The Tractability of Global Constraints

Christian Bessiere Emmanuel Hebrafd Brahim HnicH, and Toby Walsh

! LIRMM-CNRS, Montpelier, France.
bessiere@lirmm.fr
2 Cork Constraint Computation Center, University CollegekCtreland.
{e.hebrard, b.hnich, @4c.ucc.ie

Abstract. Constraint propagation is one of the techniques centraheostc-
cess of constraint programming. Fast algorithms are useuuioe the search
space either before or during backtracking search. Proipagglobal constraints
is intractable in general. In this paper, we characterizeiraber of important
questions related to constraint propagation. For exampéeconsider the two
questions: “Is this problem generalized arc-consisteat® “What are the max-
imal generalized arc-consistent domains?”. We identifgetielencies between
the tractability and intractability of these questions finite domain variables.
Finally, we prove intractability for a range of global camstts.

1 Introduction

It is well known that constraint propagation on binary (oubded arity) constraints is
polynomial. However, constraint toolkits support an iragie@g number of non-binary
or global constraints. Global constraints permit usersadehproblems compactly and
solvers to prune the search space efficiently and effegtileimany problems, the ar-
ity of such global constraints can grow with the problem s&ech global constraints
may therefore exhibit complexities far beyond the quadfatbpagation cost of binary
constraints. Indeed, it is easy to see that reasoning withaglconstraints is intractable
in general. In this paper, we characterize the differenéaring tasks related to con-
straint propagation. For example, does this value havestps a second example,
what are the maximal generalized arc-consistent domaires®@htify dependencies
between the tractability and intractability of these diffiet questions. Afterwards, we
study a range of existing and new global constraints We shatvthey are NP-hard
to propagate. Thus, we expect that any decomposition witliéni propagation (unless
P=NP).

2 Theoretical Background

A constraint satisfaction problefCSP) involves a set of variables, each with a do-
main of values, and a set of constraints that specify allovegdbinations of values for
subsets of variables. We will denote variables with uppeedatters and values with
lower case. We assume a constraihis given intensionally by a function of the form
fo : D(X1) x ... x D(X,,) = {True, False} whereD(X;) are the domains of the

variables in the scopeur(C) = (X, ..., X,) of the constrainC. (We say thaD is
a domain orvar(C).) We only consider constraints for which f¢ is computable in
polynomial time.

Constraint toolkits usually contain a library of predefirmmhstraint typesith a
particular semantics that can be applied to sets of vasablth various arities and
domains. A constraint is only an instance of a constraing typ given variables and
domains. For instancelldifferentis a constraint typealldifferent X, .., X3) with
D(X,:) = D(X2) = {1,2},D(X3) = {1,2,3} is an instance of constraint of the
typealldifferent

A solution to a CSP is an assignment of values to the variadalésfying the con-
straints. To find such solutions, we often use tree seararitiighs that construct par-
tial assignments and enforce a local consistency to prumedhrch space. One of the
oldest and most commonly used local consistencies is geregtarc consistency. A
constraintC' is generalized arc consiste(GAC) iff, when a variable in the scope 6f
is assigned any value, there exists an assignment to theathiables inC' such that
C'is satisfied [5]. This satisfying assignment is cakkegbportfor the value. In general,
applying GAC can remove any value anywhere in the domain efi@ble. This is why
GAC is usually applied to constraints that invofugte domainvariables. In the follow-
ing, we will consider finite domain integer variables in wihivery value in the domain
is given extensionally.

3 Complexity of Generalized Arc Consistency

We characterize five different problems related to genagdlarc consistency reason-
ing. These problems can be adapted to any other local censistis long as it rules
out values in domains (e.g., bounds consistency, singltooonsistency, etc.) and not
non-unary tuples of values (e.g., path consistency, celati-consistency, etc.)

In the following, RROBLEM(C) represents the class of problems defined bp &
LEM on constraints of the typ€. PROBLEM(C) will sometimes be written ROBLEM
when no confusion is possible. Note also that we use theiontBROBLEM[data] to
refer to the instance of ®BLEM(C) with the input 'data’.l{ denotes the set of all
constraint types.

Table 1 contains the five problems. The first problem we canssdlGACSJPPORT
It is at the core of all the generic arc consistency algorthithe second problem,
ISITGAC, is not directly related with operations used in bas@paigation algorithms.
It is largely introduced for academic purposes. The thirdation, NoGACWIPEOUT,
can be used to decide if we do not need to backtrack at a givda imothe search
tree. (Note thaD' C D stands for¥X; € var(C), D'(X;) C D(X;).) An algorithm
like GAC-Schema [4] removes values from the initial domaifigariables till we have
themaximalgeneralized arc consistent subdomains. That is, the sabdbsnains that
are GAC and any larger set of subdomains are not GACX GAC characterizes this
“maximality” problem. We finally consider GACBMAIN, the non-decision problem
of returning the domains that a GAC algorithm computes.

In the following, we describe the relationships between tthetability and in-
tractability of the different problems defined above.

Table 1. The five problems related to genaralized arc consistency

Problem Instance Question/Output

GACSuUPPORT(C) C € C, D onvar(C), X €|Does valuew for X have a support of' in
var(C), andv € D(X) D?

ISITGAC(C) C € C, D onvar(C) Does GAC®PPORTC, D, X, v] answer
“yes” for each variableX € var(C) and
each value € D(X)?

NOGACWIPEOUT(C)|C € C, D onvar(C) Is there any non emptp’ C D on which
IsSITGAC|C, D'] answers “yes"?

MAX GAC(C) C € C, D onwvar(C), andls it the case thatd TGAC[C, D] answers

D C Dy “yes"and AD', D Cc D' C Dy, on which

IsSITGAC[C, D'] answers “yes"?

GACDOMAIN(C) C € C, Do onvar(C) The domain D such that
MAX GAC[C, Dy, D] answers “yes”

3.1 Tractable cases

The five problems defined above are not independent. Knowlaldgut the tractability
of one can give information on the tractability of others. W¥entify here the depen-
dencies between the tractabilities of the different qoesti

Theorem 1. Given a constraint typé,

1. GACSurPORTE P iff NOGACWIPEOUT € P iff GACDOMAIN € P

2. {GACSuUPPORT, NOGACWIPEOUT, GACDOMAIN} € P = ISITGAC € P
3. {GACSuPPORT, NOGACWIPEOUT, GACDOMAIN } € P = MAXGAC € P
4. MAXGAC € P = ISITGAC e P

Proof. (1) If GACSUPPORTIs in P, then we can answerdGACWIPEOUT just by
checking that at least one value in the domain of a variabie var(C) has support.
Indeed, all the values in the support themselves have stippor

If NOGACWIPEOUT is in P, we can check th&fX, v) has support just by calling
NOGACWIPEOUT with only v in the domain ofX.

It is trivial that if GACSUPPORTIs in P, using a generic GAC algorithm that calls
GACSuPPORTa polynomial number of times, we will have the output of GAGD
MAIN in polynomial time.

By calling GACDoMAIN with only (X, v) in the domain ofX, the obtained do-
main will be non empty iff(X,v) has a support, then answering GAGE& ORTIn
polynomial time if GACDOMAIN was in P.

(2) Trivial.

(3) Trivial.

(4) If MAX GAC is in P, it is sufficient to call it withD both as the initial and current
domain to answerd TGAC onD. O

[GACSupport]<—>[NoeAcwupeout] [GACSupport)(—)[NoGACWipeOut]

GACDomain GACDomain

—— iftailin P then head in P ——> iftail is NP-hard then head is NP-hard

Fig. 1. Summary of the dependencies between problems

3.2 Intractablecases

We can identify similar dependencies between these questiben they are intractable.
Interestingly, we have only been able to identify the inegedationships betweeamax -
GAC, IsITGAC and the other three problems. Itis a challenging opestipreto prove
either that one of these results which is just an implicatewerses or that it does not
reverse in general.

Theorem 2. Given a constraint typé,

1. GACSuPPORTIis NP-complete iffNOGACWIPEOUT is NP-complete iffGAC-
DoMAIN is NP-hard

2. ISITGAC is NP-completes- GACSUPPORT, NOGACWIPEOUT, GACDOMAIN
are NP-hard

3. MAXGAC is NP-hard= GACSupPPORT, NOGACWIPEOUT, GACDOMAIN are
NP-hard

4. IsITGAC is NP-completes MAX GAC is NP-hard

Proof. (1) GACSuPPORTC) can be transformed in®OIGACWIPEOUT(C): GivenC €
C, GACSuPPORTC, D, X, v] is solved by calling MGACWIPEOUT[C, D|p(x)={v}]-

NOGACWIPEOUTI[C, D] can be reduced to GAG®PORTby calling GACSJP-
PORT[C, D, X, v] for each value in D(X) for one of theX in var(C). GAC leads to
a wipe out iff none of these values has a support.

GACSuUPPORTC) can be reduced to GACEMAIN (C) since GAC®PPORTC, D,
X, v] answers "yes” iff GACIMAIN[C, D|p(x)-{v}] doesn’t return empty domain.

GACDOMAIN[C, D] can be reduced to GAG®PORTby performing a polynomial
number of calls to GACS8pPORTC, D, X, v], one for eachh € D(X), X € var(C).
When the answer is “no” the valueis removed fromD (X)), otherwise it is kept. The
domain obtained at the end of this process represents that@ftGACDOMAIN.

(2) IsSITGACIC, D] can be reduced to GAG®PORTby performing a polynomial
number of calls to GACS8pPPORTC, D, X, v], one for eachy € D(X), X € var(C).
If one of them answers “no"dITGAC answers “no”, otherwise it answers “yes”.

(3) MAXGAC[C, Dy, D] can be reduced to GAG®PORT We perform a poly-
nomial number of calls to GAG$PORTC, Dy, X, v], one for eactw € Dy(X),
X € war(C). When the answer is “yes” the valueis added to a (initially empty)
setD'(X). MAX GAC answers “yes” if and only if the domaid’ obtained at the end
of the process is equal .

(4) IsITGAC|C, D] can be transformed imax GAC[C, D, D]. O

Table 2. A list of counting constraints that are intractable to pigguta with GAC.

Name Definition

nvalue(N, [X1,..., X,]) N={X;|1<i<n}
egec([X1, ..., Xn],[O1,..., Onl) V5,05 =) 1Xi =

rgcc([Xl,...,Xn]], [01,...,Om) Vj,Oj = Zi |Xl :]|
common(N, M, [X1,..., Xn|, (Y1, Ym)|N = {i | Xs = Y;}andM = {j | X; = Y}
cardpath(N, [X1,..., X,.],C) N=Y"""1CXi, ..., Xite1)|

4 Examples of intractable constraints

In the long version of this paper [3], we give a number of caaists for which the
complexity of GAC was not known. We use the basic tools of cotatonal complexity
to show their tractability or intractability. Table 2 givesme of the intractability results
we obtained for counting constraints on integer variali®esofs are in [3].

Thenvalue constraint was proposed in [6]. The extended global calitiinaon-
straint,egcc, allows theO; to be variables and not just fixed intervals as in fcc
has been proved intractable in [7]. Thgcc constraint is a simplgcc in which repe-
titions of variables are allowed in the sequef{¢é,, . . ., X,,]]. The common constraint
was introduced in [1]. Theardpath constraint[2], ensures that when we slideown
the sequencd’, ..., X, it holds V times.cardpath is intractable even if enforcing
GAC on('is polynomial and the sequence of variail&s, .. ., X,,,] does not contain
any repetition.

Aknowledgements The last three authors are supported by Science Foundaétamd and
an ILOG software grant. We thank Marie-Christine Lagasdaresome advice on reducibility
notions.

References

1. N. Beldiceanu. Global constraints as graph properties stnuctured network of elementary
constraints of the same type. SICS Technical Report T2Q00/0

2. N. Beldiceanu and M. Carlsson. Revisiting the cardipabperator and introducing
cardinality-path constraint family. IRroceedings ICLP’0lpages 59-73, 2001.

3. C. Bessiere, E. Hebrard, , B. Hnich, and T. Walsh. The dtality of global constraints.
Technical Report APES-83-2004, APES Research Group, Mé#.20

4. C. Bessiere and J.C. Régin. Arc consistency for genemasdtcaint networks: Preliminary
results. InProceedings IJCAI'97pages 398-404, 1997.

5. R. Mohr and G. Masini. Good old discrete relaxationPhoceedings ECAI'88pages 651—
656, 1988.

6. F. Pachet and P. Roy. Automatic generation of music progrénProceedings CP'9%ages
331-345, 1999.

7. C. Quimper. Enforcing domain consistency on the extemgleldal cardinality constraint is
NP-hard. TR CS-2003-39, School of Computer Science, Usiityeof Waterloo, 2003.

8. J-C. Régin. Generalized arc consistency for globalinatity constraints. InProceedings
AAAI'96, pages 209-215, 1996.

