve domain consistency on the SEQUENCE constraint.
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There are a number of redundant constraints we can add to improve propagation. In
fact, we can add any permutation of partial sums that add up to k. It is not hard to show
that such additional redundant constraints can help propagation.

4 Theoretical comparison

We compare theoretically those encodings on which we may not achieve domain con-
sistency on the SEQUENCE constraint. We will show that we get more propagation with
LG than AD, but that AD, CS and LG are otherwise incomparable. During propagation,
all auxiliary variables in CS, LG, AD and PS encodings will always have ranges as
their domains; consequently, bounds consistency is equivalent to domain consistency
for them.

Theorem 3. Bounds consistency on LG is strictly stronger than bounds consistency on
AD.

Proof. Suppose LG is bounds consistent. Consider any AMONG constraint in AD. It is
not hard to see how, based on the partial sums in LG, we can construct support for any
value assigned to any variable in this AMONG constraint. To show strictness, consider
SEQUENCE (3, 3, 4, [Y1, . . . , Y6], {1}) with Y1, Y2 ∈ {0} and Y3, . . ., Y6 ∈ {0, 1}.
Enforcing bounds consistency on LG fixes Y5 = Y6 = 1. On the other hand, AD is
bounds consistent. ut

Theorem 4. Bounds consistency on CS is incomparable to bounds consistency on AD.

Proof. Consider SEQUENCE (1, 1, 3, [Y1, Y2, Y3, Y4], {1}) with Y1 ∈ {0} and Y2, Y3,
Y4 ∈ {0, 1}. Now AD is bounds consistent. In CS, we have S0, S1 ∈ {0}, S2 ∈ {0, 1},
S3, S4 ∈ {1}. As S3 and S4 are equal, enforcing bounds consistency on CS prunes 1
from the domain of Y4.

Consider SEQUENCE (1, 2, 2, [Y1, Y2, Y3, Y4], {1}) with Y3 ∈ {0} and Y1, Y2, Y4 ∈
{0, 1}. In CS, we have S0 ∈ {0}, S1 ∈ {0, 1}, S2, S3 ∈ {1, 2}, S4 ∈ {2, 3}. All
constraints in CS are bounds consistent. Enforcing bounds consistency on AD prunes 0
from the domains of Y2 and Y4. ut

From the proof of Theorem 4 it follows that bounds consistency on CS does not
enforce domain consistency on SEQUENCE when SEQUENCE is monotone.

Theorem 5. Bounds consistency on CS is incomparable with bounds consistency on
LG.

Proof. Consider SEQUENCE (2, 2, 4, [Y1, Y2, Y3, Y4, Y5], {1}) with Y1 ∈ {1} and Y2,
Y3, Y4, Y5 ∈ {0, 1}. All constraints in LG are bounds consistent. In CS, we have S0 ∈
{0}, S1 ∈ {1}, S2, S3 ∈ {1, 2}, S4 ∈ {2}, S5 ∈ {3}. As S4 and S5 are ground and
S5 = S4 + 1, Enforcing bounds consistency on CS fixes Y5 = 1.

Consider SEQUENCE (2, 3, 3, [Y1, Y2, Y3, Y4], {1}) with Y1 = 1 and Y2, Y3, Y4 ∈
{0, 1}. Now CS is bounds consistent. However, enforcing bounds consistency on LG
prunes 0 from Y4. ut
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Recall that singleton bounds consistency on CS is equivalent to domain consistency
on SEQUENCE. We therefore also consider the effect of singleton consistency on the
other encodings where propagation is hindered. Unlike CS, singleton bounds consis-
tency on AD or LG may not prune all possible values.

Theorem 6. Domain consistency on SEQUENCE is strictly stronger than singleton
bounds consistency on LG.

Proof. Consider SEQUENCE (2, 2, 4, [Y1, Y2, Y3, Y4, Y5], {1}) with Y1 ∈ {1} and Y2,
Y3, Y4, Y5 ∈ {0, 1}. Consider Y5 = 0 and the LG decomposition. We have P0,1 ∈
{1}, P0,2, P0,3, P0,4 ∈ {0, 1}, P0,5 ∈ {0}, P1,1, P1,2 ∈ {1, 2}, P1,3, P1,4 ∈ {0, 1},
P2,1, P2,2 ∈ {2}. All constraints in LG are bounds consistent. Consequently, we do not
detect that Y5 = 0 does not have support. ut

Theorem 7. Domain consistency on SEQUENCE is strictly stronger than singleton
bounds consistency on AD.

Proof. By transitivity from Theorems 6 and 3. ut
We summarise relations among the decompositions in Figure 4.

DC(SEQ)
 SBC(AD)


BC(LG)


BC(CS)
SBC(CS)


SBC(LG)


BC(AD)


A

A

A


B

B

B


A is strictly stronger than B


A and B are incomparable


A and B are equivalent


Fig. 4. Relations among decompositions of the SEQUENCE constraint.

5 The Multiple SEQUENCE constraint (MR)

We often have multiple SEQUENCE constraints applied to the same sequence of vari-
ables. For instance, we might insist that at most 1 in 3 cars have the sun roof option and
simultaneously that at most 2 in 5 of those cars have electric windows. We propose an
encoding for enforcing domain consistency on the conjunction of m such SEQUENCE

constraints (we shall refer to this as MR). Suppose that the jth such constraint, j ≥ 1, is
SEQUENCE(lj , uj , kj , [X1, . . . , Xn], vj). We suppose that the values being counted are
disjoint. We channel into a new sequence of variables Yi where Yi = j if Xi ∈ vj

else Yi = 0. We now construct an automaton whose states record the last k′ − 1
values used where k′ is the largest kj . Transitions of the automaton ensure that all
SEQUENCE constraints are satisfied. Domain consistency can therefore be enforced
using the REGULAR constraint in O(nmk′−1) time. The automaton for the Multiple
SEQUENCE with 2 SEQUENCEs is presented in Figure 5.
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Fig. 5. The automaton for the Multiple SEQUENCE constraint with two SEQUENCEs:
SEQUENCE(0, 1, 2, [X1, . . . , Xn], {1}) and SEQUENCE(2, 3, 3, [X1, . . . , Xn], {2}) with
D(Xi) = {0, 1, 2}, for i ∈ {1, . . . , n}.

Table 1. Randomly generated instances with a single SEQUENCE constraint and ∆ = 1. Number
of instances solved in 100 sec / average time to solve.

n k PS HPRS CD AD GSC LG CS

50
7 20 / 0.003 20 / 0.002 20 / 0.005 20 / 0.133 20 / 0.538 20 / 0.044 20 / 0.002
15 20 / 0.023 20 / 0.001 20 / 0.005 20 / 0.004 20 / 0.018 20 / 0.003 20 / 0.001
25 20 / 0.094 20 / 0.003 20 / 0.005 19 / 0.066 19 / 0.396 19 / 0.034 20 / 0.001

200
7 20 / 0.016 20 / 0.030 20 / 0.242 15 / 2.517 14 / 5.423 17 / 0.003 20 / 0.020
15 20 / 0.120 20 / 0.030 20 / 0.235 7 / 1.850 6 / 0.106 9 / 0.083 20 / 0.016
25 20 / 0.661 20 / 0.027 20 / 0.235 3 / 0.005 3 / 0.039 3 / 0.004 20 / 0.016
50 20 / 5.423 20 / 0.028 20 / 0.232 4 / 18.255 3 / 1.361 6 / 5.926 20 / 0.014

500
7 20 / 0.043 20 / 0.336 20 / 4.086 9 / 6.756 8 / 1.046 13 / 0.009 20 / 0.150
15 20 / 0.320 20 / 0.334 20 / 4.130 4 / 13.442 3 / 0.121 6 / 0.012 20 / 0.100
25 20 / 1.816 20 / 0.279 20 / 4.017 1 / 0 1 / 0 3 / 0.013 20 / 0.085
50 20 / 16.762 20 / 0.290 20 / 4.032 0 / 0 0 / 0 2 / 11.847 20 / 0.086

TOTALS
solved/total 220 /220 220 /220 220 /220 102 /220 97 /220 118 /220 220 /220

avg time for solved 2.298 0.124 1.566 2.376 1.115 0.524 0.045
avg bt for solved 0 0 0 42830 4319 3239 33

6 Experimental Results

To compare performance of the different encodings, we carried out a series of experi-
ments. The first series used randomly generated instances so we could control the pa-
rameters precisely. The second series used some nurse rostering benchmarks and car
sequencing benchmarks to test more realistic situations. Experiments were run with
ILOG Solver 6.1 on an Intel Pentium 4 CPU 3.20Ghz, 1GB RAM.

6.1 Random instance

For each possible combination of n ∈ {50, 200, 500}, k ∈ {7, 15, 25, 50}, ∆ = u −
l ∈ {1, 5}, we generated twenty instances with random lower bounds in the interval
[0, k − ∆). We used a random value and variable ordering and a time-out of 100 sec.
Results are given in Tables 1–2.

Instances can be partitioned into two groups. In the first group, n > 50 and ∆ < 3.
On these instances, assignment of one variable has a strong impact on other variables. In
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Table 2. Randomly generated instances with a single SEQUENCE constraint and ∆ = 5. Number
of instances solved in 100 sec / average time to solve.

n k PS HPRS CD AD GSC LG CS

50
7 20 / 0.004 20 / 0.001 20 / 0.005 20 / 0.001 20 / 0.003 20 / 0.002 20 / 0.002
15 20 / 0.025 20 / 0.001 20 / 0.006 20 / 0.001 20 / 0.005 20 / 0.001 20 / 0.002
25 20 / 0.100 20 / 0.001 20 / 0.006 20 / 0.001 20 / 0.008 20 / 0.002 20 / 0.002

200
7 20 / 0.016 20 / 0.020 20 / 0.262 20 / 0.003 20 / 0.017 20 / 0.005 20 / 0.024
15 20 / 0.133 20 / 0.031 20 / 0.251 20 / 0.005 20 / 0.026 20 / 0.005 20 / 0.028
25 20 / 0.665 20 / 0.030 20 / 0.242 20 / 0.007 20 / 0.038 20 / 0.006 20 / 0.020
50 20 / 5.538 20 / 0.039 20 / 0.242 20 / 0.012 20 / 0.073 20 / 0.010 20 / 0.019

500
7 20 / 0.047 20 / 0.195 20 / 4.362 20 / 0.012 20 / 0.085 20 / 0.012 20 / 0.154
15 20 / 0.358 20 / 0.383 20 / 4.183 20 / 0.015 20 / 0.119 20 / 0.017 20 / 0.235
25 20 / 1.786 20 / 0.411 20 / 4.127 20 / 0.019 20 / 0.146 20 / 0.021 20 / 0.201
50 20 / 17.016 20 / 0.342 20 / 4.077 11 / 0.034 11 / 0.298 12 / 0.033 20 / 0.120

TOTALS
solved/total 220 /220 220 /220 220 /220 211 /220 211 /220 212 /220 220 /220

avg time for solved 2.335 0.132 1.615 0.009 0.065 0.009 0.073
avg bt for solved 0 0 0 2 2 1 19

the extreme case when ∆ = 0 instantiation of one variable assigns on average another
n/k variables. So, we expect DC propagators to significantly shrink variable domains
and reduce the search tree. As can be seen from Table 1, DC propagators outperform
non-DC propagators. Surprisingly, CS has the best time of all combinations and solved
all instances. Whilst it takes more backtracks compared to the DC propagators which
solve problems without search, it is much faster. The CD algorithm is an order of mag-
nitude slower compared to the HPRS propagator but in the current implementation we
use incremental all-pairs shortest path algorithms, rather than the single-source short-
est path algorithms of [10]. The PS algorithm is much slower compared to other DC
algorithms and its relative performance decays for larger k.

In the second group, n ≤ 50 or ∆ ≥ 3. On these instances, assignment of a variable
does not have a big influence on other variables. The overhead of using DC propagators
to achieve better pruning outweighs the reduction in the search space. The clear winner
in this case are those propagators that do not achieve DC. When k < 25 AD is best.
When k gets larger, LG solves more instances and is faster.

6.2 Nurse Rostering Problems

Instances come from www.projectmanagement.ugent.be/nsp.php. For
each day in the scheduling period, a nurse is assigned to a day, evening, or night shift
or takes a day off. The original benchmarks specify minimal required staff allocation
for each shift and individual preferences for each nurse. We ignore these preference
and replace them with a set of constraints that model common workload restrictions for
all nurses. The basic model includes the following three constraints: each shift has a
minimum required number of nurses, each nurse should have at least 12 hours of break
between 2 shifts, each nurse should have at least two consecutive days on any shift.
Each model was run on 50 instances. The scheduling period is 14 days. The number of
nurses in each instance was set to the maximal number of nurses required for any day
over the period of 14 days. The time limit for all instances was 100 sec. For variable
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Table 3. Models of the nurse rostering problem using the SEQUENCE constraint. Number of
instances solved in 100 sec / average time to solve.

SEQUENCE PS LO HPRS CD AD GSC LG CS
(1, 3, 3, {O}) 43 / 0.47 43 / 0.64 43 / 0.54 43 / 0.63 43 / 0.45 43 / 0.60 43 / 0.45 39 / 2.49
(3, 5, 5, {O}) 44 / 2.43 44 / 2.11 44 / 2.28 44 / 2.61 44 / 1.84 44 / 2.84 44 / 1.87 40 / 3.53
(2, 2, 5, {O}) 39 / 5.41 39 / 4.76 40 / 7.41 38 / 4.97 36 / 7.50 35 / 7.73 36 / 8.56 36 / 5.36
(2, 2, 7, {O}) 23 / 9.09 23 / 7.92 23 / 5.64 23 / 7.50 22 / 11.16 22 / 18.21 22 / 11.66 23 / 4.53
(2, 3, 5, {O}) 26 / 4.65 26 / 4.92 27 / 6.77 26 / 3.91 27 / 5.47 26 / 4.27 27 / 5.81 26 / 5.77
(2, 5, 7, {O}) 22 / 3.45 23 / 6.90 22 / 2.22 22 / 2.43 23 / 6.06 22 / 3.28 22 / 2.10 22 / 2.28
(1, 3, 4, {O}) 27 / 7.02 26 / 5.25 27 / 6.75 26 / 4.35 27 / 5.80 26 / 4.69 27 / 6.05 25 / 6.18

TOTALS
solved/total 224 /350 224 /350 226 /350 222 /350 222 /350 218 /350 221 /350 211 /350

avg time for solved 4.169 4.068 4.263 3.475 4.776 5.170 4.676 4.218
avg bt for solved 11045 9905 13804 8017 20063 12939 18715 17747

Table 4. The Car Sequencing Problem. Number of instances solved in 100 sec / average time to
solve.

The basic model from the Ilog distribution +
PS LO HPRS CD AD LG CS

CarSequencing 36 / 8.21 36 / 8.26 35 / 7.59 34 / 7.85 36 / 8.15 36 / 7.95 36 / 8.10 35 / 5.91
TOTALS

solved/total 36 /78 36 /78 35 /78 34 /78 36 /78 36 /78 36 /78 35 /78
avg time for solved 8.21 8.26 7.59 7.85 8.15 7.95 8.10 5.91

avg bt for solved 518 518 265 211 518 518 518 265

ordering, we branched on the smallest domain. Table 3 gives results for those instances
that were solved by each propagator. In these experiments n < 50. As expected from
the random experiments, the AD decomposition outperforms all other decompositions.
The only exception are instances with ∆ = 0 and non-DC propagators lose to DC
algorithms and the CS decomposition.

6.3 Car Sequencing Problems

In this series of experiments we used car sequencing problems benchmarks. All in-
stances are taken from CSPLib (the first set of benchmarks). We used the car sequenc-
ing model from the Ilog distribution as the basic model and added each encoding as
a redundant constraint to this model. The time limit for all instances was 100 sec. All
SEQUENCE constraints in these benchmarks are monotone. Hence, GSC enforces DC
on the SEQUENCE part of it, and an introduction of redundant constraints does not give
extra pruning. As Table 4 shows, the basic model gives the best performance.

6.4 Multiple SEQUENCE constraints

We also evaluated performance of the different propagators on problems with multiple
SEQUENCE constraints. We again used randomly generated instances and nurse roster-
ing problems. For each possible combination of n ∈ {50, 100}, k ∈ {5, 7}, ∆ = 1, we
generated twenty random instances with four SEQUENCE constraints. All variables had
domains of size 5. An instance was obtained by selecting random lower bounds in the
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Table 5. Randomly generated instances with 4 SEQUENCE constraints and ∆ = 1. Number of
instances solved in 100 sec / average time to solve.

n k MR PS LO HPRS CD AD GSC LG CS
50 5 20 / 0.05 6 / 12.58 6 / 17.03 5 / 0.81 5 / 4.76 6 / 13.75 5 / 10.59 7 / 15.05 0 / 0

7 20 / 0.86 6 / 20.85 6 / 16.89 7 / 23.99 4 / 0.15 6 / 14.02 5 / 15.90 8 / 26.81 2 / 5.80

100 5 20 / 0.11 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0
7 20 / 1.83 2 / 8.98 2 / 7.52 2 / 10.48 1 / 0 1 / 0 1 / 0 1 / 0 0 / 0

TOTALS
solved/total 80 /80 14 /80 14 /80 14 /80 10 /80 13 /80 11 /80 16 /80 2 /80

avg time for solved 0.71 15.61 15.61 13.78 2.44 12.81 12.04 19.99 5.80
avg bt for solved 0 72078 72078 64579 2214 185747 51413 257831 106008

Table 6. Models of the nurse rostering problem using the SEQUENCE constraint. Number of
instances solved in 100 sec / average time to solve.

MR PS LO HPRS CD AD GSC LG CS
Model 1 9 / 10.62 4 / 12.61 4 / 14.78 4 / 7.38 4 / 19.00 4 / 6.41 4 / 16.87 4 / 5.58 4 / 5.64
Model 2 8 / 1.40 4 / 0.08 4 / 0.11 4 / 0.04 4 / 0.06 4 / 0.04 4 / 0.08 4 / 0.04 4 / 0.04

TOTALS
solved/total 17 /100 8 /100 8 /100 8 /100 8 /100 8 /100 8 /100 8 /100 8 /100

avg time for solved 6.28 6.35 7.45 3.71 9.53 3.22 8.47 2.81 2.84
avg bt for solved 3470 30696 30696 30696 30696 30232 30232 30430 30749

interval [0, k − ∆]. We excluded instances where
∑m

i=1 li ≥ k to avoid unsatisfiable
instances. We used a random variable and value ordering and a time-out of 100 sec. All
SEQUENCE constraints were enforced on disjoint sets of cardinality one.

Experimental results are given in Table 5. The Multiple SEQUENCE propagator sig-
nificantly outperforms other propagators in both the time to find a valid sequence and
the number of solved instances. For bigger values of n, the Multiple SEQUENCE prop-
agator is the only one able to solve all instances. However, due to its space complexity,
to use this propagator, k and m need to be relatively small and n < 100.

In the second series of experiments we used nurse scheduling benchmarks. We re-
moved the last constraint from the basic model described in the previous section and
added two sets of non-monotone SEQUENCE constraints to give two different models.
In the first model, each nurse has to work 1 or 2 night shifts in 7 consecutive days, 1
or 2 evening shifts, 1 to 5 day shifts and 2 to 5 days-off. In the second model, each
nurse has to work 1 or 2 night shifts in 7 consecutive days, and has 1 or 2 days off in
5 days. In order to test the performance of the Multiple SEQUENCE constraint on large
problems, we built a schedule over a 28 days period. The number of nurses was equal to
the maximum number of nurses required for any day over the period multiplied by 1.5.
The total number of variables in an instance is about 500. Table 6 shows the number of
instances solved by each propagator. The Multiple SEQUENCE propagator again solved
the most instances.

7 Conclusion

The SEQUENCE constraint is useful in modelling a range of rostering, scheduling and
car sequencing problems. We proved that down a branch of a search tree domain con-
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sistency can be enforced on the SEQUENCE constraint in just O(n2 log n) time. This
improves upon the previous bound of O(n3) for each call down the branch [6]. To
propagate the SEQUENCE constraint, we introduced half a dozen new encodings, some
of which do not hinder propagation. We also considered a generalization of SEQUENCE

constraint – the Multiple SEQUENCE constraint. Our experiments suggest that, on very
large and tight problems, the existing domain consistency algorithm is best. However,
on smaller or looser problems, much simpler encodings are better, even though these en-
codings hinder propagation. When there are multiple SEQUENCE constraints, especially
when we are forcing values to occur, a more expensive propagator shows promise.

This study raises a number of questions. For example, what other global constraints
can be efficiently and effectively propagated using simple encodings? As a second ex-
ample, can we design heuristics to choose an effective encoding automatically?
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