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.ieAbstra
t. We introdu
e some new mappings of 
onstraint satisfa
tionproblems into propositional satis�ability. These en
odings generalize mostof the existing en
odings. Unit propagation on those en
odings is thesame as establishing relational k-ar
 
onsisten
y on the original prob-lem. They 
an also be used to establish (i,j)-
onsisten
y on binary 
on-straints. Experiments show that these en
odings are an e�e
tive methodfor enfor
ing su
h 
onsisten
ies, that 
an lead to a redu
tion in runtimesat the phase transition in most 
ases. Compared to the more traditional(dire
t) en
oding, the sear
h tree 
an be greatly pruned.1 Introdu
tionPropositional Satis�ability (SAT) and Constraint Satisfa
tion Problems (CSPs)are two 
losely related NP-
omplete 
ombinatorial problems. There has been
onsiderable resear
h in developing algorithms for both problems. Translationfrom one problem to the other 
an therefore pro�t from the algorithmi
 im-provements obtained on the other side. Enfor
ing a lo
al 
onsisten
y is one ofthe most important aspe
t of systemati
 sear
h algorithms. For CSPs, in par-ti
ular, enfor
ing ar
 
onsisten
y is often the best tradeo� between the amountof pruning and the 
ost of pruning. The AC en
oding [12℄ has the property thatar
 
onsisten
y in the original CSP is established by unit propagation in theen
oding [10℄. A 
omplete ba
ktra
king algorithm with unit propagation, su
has DP [6℄, therefore explores an equivalent sear
h tree to a CSP algorithm thatmaintains ar
 
onsisten
y. Likewise, DP on the Dire
t en
oding behaves as theForward Che
king algorithm whi
h maintains a weaker form of Ar
 Consisten
y[17℄. In this paper we show that there is a 
ontinuity between dire
t and supporten
odings, and following this line, many other 
onsisten
ies 
an be simulated byunit propagation in the SAT en
oding, for any 
onstraint arity and all in optimalworst 
ase 
omplexity.The rest of the paper is organized as follows. In se
tion 2 we present the basi

on
epts used in the rest of the paper. In se
tion 3 we introdu
e a family of en
od-ings 
alled the k-AC en
odings where k is a parameter. These en
odings enablea large family of 
onsisten
ies, the so 
alled relational k-ar
-
onsisten
y [8℄ tobe established by unit propagation on the SAT en
oding. They work with any




onstraint arity. Se
tion 4 fo
uses on binary networks, and shows that these en-
odings 
an also be used to establish any (i,j)-
onsisten
y (another large familyof 
onsisten
ies [9℄). We also show that unit propagation on the k-AC en
odings
an a
hieve the given level of 
onsisten
y in optimal time 
omplexity in all 
ases.Se
tion 5 introdu
es mixed en
odings that 
ombine previous ones to perform ahigh level of �ltering only where it is really needed. And �nally, in se
tion 6,we present some experiments, that assess the improvement of these en
odingsin 
omparison with the dire
t en
oding. The results also show the ability ofthis approa
h to solve large and hard problems by 
omparing it with the bestalgorithms for CSPs.2 Ba
kground2.1 Constraint Satisfa
tion Problem (CSP)A CSP P = (X ;D; C) is a set X = fX1; : : : ; Xng of n variables, ea
h takinga value from a �nite domain D(X1); : : : ; D(Xn) elements of D, and a set Cof e 
onstraints, d is the size of the largest domain. A 
onstraint CS , whereS = fXi1 ; : : : ; Xiag � X , is a subset of the Cartesian produ
t of the domainsof the variables in S, CS � D(X1) � D(X2) � : : : � D(Xa) that denotes the
ompatible values for the variables in S. The in
ompatible tuples are 
allednogoods. We are 
alling S, the s
ope of CS and jSj = a its arity. An instantiationI of a set T of variables is an element of the Cartesian produ
t of the domains ofthe variables in T . We denote I [A℄ for the proje
tion of I onto the set of variablesA, and CS [A℄ the proje
tion of the 
onstraint CS onto A. An instantiation I is
onsistent if and only if it satis�es all the 
onstraints, that is, 8CS 2 C su
h thatS � T; I [S℄ 2 CS . A solution is a 
onsistent instantiation over X .Let T and S be two distin
t sets of variables T; S � X , and I an instantiationof T whi
h is 
onsistent. A support J of I on S is an instantiation J of S su
hthat I [ J is 
onsistent. For an instantiation I , if there exists a set S su
h thatI has no support on S, then I doesn't belong to any solution.2.2 Dire
t En
odingThe dire
t en
oding [17℄ is the most 
ommonly used en
oding of CSPs intoSAT. There is one Boolean variable Xv for ea
h value v of ea
h CSP variable X .Xv = T means the value v is assigned to the variable X . Those variables appearin three sets of 
lauses :At-least-one 
lause : There is one su
h 
lause for ea
h variable, and theirmeaning is that a value from its domain must be given to this variable.Let X be variable and D(X) = fv1; v2; : : : ; vng, then we add the at-least-one
lause : Xv1 _Xv2 _ : : : _Xvn.At-most-one 
lause : There is one su
h 
lause for ea
h pair of values for ea
hvariable, and their meaning is that this variable 
annot get more than one value.Let vi; vj 2 D(X); i 6= j, then we add the at-most-one 
lause : :Xvi _ :Xvj .



Con�i
t 
lause : There is one su
h 
lause for ea
h nogood of ea
h 
onstraint,and their meaning is that this tuple of values is forbidden.Let CXY Z be a 
onstraint on the variablesX;Y; Z and [u; v; w℄ 2 D(X)�D(Y )�D(Z) an instantiation forbidden by CXY Z ([u; v; w℄ =2 CXY Z), then we add the
on�i
t 
lause : :Xu _ :Y v _ :Zw.2.3 AC En
odingThe AC en
oding [12℄ enables a SAT pro
edure to maintain ar
-
onsisten
yduring sear
h through unit propagation. It en
odes not only the stru
ture ofthe network, but also a 
onsisten
y algorithm used to solve it. It di�ers fromthe dire
t en
oding only on the 
on�i
t 
lauses whi
h are repla
ed by support
lauses, the others 
lauses remain un
hanged.Support 
lause : Let X;Y be two variables, v 2 D(X) a value of X andfw1; : : : ; wkg the supports of X = v on Y , then we add the support 
lause ::Xv _ Y w1 _ Y w2 _ : : : _ Y wk.This 
lause is equivalent to Xv ! (Y w1 _ Y w2 _ : : : _ Y wk) whi
h means : aslong as Xv holds (i.e, Xv 6= False, that is �the value v remains in X 's domain�),then at least one of its support must hold. Therefore when all the supports ofX = v are falsi�ed Xv is itself falsi�ed.3 Generalisation of the AC En
odingThe AC en
oding 
an only be applied to binary networks, be
ause support
lauses en
ode the supports of a single variable on another single variable. Ourgoal is to en
ode any kind of support that follows from the de�nition in se
-tion 2.1. The new en
oding we introdu
e here, k-AC en
oding, represent supportson subsets S of variables of any size, for an instantiation of another subsets T ofany size. Sin
e a literal stands for an assignment, an instantiation (or a support)of several variables 
orresponds to a 
onjun
tion of positive literals. A k-AC
lause represents the impli
ation between the instantiation and its supports: ifthe instantiation holds, one of the supports must hold. Let [v1; : : : ; vp℄ be a sup-port on X1; : : : ; Xp of a given instantiation on other variables. The 
onjun
tionthat en
odes this support is (X1v1^ : : :^Xpvp). To keep the en
oding in 
lausalform, we need then to add an extra variable, say s, for this support and thefollowing equivalen
e, s $ (X1v1 ^ : : : ^ Xpvp) whi
h result in the followingequivalen
e 
lauses : (:s_X1v1); : : : ; (:s_Xpvp) and (:X1v1_ : : :_:Xpvp_s).We 
all s support-variable. If the support is unit (say Y = v), then there is noneed for an extra variable, and the support-variable is the 
orresponding booleanvariable (Y v).k-AC 
lause : Let CS be a 
onstraint, T = fX1; : : :Xkg � S be a set of k vari-ables, I = [v1 2 D(X1); : : : vk 2 D(Xk)℄ an instantiation of T and fs1; : : : ; smgthe supports of I on S�T , then we add the k-AC 
lause : :X1v1_ : : :_:Xkvk_s1 _ s2 : : : _ sm.This 
lause is equivalent to I ! (s1 _ s2 _ : : : _ sm) whi
h means : as long as Iholds then at least one of its support must hold. Therefore when all the supports



of I are falsi�ed I is itself falsi�ed i.e, the k-AC 
lause is redu
ed to the 
on�i
t
lause of length k forbidding I .In �gure 3, we show the four possible k-AC en
odings for a ternary 
onstraint.Note that, in the parti
ular 
ases where the set of support variables is a singletonor the empty set, in other words, a�k = 1 or a�k = 0, the 
onjun
tions standingfor the supports are unit and we do not need to add extra variables.
X Y Za a ba b bb a ab a b )en
oding

0-AC en
oding 3-AC en
odingT ! (S1 _ S2 _ S3 _ S4)^ ((Xa ^ Y a ^ Za)! F )^(Xa ^ Y a ^ Zb)$ S1^ ((Xa ^ Y b ^ Za)! F )^(Xa ^ Y b ^ Zb)$ S2^ ((Xb ^ Y b ^ Za)! F )^(Xb ^ Y a ^ Za)$ S3^ ((Xb ^ Y b ^ Zb)! F )(Xb ^ Y a ^ Zb)$ S42-AC en
oding 1-AC en
oding((Xa ^ Y a)! Zb)^ (Xa! (S1 _ S2)^((Xa ^ Y b)! Zb)^ (Xb! (S3 _ S1)^((Xb ^ Y a)! (Zb _ Za))^ (Y a! (S4 _ S5 _ S6))^((Xb ^ Y b)! F )^ (Y b! S4)^((Xa ^ Za)! F )^ (Za! S7)^((Xa ^ Zb) ! (Y a _ Y b))^ (Zb! (S7 _ S8 _ S9))^((Xb ^ Za) ! Y a)^ ((Y a ^ Zb)$ S1)^((Xb ^ Zb) ! Y a)^ ((Y b ^ Zb)$ S2)^((Y a ^ Za)! Xb)^ ((Y a ^ Za)$ S3)^((Y a ^ Zb)! (Xa _Xb))^ ((Xa ^ Zb) $ S4)^((Y b ^ Za)! F )^ ((Xb ^ Za)$ S5)^((Y b ^ Zb)! Xa) ((Xb ^ Zb)$ S6)^((Xb ^ Y a)$ S7)^((Xa ^ Y a)$ S8)^((Xa ^ Y b)$ S9)Table 1. First table: a ternary 
onstraint involving the variables X, Y, Z, the allowedtuples are given. Se
ond table: four possible k-AC en
odings of this 
onstraint, T =True and F = False.The k-AC 
lauses are a generalisation of support 
lauses in two di�erent ways.First they 
apture a larger family of 
onsisten
ies, relational k-ar
-
onsisten
y(se
tion 3) and (i; j)-
onsisten
y (se
tion 4). Se
ond they work for any 
onstraintarity. Note that support 
lauses are 1-AC 
lauses for binary 
onstraints, and
on�i
t 
lauses are a-AC 
lauses for 
onstraints of arity a. For instan
e, let CXY Zbe a 
onstraint on the variables X , Y and Z. If I = fX = u; Y = v; Z = wg is anallowed tuple, then the 
orresponding 3-AC 
lause is (Xu ^ Y v ^ Zw) ! Trueand is useless. If I is a nogood, then we have (Xu ^ Y v ^ Zw) ! False, whi
his a 
on�i
t 
lause (:Xu_:Y v _:Zw). Dire
t and support en
odings are thenparti
ular 
ases of k-AC en
oding.Re
all that in a CSP, a nogood is a forbidden set of assignments, :(X1 =v1 ^ : : : ^Xi = vi). And that a Boolean variable 
orrespond to an assignment,the atom Xivi represents Xi = vi. For the theorems and proofs below, the wordvariable will refer to a CSP variable, assignment to a Boolean variable of theen
oding and support to a 
onjun
tion of assignments in the 
on
lusion of ak-AC 
lause. An interpretation I is a fun
tion that asso
iates a value in f0; 1gto the atoms of a set of 
lauses B. I is a model (I(B) = True), i� all the 
lausesin B are satis�ed by I .



Theorem 1 (Corre
tness and 
ompleteness of the k-AC En
oding. ) Iis a model of the set with the at-least-one, at-most-one, and k-AC 
lauses,i� the assignment su
h that a variable X take a value v i� I(Xv) = T is asolution of the original 
onstraint network.Proof: Suppose that all the assignments of a nogood N are satis�ed.N = :(X1v1 ^X2v2 ^ : : :Xnvn)Let C be the k-AC 
lause whi
h premiss P is a subset of this nogoodC = (X1v1 ^X2v2 ^ : : : Xkvk)! (s1 _ s2 _ : : : sm); sj = (Xk+1jk+1 ^ : : :Xnjn)and let S be the rest of this nogood, S = N�P . This premiss is satis�ed and thenthe 
on
lusion must be satis�ed. Now re
all that at-least and at-most 
lausesensure that one and only one assignment per (CSP) variable is satis�ed. All thesupports in C refer to the same variables but are by de�nition di�erent fromS by at least one assignment, (say Xivi is the assignment in the nogood, andXiji is the assignment in the support). Sin
e, for this variable, Xivi is satis�ed,therefore Xiji is not, and then the whole 
on
lusion is not satis�ed.Let S be a solution of the original 
onstraint network, and let I be theassignment in whi
h I(Xiv) = T i�, in S, the value v is given to the variable Xi.S gives one and only one value to ea
h variable, the at-most-one and at-least-one 
lauses are thus satis�ed. Without loss of generality, let C be a k-AC 
lausewhi
h premiss P is an assignment on a set R and 
on
lusion are supports on aset T . If S is a solution then S[R [ T ℄ is 
onsistent and then S[T ℄ is a supportof S[R℄. Either P 6= S[R℄ and then C is satis�ed sin
e the premiss is falsi�ed, orS = S[R℄ and then S[T ℄ is one of its support and belongs to C's 
on
lusion. Cis then satis�ed sin
e both premiss and 
on
lusion are satis�ed. 2Unit propagation on the k-AC Clauses 
orresponds exa
tly to enfor
ing re-lational k-ar
-
onsisten
y. Relational ar
-
onsisten
y [8℄ extends the 
on
ept oflo
al 
onsisten
y, whi
h usually 
on
erns variables, to 
onstraints. A 
onstraintis relationally ar
-
onsistent if any instantiation whi
h is allowed on a subsetof its variables extends to a 
onsistent instantiation on the whole. Relationalk-ar
-
onsisten
y is the restri
tion of the de�nition above to sets of variables of
ardinality k.De�nition 1 (Relational k-ar
-
onsisten
y.). Let R = (X ;D; C) be a 
on-straint network, CS a 
onstraint over the set of variables S � X . CS is re-lationally k-ar
-
onsistent i� 8A � S su
h that jAj = k and 8I a 
onsistentinstantiation on A, I 
an be extented to a 
onsistent instantiation on S in rela-tion to CS . This means : if CS [A℄ is the proje
tion of the relation CS on A andI is 
onsistent on A, therefore I 2 CS [A℄.A 
onstraint network is relationally k-ar
-
onsistent i� all its 
onstraints arerelationally k-ar
-
onsistent.A k-AC 
lause is an impli
ation whi
h premiss is a 
onjun
tion that stands forthe k-instantiation I , and 
on
lusion is a disjun
tion of supports s1_s2_: : :_sm.



The k-AC 
lause for I is H = I ! s1_s2_ : : :_sm. Relational k-ar
-
onsisten
yensures that ea
h 
onsistent instantiation of k variables of a 
onstraint 
an beextented to all the variables of that 
onstraint. In other words, if an instantiationdoesn't satisfy this assertion, it is removed from the 
orresponding 
onstraint, i.e,this tuple is now expli
itly forbidden. In the 
ase of the k-AC 
lauses, when allthe supports (whi
h are linked to the 
onjun
tion of assignments they representby equivalen
e 
lauses), are falsi�ed, then the premiss must be falsi�ed and thisis exa
tly the nogood 
orresponding to the k-instantiation,H = :I . To prove theequivalen
e between unit propagation on those en
odings, and relational k-ar

onsisten
y on the original problem we �rst re
all some de�nitions given in [1℄and slightly modi�ed for our purpose.A CSP is said to be empty if at least one of its variables has an empty domainor at least one of its 
onstraints is empty, i.e, forbids all assignments.We denote sat2
sp(P) the transformation of a SAT-en
oded CSP into aCSP 
onsisting of a variable Xi with a domain D(Xi) = [v1; : : : ; vd℄ for ea
h at-least-one 
lause Xiv1 _ : : : _Xivd in P , and a 
onstraint forbidding the nogoodN = (X1 = v1 ^ : : : ^ Xk = vk) for ea
h 
on�i
t 
lause (:X1v1 _ : : : _ :Xkvk)(or support 
lause redu
ed to a 
on�i
t 
lause by unit propagation).First we show that the relational k-ar
 
onsistent 
losure of a CSP P , writ-ten r-k-AC(P) is empty i� the k-AC en
oding of P has an empty image undersat2
sp, that is, sat2
sp(k-sat(P)) is empty. We ignore the isuue of dis
ov-ering the emptyness. This is trivial, both in the original problem and in the en-
oding, when the empty 
onstraint arity is 1, whereas it is not for other arities,though it remains polynomial. Usually, this will be qui
kly dis
overed, providingthat the empty 
onstraint is small and that the bran
hing heuristi
 
hooses �rstthe variables of this 
onstraint.Se
ond we prove that, assuming the same bran
hing 
hoi
es, this equivalen
eis maintained at ea
h node of the sear
h tree by unit propagation in the en
od-ing. As a 
orollary, unit propagation on k-AC en
oding prunes the sear
h treeequivalently to relational k-ra
 
onsisten
y on the original problem.Lemma 1 (P) is empty after enfor
ing relational k-ar
 
onsisten
yi� sat2
sp(k-sat(P)) is empty.Proof: The relational k-ar
 
onsistent 
losure of P 
ontains all the nogoodsof length k forbidding k-instantiations that don't have any support on the restof the 
onstraint they belong to. By de�nition, the k-AC 
lause for su
h aninstantiation is the 
on�i
t 
lause of length k 
orresponding to the nogood. Thelater therefore belongs to sat2
sp(k-sat(P)). Moreover, all nogoods of lengthk are added to the relational k-ar
 
onsistent 
losure if and only if they are notsupported. Therefore, for any nogood N of length k, N 2 r-k-AC(P) i� N 2sat2
sp(k-sat(P))Beside, if P is emptied by relational k-ar
 
onsisten
y, then the empty 
on-straint arity is always k, sin
e only nogoods of size k are added during thepro
ess. 2



The proof of Lemmas 1 is based on the fa
t that the supports of an instanti-ation are equivalent in the en
oding and in the orginal problem. Unit propaga-tion ensures that this is the 
ase as well during sear
h. We 
onsider a relation-ally k-ar
 
onsistent CSP P , an assignment X = v and the indu
ed subprob-lem assign(X = v;P). In the SAT en
oding this 
orresponds to assign(Xv =T ,k-sat(P)). We prove that an instantiation looses a support be
ause of an as-signment in the CSP if and only if the k-AC 
lause of this instantiation loosesthe same support in the en
oding by unit propagation of the truth assignment.Lemma 2 If an instantiation J , support of another instantiation I in P is nota support anymore in assign(X = v;P) for relational k-ar
 
onsisten
y, thenthe support-variable sJ of the 
orresponding k-AC 
lause is set to False afterunit propagation.Proof:Without loss of generallity, let I be an instantiation on a set T of k variablesof a 
onstraint CS . Let J be a support of I for CS in P , su
h that J is not asupport of I in assign(X = v;P).Impli
itly, after the assignment X = v, all other values in D(X) are removed.If J is not a support, it means that 9X 2 T�S, su
h that J [X ℄ has been removedfrom its domain (J [X ℄ 6= v).In the en
oding, the assignment Xv = T , propagated to the at-most-one
lauses yelds the assignments Xw = F for all w 6= v. Let sJ be the propositionstanding for the support J , then the equivalen
e 
lause (:sJ _ J [X ℄) gives theunit 
lause :sJ , whi
h is propagated to the k-AC 
lause. Consequently, thesupport-variable sJ is set to False (it is not a �support� in the en
oding either).At any point of the resolution, a support-variable sJ belongs to the 
on
lusionof a k-AC 
lause (is not assigned to False) i� its 
orresponding support J holdsin the 
onstraint network. 2Lemmas 1 establishes that if the supports are the same in the original and inthe en
oded problem, then the problem is empty i� the reformulation is empty.Lemma 2 shows that this is the 
ase during sear
h.Theorem 2 Performing full unit propagation on at-least-one, at-most-one andk-AC 
lauses during sear
h is equivalent to maintain relational k-ar
-
onsisten
yon the original problem.From this follows a stri
t equivalen
e between the sear
h trees of an algo-rithm that maintains relational k-ar
 
onsisten
y in the original problem, andan algorithm that enfor
es unit propagation on the reformulation.3.1 Complexity of k-AC En
odingWe assume that n is the number of variables, d is the size of the domains, e isthe number of 
onstraints and a denotes their arity. We 
an ignore the at-mostand at-least 
lauses : there are n at-least 
lauses ea
h 
ontaining d literals, and



nd2 at-most 
lauses, whi
h are binary. This O(nd2) spa
e 
omplexity is in all
ases lower than the worst spa
e 
omplexity of the k-AC 
lauses. We thereforefo
us on the size of the k-AC 
lauses themselves.The total number of k-AC 
lauses is bounded by e(ak)dk . We need to 
over allthe 
onstraints (e). For ea
h 
onstraint, we 
onsider all the subsets of k variablesof that 
onstraint ((ak)). And for ea
h subset, we 
onsider all the instantiations(dk). The total number of literals for ea
h k-AC 
lause is bounded by k+(3(a�k) + 2)(da�k � 1). The premiss 
ontains k literals, and the 
on
lusion at mostda�k � 1. Furthermore, if a � k > 1, there are also (da�k � 1)(3(a � k) + 1)additional literals from the equivalen
y 
lauses: Ea
h one gives 1 
lause of sizea�k+1 and a�k 
lauses of size 2. The spa
e 
omplexity is then O(edk) 
lausesof O(d(a�k)) literals, whi
h is still O(eda) for any arbitrary 
onstraint and any k.Note that the spa
e 
omplexity of the reformulation and of the original problemare the same. Sin
e unit propagation 
an be established in linear time, the time
omplexity is also in O(eda), whi
h is optimal worst 
ase time 
omplexity.4 (i; j)-Consisten
ies in SAT.In addition to relational k-ar
-
onsisten
y, k-AC 
lauses allow us to enfor
eanother very 
ommon family of lo
al 
onsisten
ies (spe
i�
ally, (i; j)-
onsisten
y[9℄) by adding the joins of 
ertain 
onstraints and performing the k-AC en
odingon this augmented problem.De�nition 2 ((i; j)-Consisten
y.). A binary CSP is (i; j)-
onsistent i� 8Ei; Ejtwo sets of i and j distin
t variables, any 
onsistent assignment on Ei is a subsetof a 
onsistent assignment on Ei [Ej .This family in
ludes many well known 
onsisten
ies.� Ar
 Consisten
y (AC) 
orresponds to (1,1)-
onsisten
y.� Path Consisten
y (PC) 
orresponds to (2,1)-
onsisten
y.� Path Inverse Consisten
y (PIC) 
orresponds to (1,2)-
onsisten
y.If on binary networks, ar
 
onsisten
y is often the best 
hoi
e, higher level of�ltering may sometimes be useful. For instan
e, path 
onsisten
y is used in tem-poral reasoning. However, implementing algorithms to maintain other 
onsis-ten
y, and moreover, 
ombining this with improvements like (
on�i
t dire
ted)ba
kjumping and learning requires a lot of work. With our approa
h, just bysetting two parameters, (k and the size of the subsets to 
onsider) and applyinga SAT solver to the resulting en
oding, we 
an solve the problem with the 
hosen
onsisten
y and all the other features of the SAT solver.De�nition 3 (Join of Constraints.). Let CS1; CS2 be two 
onstraints, thejoin CS1 1 CS2 is the relation on S1 [ S2 
ontaining all tuples t su
h thatt[S1℄ 2 CS1 and t[S2℄ 2 CS2.Theorem 3 Enfor
ing (i; j)-
onsisten
y is equivalent to enfor
ing relational i-ar
-
onsisten
y on the join of all 
onstraints involved in a set of i+ j variables,for ea
h of them.



Proof: Let Ei be a set of i variables, If I , a 
onsistent instantiation on Ei,is (i; j)-in
onsistent, then there exists a set Ej of j variables su
h that 8IJ a
onsistent instantiation on Ei [Ej ; IJ [Ei℄ 6= I . Let C be the 
onstraint indu
edby the join of all the 
onstraints involved in Ei[Ej . C is the set of all the allowed,i.e, 
onsistent, instantiations on Ei [ Ej , but I is 
onsistent and I =2 C[Ei℄,therefore C is relationally i-ar
-in
onsistent (see def 1). Con
lusion : if I is (i; j)-in
onsistent, then for any set E of i+ j variables 
ontaining the variables of I ,the 
onstraint obtained by joining all 
onstraints whi
h s
opes are subsets of Eis relationally i-ar
-in
onsistent. 2The spa
e 
omplexity results of se
tion 3 also apply here, but the number of
onstraints is equal to the number of subsets of i+ j verti
es in the 
onstraintgraph, i.e, O(ni+j), and a = i+ j. Therefore the worst 
ase spa
e 
omplexity isO(ni+jdi+j), and so is the worst 
ase time 
omplexity. This is again optimal.5 Mixed En
odingThere is a 
lear relation between the tightness of a 
onstraint and the perfor-man
e of DP on that 
onstraint en
oded with the dire
t or a k-AC en
oding.Consider the binary not_equal 
onstraint. It 
an be en
oded by d 
on�i
t 
lausesof size 2 with the dire
t en
oding, whilst 2d 
lauses of size d are required in theAC-en
oding even though AC propagation in not_equal doesn't a
hieve mu
hpruning. On the other hand, 
onsider the binary equal 
onstraint. This is en-
oded with (d�1)2 binary 
lauses in the dire
t en
oding, while you need only 2dbinary 
lauses in the AC en
oding, and you 
an expe
t a lot of AC propagation.The spa
e 
omplexity and the level of propagation is thus linked to the tightnessof the 
onstraint. One strategy therefore is to adapt the en
oding to the 
on-straint's tightness, i.e, using the dire
t en
oding when the 
onstraint is loose andthe AC en
oding when it is tight. Moreover we 
an use, for ea
h 
onstraint, thek-AC 
lause with the best �adapted� k. The prin
ipal issue is to know a priorihow to pi
k k. The notion of m-looseness [14℄ give us a way to 
hoose amongthe di�erent k.De�nition 4 (m-looseness). A 
onstraint relation R of arity a is 
alled m-loose if, for any variable Xi 
onstrained by R and any instantiation I of theremaining a� 1 variables 
onstrained by R, there are at least m supports of I toXi that satisfy R.Theorem 4 (van Beek and De
hter[14℄) A 
onstraint network with domainsthat are of size at most d and relations that are m-loose is relationally (k,(d dd�me�1))-
onsistent for all k.Proof: See [14℄. 2We 
an restri
t this to relational (k,1)-
onsisten
y (that is relational k-ar
-
onsisten
y) and then we have the relation d dd�me � 1 � 1 whi
h is redu
edto : m � d2 . This means that, given a subset of variables, if all the relationsthat 
onstrain these variables are d2 -loose or more (every instantiations of this



subset minus one variable have at least d2 supports on this variable) then these
onstraints are relationally k-ar
-
onsistent for any k. Therefore enfor
ing rela-tional k-ar
-
onsisten
y will not give any pruning, at least initially. In addition,the dire
t en
oding would be more 
ompa
t for su
h 
onstraints. This suggeststo use support 
lauses whenever the number of supports is lower than d2 and
on�i
t 
lauses otherwise. Moreover, for a given 
onstraint arity a, the 
hoi
e isnow extented to any k-AC 
lause with k between 1 and a. To make a 
hoi
e, weasso
iate a treshold Tk on the number of supports above whi
h we 
hoose (k+1)-AC 
lauses rather than k-AC to en
ode a parti
ular instantiation. To 
omputethe mixed en
oding of a given 
onstraint we use the following algorithm:First we 
onsider all the instantiations of size 1 (all the values of all thevariables), and for ea
h of them we 
ount the number of supports (of size a�1),if this number is less than T1 then we add the 
orresponding 1-AC 
lause. Ina se
ond step, we 
onsider all the instantiations of size 2 
ontaining a non-yet-en
oded instantiation of size 1, if the number of supports of this instantiation isless than T2 we en
ode it with a 2-AC 
lause, and so on for a steps.We propose Ta�1 = d2 whilst we don't have yet any sound value for Tk withk less than a� 1.Theorem 5 (Corre
tness and 
ompleteness of the mixed en
oding. ) Iis a model of the set 
ontaining the at-least-one, at-most-one, and any k-AC
lauses, a

ording to the rules above, i� I is a solution of the 
onstraint network.Proof: By de�nition, all the nogoods have at least one k-AC 
lause whi
hpremiss is one of its subsets, then theorem 1 (
orre
tness) 
an be applied.Theorem 1 says that k-AC en
oding is 
omplete for any k, therefore, k-AC
lauses are satis�ed by I , and so is any 
ombination of them. 25.1 ComplexityTheorem 6 The mixed en
oding (k = [1; 2℄) requires less than 32d2 literals toen
ode a binary 
onstraint, This limit 
an be asymptoti
ly rea
hed.Proof: Let us 
onsider the Boolean matrix of the 
onstraint. Let r (resp 
) bethe number of rows (resp 
olomns en
oded with support 
lauses, 0 � r; 
 � d.These 
lauses have ea
h less than d=2 literals, so we have (r+ 
)d2 literals for thesupports 
lauses. There are (d � r)(d � 
) elements of the matrix wi
h are not
overed by the support 
lauses. Besides, there are r(d� 
) and l(d� r) elementswhi
h are 
overed by only one support 
lause. On ea
h row/
olomn 
ontainingthese elements, there are at most d2 0, so at most, half of them are 0. For ea
h0 we need a 
on�i
t 
lause of 2 literals, then, to en
ode these elements, we need(r + 
)d2 � r
+ d2 literals. If 
 > d2 , then this number of literals in
rease when rde
rease, and if 
 < d2 , then it in
rease with r. This number is maximized whenr is max and l min or vi
e versa. The worst 
ase is then r = d and 
 = 0, in that
ase there are 32d2 literals.



Let C be a 
onstraint on variables with odd domains and relation matrixas given in the margin (that is a 
he
kerboard of 0 and 1, plus a full
olumn of 0 and a full but one row of 1). The rows are all but one en
odedwith support 
lauses, half of this 
lauses are of size b d2 
 and the other halfare of size d d2 e, the last row is en
oded with a nogood. All the 
olomnsbut one are en
oded with b d2 
 
on�i
t 
lauses, the remaining one with aunary support 
lause. That is 3 + b d2 
2 + b d2 
 � d d2 e + b d2 
 � 2 � (d � 1)literals, whi
h is asymptoti
ly equal to 32d2 2.
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ompare the di�erent en
odings.Se
tion 6 and 6 give a 
on
rete idea of the improvement, in term of pruning and
pu time, in 
omparison with dire
t en
oding. In se
tion 6 we also show thatmixed en
odings are an even better way to en
ode heterogeneous or stru
turedproblems. And �nally, in se
tion 6 we 
ompare this approa
h with the state of theart in CSP. For all the random instan
es, we used Bessiere and Frost's randomgenerator. The CSPs are de�ned by 5 parameters, the number of variables, thesize of the domains, the density (i.e, the number of 
onstraints), their arityand their tightness (i.e, the number of nogoods per 
onstraint). The four �rstparameters are �xed and the tightness is given on x axis, the y axis giving the
pu time or the number of ba
ktra
ks. We generally fo
used on results at thephase transition, when the number of satis�ables instan
es is the 
losest to 50%.We used Berkmin SAT solver [11℄ on generated 
nf �les.k-AC En
odings. This experiment involves 1-AC, 2-AC and dire
t en
oding onthe following 
lass of ternary networks, 30 variables, 10 values, 60 
onstraints. 1-AC and 2-AC en
odings need both 5 times less ba
ktra
ks than dire
t en
oding3at the phase transition. But only 2-AC en
oding translate this greater �lteringinto a 
pu time redu
tion (again a fa
tor 5). We 
an explain this by the amountof propagations needed to perform the same �ltering in 1-AC en
oding, be
auseof the extra variables.(i,j)-En
odings. This experiment involves PIC en
oding, AC en
oding and di-re
t en
oding on two 
lasses of networks. A sparse 
lass, 150 variables, 15 values,350 binary 
onstraints, and a dense one, 70 variables, 10 values, 310 binary 
on-straints. A

ording to the theory, PIC prunes even more the sear
h tree thanAC, (i.e, the ba
ktra
ks are less numerous). However, on dense networks, wherethe gain in pruning is more evident, the amount of extra variables, as previouslyfor 1-AC en
oding, slow down the resolution.Mixed En
oding. To emphasize the bene�ts of the mixed en
oding on morestru
tured problem, we used the Instru
tion S
heduling Problem, introdu
ed in[15℄, The problem is to �nd a minimum length instru
tion s
hedule for a ba-si
 blo
k of instru
tions (a straight-line sequen
e of 
ode with a single entry3 experiments with Cha� showed an even greater di�eren
e, about a fa
tor 10 forba
ktra
ks, and 15 for 
pu time.
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ktra
ksFig. 1. Cpu time and number of ba
ktra
ks of BerkMin on GAC (1-AC), 2-AC andDire
t (3-AC) en
oding.point) subje
t to pre
eden
e, laten
y, and resour
e 
onstraints. Basi
 blo
ks arerepresented as DAG (Dire
t A
y
li
 Graph). To model this problem, van Beekused one variable for ea
h instru
tion, its domain represents the possible po-sitions in the total order we have to �nd. The 
onstraints are: instru
tioni <instru
tionj + k for ea
h ar
 ij labelled with k in the DAG (instru
tionj mustwait at least k 
y
les after instru
tioni), and an AllDi� 
onstraint on all thevariables. The domains are initiallized with a lower bound on the number of
y
les required, and the instan
e is solved, if no solution is found they are in-
remented and the instan
e is solved again. The �rst solution en
ountered isthe optimal solution. Ea
h point of the �gure 6 represents the runtime Berk-min needed to �nd the optimal solution on the mixed en
oding (x axis) andAC en
oding (y axis). (all instan
es have the same parameters : 20 instru
tion,40 
onstraints of laten
y and a laten
y between 1 and 3 in
lusive). Figure 6
ompares the mixed and dire
t en
odings. The mixed en
oding is almost alwaysbetter in 
pu-time, 
ompared to the dire
t or the AC en
oding. The number ofba
ktra
ks is nearly the same as in AC en
oding, while the spa
e 
omplexity isgreatly redu
ed (mostly be
ause of the alldi� 
onstraint).Comparison with the State of the Art in CSP. We also measured thee�
ien
y of this approa
h in 
omparison with the state of the art for CSPsolvers. We have done these 
omparisons on the following 
lasses:� (a) binary sparse : <180 variables, 15 values, 450 
onstraints, 147 nogoods>.� (b) binary dense : <90 variables, 10 values, 400 
onstraints, 38 nogoods>.� (
) ternary dense : <10 variables, 10 values, 100 
onstraints, 208 nogoods>.� (d) ternary medium : <30 variables, 6 values, 75 
onstraints, 109 nogoods>.� (e) ternary sparse : <50 variables, 10 values, 70 
onstraints, 790 nogoods>.For binary 
lasses, 100 instan
es were generated and solved by MAC4 , (MaintainAr
 Consisten
y) with AC2001 algorithm [5℄, and the dynami
 variable ordering(dvo) H1_DD_x [2℄, whi
h outperforms the well known dom/deg heuristi
. The4 For MAC the number of ba
ktra
ks 
an be slightly overestimated, sin
e the valuegiven is in fa
t the number of visited nodes.
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ktra
ks, dense networksFig. 2. Cpu time and number of ba
ktra
ks of BerkMin on Dire
t, AC and PIC en-
oding for two 
lasses of networks.same instan
es were translated in SAT problems with AC and PIC en
oding,and then solved by BerkMin561.For ternary 
lasses 100 instan
es were also generated and solved by NFCx[3℄, where x is 0 or 5, using GAC2001 [5℄, and dom/deg dvo [4℄ without singletonpropagation [13℄. Here again, the same instan
es were translated with 1-AC, 2-AC, 3-AC, mixed(1) and mixed(2) en
odings, and solved by BerkMin561 5. Theresults of our approa
h take also into a

ount the translation duration, whi
hin
lude the time spent on reading the 
sp �le and writing the 
nf. Note that thisduration is insigni�
ant when the problem is really hard, and 
an be dramati
lyredu
ed by not 
reating a temporary �le6. The �rst observation is that theperforman
e of BerkMin on high �ltering k-AC en
odings (all but dire
t) isbetter on sparse than on dense networks. There are at least two reasons for thatbehaviour : �rstly, for dense networks, at the 
ross-over point, the 
onstraintsare loose, and then there is not mu
h propagation. Moreover, re
all that k-AC
lauses en
ode the supports, and they are more numerous when the 
onstraintsare loose. A 1-AC 
lause (and its equivalen
e 
lauses) for a ternary 
onstraint 
anhave between 1 and 3d2 literals, a

ording to the number of supports, that 
antherefore make a great di�eren
e for the SAT solver. However, The results belowshow that this approa
h 
an really handle large and hard problems. The best5 all Christian Bessiere's algorithms ran on a 1.6 GHz pentium, whereas BerkMin ranon a 1.8 GHz one, BerkMin's results are then 
orre
ted by a fa
tor 1.8/1.6.6 most of this time is spent on i/o
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tFig. 3. 20 instru
tions, 40 laten
y 
onstraints, max laten
y 3. 
pu time for BerkMinon Mixed en
oding (y axis) and AC en
oding or Dire
t en
oding (x axis).
lass (a) MAC2001 AC + BM PIC + BM#ba
ktra
ks 55559 66749 62006total time 39.6 165 178translation N/A 1.37 1.2
lass (b) MAC2001 AC + BM PIC + BM#ba
ktra
ks 56718 136139 103173total time 17.0 354 373translation N/A 0.5 0.3(a) results of MAC2001 and BerkMinon AC and PIC en
odings.
NFC 1-AC 2-AC 3-AC mix(1) mix(2)(
) time 0.1 6.5 5.5 2.1 5.5 5.4(
) trans N/A 0.87 1.8 1.8 1.9 2(d) time 0.37 3.26 0.84 1.14 0.84 0.86(d) trans N/A 0.37 0.42 .72 0.45 0.46(e) time 18.40 59.8 15.5 85.8 11.4 9.5(e) trans N/A 2.4 1.6 2.4 1.6 1.6(b) Results of NFC and BerkMin ondi�erent en
odings on 3 
lasses ofternary networks.Fig. 4. total time is 
pu time for MAC and BerkMin's 
pu time + translation duration,all in se
onds.algorithm should probably always be to solve the original problem rather thanits reformulation, but when good algorithms are hard to make, reformulation isa good alternative. For example NFC is 
ertainly more distant from the �bestpossible algorithm� than MAC is, and then BerkMin on the right k-AC en
odingis very 
lose, and sometimes better, than NFC. In the same way, there are veryfew good PIC [7℄ or �Maintain Relational K-Ar
 Consisten
y � algorithms.7 Con
lusionWe presented a new family of mappings of 
onstraint problems into satisfa
tionproblems, and proved the optimality in spa
e and time 
omplexity of these en-
odings. We also proved that performing full unit propagation on k-AC en
odingis the same as enfor
ing relational k-ar
-
onsisten
y on the original problem, orused in a slightly di�erent way, (i,j)-
onsisten
y. We showed how to mix thedi�erent en
odings to take advantage of their best individual features. And �-nally we demonstrated preliminary experimental results of the e�
ien
y of theintrodu
ed en
odings.From a 
onstraint programming perspe
tive, these new en
odings are a veryeasy way to implement and test algorithms for enfor
ing a wide range of �lter-ings, all in optimal worst 
ase time 
omplexity.7 Su
h en
odings also pro�t from7 this goal was also pursued in [16℄, though the approa
h was 
ompletly di�erent



the sophisti
ated bran
hing heuristi
s and other algorithmi
 features of the SATsolver (like non-
hronologi
al ba
ktra
king and nogood learning). Given the re-
ent rapid advan
es in SAT solvers, they o�er an alternative way to solve hardproblem instan
es. From the satis�ability perspe
tive, these en
odings are usefulfor modelling, sin
e many real life problems are likely to have straightforwardrepresentations as CSPs whereas SAT models are often not as easy to make.Modelling is also far more understood for CSPs than for SAT. These en
odingsallow the SAT resear
h 
ommunity to take advantage of CSP modelling results.A
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