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Abstract. We have started a systematic study of global constraintssbarsl
multiset variables. We consider here disjoint, partitemg intersection constraints
in conjunction with cardinality constraints. These globahstraints fall into one
of three classes. In the first class, we show that we can dems®the constraint
without hindering bound consistency. No new algorithmsef@e need be de-
veloped for such constraints. In the second class, we shatvd#itcomposition
hinders bound consistency but we can present efficient poljal algorithms
for enforcing bound consistency. Many of these algorithiEat a dual view-
point, and call upon existing global constraints for fird@nain variables like
the global cardinality constraint. In the third class, wewthat enforcing bound
consistency is NP-hard. We have little choice thereforetbugnforce a lesser
level of local consistency when the size of such constrajrdes.

1 Introduction

Global (or non-binary) constraints are one of the factorgredto the success of con-
straint programming [7, 8, 1]. Global constraints permé tiser to model a problem
easily (by compactly specifying common patterns that odcunany problems) and
solve it efficiently (by calling fast and effective constrapropagation algorithms).
Many problems naturally involve sets and multisets. Fomgxa, the social golfers
problem (prob010 at CSPLib.org) partitions a set of goliets foursomes. Set or mul-
tiset variables have therefore been incorporated into ofdlse major constraint solvers
(see, for example, [3, 6,5, 11] for sets, [4] for multisets relar the naméags. In a
recent report, Sadler and Gervet describe a propagatordtoteal disjoint constraint
on set variables with a fixed cardinality [10]. The aim of th&per is to study other
such global constraints on set and multiset variables.dJ$ia techniques proposed in
[2], we have proved that some of these global constraintsiBrbard to propagate. For
example, both that nost 1- i ncomobn anddi st i nct constraints on sets of fixed
cardinality proposed in [9] are NP-hard to propagate. We@that others are polyno-
mial but not decomposable without hindering propagatioa.tiérefore give efficient
algorithms for enforcing bound consistency on such coimtga
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2 Formal background

A multiset is an unordered list of elements in which repetitis allowed. We assume
that the elements of sets and multisets are integers. Basi@tions on sets general-
ize to multisets. We lebce(m, X)) be the number of occurrencessafin the multiset
X. Multiset union and intersection are defined by the idexgtiticc(m, X UY) =
mazx(occ(m, X), occ(m,Y")) andocc(m, X N'Y) = min(occ(m, X), occ(m,Y)). Fi-
nally, we write| X | for the cardinality of the set or multiséf, and use lower case to
denote constants and upper case to denote variables.

An integer variableV is a variable whose domain is a set of integeksn (V).
The minimum (maximum) element a¥ is denoted bymin(N) (maz(N)). A set
(resp. multiset) variableX is a variable whose domain is a set of sets (resp. mul-
tisets) of integers, given by an upper boumg{ X) and a lower boundb(X) (i.e.,
Ib(X) C X C ub(X)). We define bound consistency for integer, set and multeet v
ables. We can therefore reason about constraints whicHtaineously involve integer,
set and multiset variables. An assignment is bound valltsif&lue given to each set or
multiset variable is within these bounds, and the valuergteesach integer variable is
between the minimum and maximum integers in its domain. Asttamt is bound con-
sistent (denoted bC'(C)) iff for each set or multiset variabl®, ub(X) (resplb(X))
is the union (resp. intersection) of all the values fothat belong to a bound valid as-
signment satisfying the constraint, and for each integeinkte IV, there is a bound
valid assignment that satisfies the constraint for the masirand minimum values in
the domain ofX. An alternative definition of BC for set and multiset variedbis that
the characteristic function (a vector of 0/1 variables)dach set variable, or the occur-
rence representation (a vector of integer variables) foh @aultiset variable is bound
consistent [12]. We say that a constraint is “decomposdbtbére exists a decompo-
sition into a polynomial number of bounded arity constrsjraind this decomposition
does not hinder bound consistency. We will also use gezexhiirc consistency (GAC).
A constraint is GAC iff every value for every variable can bé¢emded to a solution of
the constraint.

3 Taxonomy of global constraints

Global constraints over set and multiset variables can bgosed from the following
(more primitive) constraints:

Cardinality constraints: Many problems involve constraints on the cardinality of a
set or multiset. For example, each shift must contain at faasnurses.
Intersection constraints: Many problems involve constraints on the intersection be-

tween any pair of sets or multisets. For example, shifts imaxgt at least one person

in common.
Partition constraints: Many problems involve partitioning a set or multiset. For ex

ample, orders must be partitioned to slabs in the steel falil design problem.
Ordering constraints: Many problems involve sets or multisets which are indistin-

guishable. For example, if each group in the social golfeoblem is represented
by a set then, as groups are symmetric, these sets can betpdrvii@ can break
this symmetry by ordering the set variables.



Counting constraints: We often wish to model situations when there are constraints
on the number of resources (values) used in a solution. Feanpbe, we might have
set variables for the nurses on each shift and want to coamitmber of times each
nurse has a shift during the monthly roster.

Weight and colour constraints: Many problems involve sets in which there is a weight
or colour associated with each element of a set and therecastraints on the
weights or colours in each set. For example, the weight oéhef orders assigned
to a slab should be less than the slab capacity.

Tables 1 and 2 summarize some of the results presented ipapés. Given a col-
lection of set or multiset variables, Table 1 shows diffé@mbinations of restrictions
on the cardinality of the intersection of any pair of set oitisat variables (rows) with
constraints restricting the cardinality of each set or mettvariable (columns). For
instance, the top left corner is th® sj oi nt constraint, in which where all pairs of
set or multiset variables are disjoint (i.e., their intet&mn is empty) and there is no
restriction on the cardinality of the individual sets or tigéts. On the other hand, the
NEDi sj oi nt also ensures that each set or multiset is non-empty. Talssitilar to
Table 1, except that we also ensure that the set or multisisthlas form a partition.
Constraints likeDi sj oi nt, Partiti on, andFCDi sj oi nt on set variables have
already appeared in the literature [3,5, 9, 10, 4].

All results apply to set or multiset variables unless othsewndicated. In each
entry, we name the resulting global constraint, state wrdthis tractable to enforce
BC on it and whether it is decomposable. For exampleFBear t i t i on constraint
over set variables (see Table 2) is not decomposable but wenaeitain BC on it in
polynomial time. Over multiset variables, the constramtdames intractable.

Vi<j...
Vk ... ‘X.,'OXJ'l:O ‘Xiﬂlegk ‘X.,'F-]lezk |XiﬂXj‘=k
Di sj oi nt I ntersect « Intersect > Intersect =
- polynomial polynomial” polynomial” NP-hard
decomposable decomposable decomposable |not decomposable
NEDi sj oi nt NEI nt er sect « NEI nt er sect > FCl nter sect —
[Xk| >0 polynomial polynomial ~ polynomial ~ NP-hard
not decomposable decomposable decomposable |not decomposable
FCDi sj oi nt FCl nter sect « FCl ntersect » NEI nt er sect —
| X% | = m |poly on sets, NP-hard on multisgts ~ NP-hard ~ NP-hard ~ NP-hard
not decomposable not decomposable|not decomposable|not decomposable
Table 1. Intersectionx Cardinality
U Xi=xAvi<j...
Yk ... ‘X.,'OXJ"ZO |XiﬂXj‘§k|XiﬂXj‘Zk‘X,'ﬂXj‘:k
- Partition: polynomial ? ? ?
decomposable
[Xx] >0 NEPar ti ti on: polynomial ? ? ?
not decomposable
FCPartition
| X1 | = my |polynomial on sets, NP-hard on multisets ? ? ?
not decomposable

Table 2. Partition + Intersectiork Cardinality



4 Disjoint constraints

The Di sj oi nt constraint on set or multiset variables is decomposabée imary
empty intersection constraints without hindering boundsistency [12]. When it is
over sets, it appears in a number of constraint solvers saith@G Solver (under the
namel [ cAl I Nul I I nt er sect ) and ECLiPSe. On multisets, the binary version of
Di sj oi nt appears in ILOG Configurator [4].

We now study bound consistency on tREDi sj oi nt and FCDi sj oi nt con-
straints over set and multiset variables. These cons$ranget not decomposable so we
present algorithms for enforcing BC on them or we prove aithility.

4.1 FCDisjoint

A filtering algorithm forFCDi sj oi nt over set variables was independently proposed
in [10]. We give here an alternative polynomial algorithnattluses a dual encoding
with integer variables (also briefly described at the endL6f). J.F. Puget has pointed
out to us that this algorithm is very similar to the propagatlgorithm used in ILOG
Solver for thel | cAl I Nul | | nt er sect constraint when cardinalities are specified
for the set variables involved, and when the “extended” pgapion mode is activated.
We further show that bound consistency@Di sj oi nt is NP-hard on multisets.

When X1, ..., X,, are set variables ank, ..., k, are given constants, we can
achieve BC on &CDi sj oi nt (Xy,..., X,,,k1,...,k,) constraint as follows:

AlgorithmBGC- FCD- Set s

1. Forallv € U ub(X;), introduce an integer variablé, with dom(Y,) = {}
2. Initialize the domain of each, as follows:
(@) dom(Yy,) < {i|v € lb(X;)}
(b) if |[dom(Yy)| > 1 thenfail
(c) if |dom(Y,)| = 0 thendom(Y,) < {i| v € ub(X;)} U {n+1} /* n+lis a dummy */
3. Maintain GAC ongcc(Y, {1..n+1}, B) whereY is the array ofY,’s, and B is the array
of the corresponding bounds of tlis where for alli < n we haveB[i] = k;..k; and
B[n+1] =0..00
4. Maintain the following channelling constraints, for aki n and for allv:
(@) i € dom(Yy) ¢ v € ub(X;)
(b) dom(Yy) = {i} <> v € Ib(X;)

Remarkgcc (Y, {1..n + 1}, B) is the global cardinality constraint that imposes that in
any assignment of the variableg”, the valuei from {1..n + 1} appears a number of
times in the rangé#[i]. The dummy value: + 1 is necessary to prevent a failure of the
gcc when any,, cannot take any value ih.n (i.e., valuev cannot be used by any;).

We first prove the following lemma.

Lemma 1. Define the one-to-one mapping between assignnteotthe dual variables
Y and assignmentS’ of the original set variables(; by: v € S'[X;] iff S[Y,] = .
ThenS is consistent witlgcc in step (3) ofBC- FCD- Set s iff S’ is consistent for
FCDi sj oi nt.



Proof. (=) We prove thatS’ is:

Disjoint: Each dual variabl&’, has a unique value, say Therefore inS’ a value
v cannot appear in more than one of the variablgs .. X,,. In the case wher¥, =
n + 1, v does not belong to any set variable assignment.

Fixed Cardinality:gcc ensures that the valuésare used by exactly; dual vari-
ablesY,;. Hence [S'[X]| = ;.

(<) We prove thafS is:

Consistent witlycc: By construction oft”, if |S’[X;]| = k; for eachi € 1..n, each
i will appear exacthy; times inS, thus satisfying thgcc. (The dummy value: + 1
has no restriction on its number of occurrence¥ i

Consistent witlt” domains:By construction. O

In the algorithmBC- FCD- Set s, let d be the number oY, variables introduced,
where eaclY, has domain of size at most+ 1.

Theorem 1. BC- FCD- Set s is a sound and complete algorithm for enforcing bound
consistency ofCDi sj oi nt with set variables, that runs i@ (nd?) time.

Proof. Soundnes® value v is pruned fromub(X;) in step (4) ofBC- FCD- Set s
either becausgéwas not put irdom(Y,,) in step (2) or because tlgec has removed
from dom(Y,) in step (3). Lemma 1 tells us that both cases imply thesinnot belong
to X; in a satisfying tuple folFCDi sj oi nt . A valuev is added tolb(X;) in step
(4) if dom(Y,) = {i} after applying GAC on thgicc. From Lemma 1 we deduce
that any satisfying tuple fdfCDi sj oi nt necessarily containsin X;. We must also
show that the algorithm does not failfCDi sj oi nt can be made bound consistent.
BC- FCD- Set s can fail in only two different ways. First, it fails in step)(Z a value
belongs to two different lower bounds. ClearBCDi sj oi nt cannot then be made
bound consistent. Second, it fails in step (3) if tec cannot be made GAC. In this
case, we know by Lemma 1 thR€Di sj oi nt cannot then be made bound consistent.

Completenesd et v € ub(X;) after step (4). Then, € dom(Y,) after step (3).
Thegcc being GAC, there exists an assignméhsatisfyinggcc, with S[Y,] = .
Lemma 1 guarantees there exists an assigniiewith {v} C S’[X;]. In addition, let
v & Ib(X;) after step (4). Then, there exist dom(Y,), j # i, after step (3). Thus,
there is an assignmeStsatisfyinggcc with S[Y,] = j. Lemma 1 tells us that there is
a satisfying assignmesst’ of FCDi sj oi nt with v notin S’[X;].

Complexity Step (1) is inO(d), and step (2) iO(nd). Step (3) has the complexity
of thegcc, namelyO(nd?) since we havel variables with domains of size at most
n + 1. Step (4) is inD(nd). Thus,BC- FCD- Set s is in O(nd?). |

Theorem 2. Enforcing bound consistency ®CDi sj oi nt with multiset variables is
NP-hard.

Proof. We transform 38T into the problem of the existence of a satisfying assign-
ment forFCDi sj oi nt. Let F = {c,...,cn} be a 3CNF on the Boolean variables
x1,...,Z,. We build the constrainECDi sj oi nt (X1,..., Xsntm, k1, ksntm)

as follows. Each time a Boolean variablg appears positively (resp. negatively) in a
clausec;, we create a value/ (resp.w’). For each Boolean variable, we create two
valuesp; andn;. Then, we build th&n + m multiset variables as follows.



1. Vi € 1.n, I* X; will take thep;’s iff x; = 1*/
(@) k; = number of occurrences af in a clause
(b) {} € X; C{v] |z €c;}U{pi,...,pi} I*k; copies ofp;*/
2. Vi € n+1.2n, * X; will take then;'s iff z; = 0*/
(@) k; =number of occurrences efr; in a clause
(b) {} C X; C {wf | —x; € Cj} U {ni, . ,ni} I*k; Copies ofn;*/
3. Vie2n+1.3n, /* X; forcesX;_,, and X;_»,, to be consistent */
(a) k=1
(b) {} € Xi € {ns,pi}
4. Vj € 1.m, I* X3,; represents the clausg*/

(a) k3n+j =1 ) ) )

(b) {} C Xsnyj C {vzj'lawzj'zvvzj'g} if Cj = Tiy V Tiy V Tig

Let M be a model of". We build the assignmeston theX;’s such thati € 1..n,
if M[LE,] =1 thenS[Xl] = {p,', Ce ,pi}, S[XH-n] = {wf € Ub(XH_n)}, S[Xi+2n] =
{Tli}, elseS[Xi] = {’Ulj S U,b(X,')}, S[Xl-l—n] = {ni, . ,ni}, S[Xi+2n] = {pz}

By construction, the cardinalitigs are satisfied and the disjointness are satisfied
on X, ..., Xs,. In addition, the construction ensures that if a Booleanade z; is
true in M (resp. false in\/) none of thev! (resp.w!) are used and all the? (resp.v?)
are already taken by, ..., X3,. Thus,Vj € 1..m, S[X3,4;] is assigned one of the
vaIueSU{ orw{ representing a true literal, or —x; in M. And M being a 33T model,
we are sure that there exists such values not already takéh by. , X5,,. Therefore,
S satisfied=CDi sj oi nt .

Consider now an assignme$ibf the X;'s consistent witi=CDi sj oi nt . Build the
interpretation)/ such thatV/ [z;] = 1iff S[X; 2,] = {n;}. Thanks to the disjointness
and cardinalities among . .., X3,, we guarantee that §[ X, = {n;} all thew!
are already taken b¥(;,,,, and if S[X;12,] = {p;} all thev{ are already taken hy;,
so that they cannot belong to aiy,, ;. But.S satisfyingFCDi sj oi nt , we know that
for eachj € 1..m, X3, ; is assigned a value consistent wif . .., X3,,. Therefore,
M is a model ofF'.

As a result, deciding the existence of a satisfying assigrrfar FCDi sj oi nt
with multiset variables is NP-complete. Then, deciding thiee GAC finds a wipe out
on the occurrence representation is coNP-complete. Irtiaddon the transformation
we use, if GAC detects a wipe then BC dbg¢Because of the way; andn; values
are set). So, deciding whether BC detects a wipe out is cadfplete, and enforcing
bound consistency dRCDi sj oi nt with multiset variables is NP-hard. O

4.2 NEDisjoint

The constrainNEDI sj oi nt (X4,...,X,,) on set variables can be seen as a particular
case of constrairfeCDi sj oi nt in which the cardinality of the variables; can vary

8 GAC on the occurrence representation of multisets is in gémet equivalent to BC (whilst
on sets itis). lfub(X1) = ub(X>) = {1, 1, 2,2}, andk, = k2 = 2, GAC on the occurrence
representation dFCDi sj oi nt removes the possibility faK; to have 1 occurrence of 1. BC
does not remove anything since the bounds 0 and 2defl, X, ) are consistent.



from 1 to oo instead of being fixed t&;. Since the way the algorithlBBC- FCD- Set s
is written permits to express such an interval of values ffier ¢ardinality of the set
variablesX;, the algorithmBC- NED- Set s is a very simple modification of it. In step
(3) of BC- FCD- Set s it is indeed sufficient to assigB][:] to 1..co instead ofk;..k;,
for 1 < i < n. J.F. Puget has pointed out to us that thec Al | Nul | | nt er sect
constraint in “extended” mode will also achieve BC on norpgnset variables.
WhenNEDi sj oi nt involves multiset variables, BC remains polynomial. Intféc
is sufficient to transform the multisets in sets and toBGeNED- Set s on the obtained
sets. Once BC achieved on these sets, we just have to rekwiritial number of
occurrences, notedit-occ, for each remaining value. The cardinality of the multisets
are not bounded above, so that if one value has support, angenof occurrences of
the same value have support also.

AlgorithmBC- NED- Mset s

1. for eachi € 1..n, v occurring inub(X;) do

init-occy, (X, v) < occ (v, ub(X;)); occ(v, ub(X;)) < 1

init-occr, (X, v) < occ(v,b(X;)); occ (v, Ib(X;)) + min(1,init-occy, (X5, v))
2. BC- NED- Set s(X1,...,X,)
3. for eachi € 1..n, v € ub(X;) do

occ (v, ub(X, )) + init-occus (Xi, v)

if v € Ib(X;) thenocc (v, Ib(X;)) < maz(1,init-occy, (X;, v))

5 Partition constraints

ThePar ti ti on constraintis decomposable into binary empty intersecstraints
and ternary union constraints involvimgadditional variables without hindering bound
consistency [12]. It appears in a humber of constraint selgeich as ILOG Solver
(under the namé| cPartiti on) and ECLiIPSe when it is over sets. On the other
hand, the non-empty and fixed cardinality partition conistsaare not decomposable.
We therefore present algorithms for enforcing BC on them@pvove intractability.

5.1 FCPartition

It is polynomial to enforce BC on thECPar t i t i on constraint on set variables, but
NP-hard on multisets. On set variables, enforcing BEGRar t i t i on is very similar
to enforcing BC orFCDi sj oi nt . Indeed, if the seX being partitioned is fixed, then
we can simply decompose a fixed cardinality partition caistinto a fixed cardinality
disjoint, union and cardinality constraints without hinidg bound consistencdylf X
is not fixed, we need to do slightly more reasoning to enswaethieX;’s are a partition
of X. We present here the additional lines necessary to deathiih

Line numbers with a prime represent lines modified B€& FCD- Set s. The oth-
ers are additional lines.

4 As in the FCDi sj oi nt case, J.F. Puget tells us that the filtering algorithm of the
Il cPartition constraint in [5] uses a similar approach when the "extehdeatle is set.



AlgorithmBGC- FCP- Set s

1'. Forallv € ub(X), introduce an integer variable, with dom(Y,) = {}
2. Initialize the domain of each, as follows:

(©) if [dom(Y,)| = 0 thendom(Y,) « {i | v € ub(X:)}
(d) if v g Ib(X) thendom(Y,) < dom(Y,) U {n + 1}
(e) if |dom(Y,)| = 0 thenfail

4. Maintain the following channelling constraints, for alK n and for allv:

(C) n+1¢&dom(Yy,) < v € Ib(X)
(d) ub(X) CJub(X;)

Lemma 2. Define the one-to-one mapping between assignnteotthe dual variables
Y and assignment$’ of the original set variableX’; and X by: S'[X] = |J S'[X;] and
v € S'[X;] iff S[Y,] = i. ThenS is consistent witlycc in step (3) oBC- FCP- Set s
iff S"is consistent foFCParti ti on.

Proof. (=) We prove thatS’ is:

Disjoint and Fixed CardinalitySee Lemma 1.

Partition: Lines (2.c’-d) guarantee that for a value (b(X), Y, cannot be assigned
the dummy values + 1 in S. Hence S’ necessarily has al; with v € S’[X;]. Because
of line (1), none of theY, represent a value ¢ ub(X). Hence, for alli, S'[X;] C
ub(X), thenS'[X] C ub(X).

(<) We prove thafS is:

Consistent witlgcc: See Lemma 1.

Consistent withlt”: If S’ is a satisfying assignment f&iCParti ti on, S'[X;] C
S'[X],Vi. SinceS'[X] C ub(X), we know that any value appearing inS’ has a
corresponding variabl&,. And by construction (lines 2.a, 2.c, 2.d, we know tRas
consistent witl” domains. O

Theorem 3. BC- FCP- Set s is a sound and complete algorithm for enforcing bound
consistency offCPar t i t i on with set variables that runs i@ (nd?) time.

Proof. Soundnes® value v is pruned fromub(X;) in step (4) ofBC- FCP- Set s
for one of the reasons that already held=@Di sj oi nt or becausé’, has not been
created in line (1'). Lemma 2 tells us that all cases implyt thaannot belong toX;

in a satisfying tuple foFCPar ti t i on. Soundness afb(X;) comes from Lemma 2
as it came from Lemma 1 oRCDi sj oi nt. We must also show that the algorithm
does not fail ifFCPar titi on can be made bound consisteBC- FCP- Set s can
fail in line (2.e) if a valuev that belongs tdb(X) cannot belong to any;. Clearly,
FCPar ti ti on cannot then be made bound consistent. The other casesw€faile
the same as fdfCDi sj oi nt. A valuew is pruned fromub(X) in step (4.d) because
none of theX; containsv in its upper bound. This means that this value cannot belong
to any satisfying assignment (Lemma 2). A valuey is added tdb(X) in line (4.c)

if no assignmenfS satisfying thegcc verifies S[Y,] = n + 1. This means that is
assigned to a variabl¥; in all assignments satisfyirlgCPar ti ti on.



Completenessetv € ub(X) after step (4). Then, there exists with v € ub(X;),
and soi € dom(Y,) after step (3)gcc being GAC, there exists an assignmehnt
satisfyinggcc, with S[Y,] = i. Lemma 2 guarantees there exists an assignifient
with {v} C S'[X]. Thus,v is in ub(X). In addition, letv ¢ [b(X) after step (4).
Then,n+1 € dom(Y,) after step (3). Thus, there is an assignménsatisfying
gcc with S[Y,] = n+ 1. Lemma 2 tells us that there is a satisfying assignni#nt
of FCPar ti ti on with v notinS’[X].

Complexity See proof oBC- FCD- Set s. O

Theorem 4. Enforcing BC orFCPartiti on(Xy,...,X,, X, k1,..., k) with mul-
tiset variables is NP-hard.

Proof. We know that deciding the existence of a satisfying assigriiseNP-complete
for FCDi sj oi nt (X, ..., Xy, k1, - .-, ky) with multiset variables. If we build a mul-
tiset variableX with [b(X) = 0 andub(X) = |J; ub(X;), thenFCPar ti ti on(Xq,
vy Xn, X, k1, ..., ky) has a satisfying assignment if and onlyAEDI sj oi nt (X,
..., X, k1,...,k,) has one. Thus, enforcing bound consistenci#GRar ti ti onis
NP-hard. O

5.2 NEPartition

The constrainfNEDi sj oi nt (X1,...,X,,) on set variables was a patrticular case of
FCDi sj oi nt inwhich the cardinality of the variables; can vary from 1 tox instead
of being fixed tak;. This is exactly the same ffEPar t i t i on on set variables, which
is a particular case diCPar ti ti on. Replacing B[i] « k;..k;" by “ B[i] + 1..00"
in BC- FCP- Set s, we obtainBC- NEP- Set s.

WhenNEPar ti ti on involves multiset variables, BC remains polynomial. As for
BC- NED- Mset s, the trick is to transform multisets in sets and to B& NEP- Set s
on the obtained sets. We just need to be careful with the ctibilgs of the occurrences
of values inX; variables and th& being partitioned. Once BC is achieved on these
sets, we have to restore the initial number of occurrencgslaeck again compatibility
with X

AlgorithmBC- NEP- Mset s

1if |, I6(X;) € ub(X) or Ib(X)  |J, ub(X;) then failure
2. for eachi € 1..n, v occurring inub(X;) do
2.1.if occ(v, ub(X;)) < occ(v,Ib(X)) thenocc (v, ub(X;)) < 0
2.2. if occ(v,ub(X;)) > occ(v,ub(X)) then occ(v, ub(X;)) « occ(v,ub(X))
2.3.init-0cCyp (X, v) «— 0cc (v, ub(X;)); occ (v, ub(X;)) + 1
2.4. init-occy, (X, v) < occ(v,lb(X;)); occ(v,lb(X;)) < min(1,init-occ; (X, v))
. storelb(X); Ib(X) «+ set - of (Ib(X)); ub(X) « set - of (ub(X))
BC- NEP- Set s(X1,..., X, X)
. restordb(X)
. foreachi € 1..n,v € ub(X;) do
6.1.0cc (v, ub(X;)) « init-0cCyp (X5, v)
6.2. if v € Ib(X;) thenocc (v, Ib(X;)) < max(1,init-occy, (X5, v),0cc (v, Ib(X)))
7. I6(X) = Ib(X) U, I6(X:); ub(X) = |J, ub(X:)

o U AW



Theorem 5. BC- NEP- Mset s is a sound and complete algorithm for enforcing bound
consistency oNEPar t i t i on with multiset variables, that runs i@ (nd?) time.

Proof. (Sketch.) As folNEDi sj oi nt on multiset variables, enforcing bound consis-
tency onNEPar t i ti on after having transformed the multisets in sets (i.e., wekee
only one occurrence of each value in the lower and upper t&utite removal of a
valuewv from an upper bound bC- NEP- Set s is a sufficient condition for the re-
moval of all occurrences af in the original multiset upper bound. The additioto a
lower bound is a sufficient condition for the addition of soaeeurrences of in the
lower bound (the right number depends on the number of oenoes ofv in [b(X)
and in the lower bound of th&; holdingv. It is then sufficient to ensure consistency
between the number of occurrences in igand X (lines 1, 2.1, 2.2, and 7), to trans-
form multisets in sets (lines 2.3, 2.4, and 3), to &I} NEP- Set s (line 4), and to re-
store appropriate numbers of occurrences (lines 5 and6¢. 1. guarantees thab(X)
can cover all theX;'s lower bounds and thdb(X') can be covered by th&;'s upper
bounds. A value» can be assigned iX; if and only if it can cover the occurrencesof

in I6(X) (line 2.1), and it cannot occur more thanib( X ) (line 2.2). Finally, a value
occurs inb(X) at least as many times as it occurs in sdbf&; ), and occurs inb(X)
exactly as many times as in thé(X;) having its greatest number of occurrences (line
7). The complexity is dominated by line 4, with the callB& NEP- Set s which is
O(nd?). i

6 Intersection constraints

TheDi sj oi nt constraint restricts the pair-wise intersection of any $&bor multiset
variables to the empty set. We now consider the cases whereattuinality of the
pair-wise intersection is either bounded or equal to a gogrstant or integer variable
(lower case characters denote constants while upper castedariables):

Intersect <(Xy,...,X,, K)iff | X;NX;| <K foranyi # j.

Intersect >(Xy,...,X,, K)iff | X;NX;| > K foranyi # j.

I ntersect —(Xy,...,X,, K)iff |X;NX;| = K foranyi # j.

As usual, we can also add non-emptiness and fixed cardirgaitgtraints to the
set or multiset variables. For exampi&l nt er sect <(X4,...,X,, K,C)iff | X; N
X;| < Kforanyi # jand|X;| = C foralli. If K = 0, |ntersect < and
I nt er sect _ are equivalentt®i sj oi nt .

6.1 At most intersection constraints

We show thal nt er sect < andNEI nt er sect < can be decomposed without hin-
dering bound consistency, but that it is NP-hard to enforCeoBFCl nt er sect <.

Theorem 6. BC(l nt er sect <(X1,...,X,, K)) is equivalent taBC(|X; N X;| <
K)foralli < j.

Proof. SupposeBC(|X;NX;| < K) foralli < j. We will show thatBC (Vi < j.|X;N
X,| < K). Consider the occurrence representation of the set orsetitariables. Let
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X;; be the number of occurrences of the valua X;. Consider the upper bound on
X;. We will construct a support for this value for;; that simultaneously satisfies
|X; N X;| < K foralli < j. The same support will work for the lower bound on
X First, we assignK with its upper bound. Then we pick anywith i # j. As
BC(|X; N X;| < K), there is some assignment &, andX;,,, (I # m) within their
boundsthat satisfid&;NX;| < K. We now extend these assignments to get a complete
assignment for every other set or multiset variable asvialdEvery otherX,, (p # ¢
andp # j) is assigned its lower bound. This can only help sati&gfyn X ;| < K for
all i < j. This assignment is therefore support %y;. We can also construct support
for the upper of lower bound dt in a similar way. Maximality of the bound consistent
domains is easy. Consider any value 165 smaller than the lower bound or larger than
the upper bound. As this cannot be extended to satl§fyn X;| < K for somey, it
clearly cannot be extended to sati$fy; N X;| < K for all i < j. A similar argument
holds for any value fo/& smaller than the lower bound or larger than the upper bound.
Hence,BC (Vi < j.|X; N X;| < K). |
Given a set of set or multiset variables, the non-empty$atetion constraitEl nt -
ersect <(Xy,...,X,, K) ensures that\; N X;| < K for i # j and|X;| > 0 for all
i.If K =0, this is theNEDi sj oi nt constraint which is not decomposableAf> 0,
the constraint is decomposable.

Theorem 7. If K > 0thenBC(NEI nt er sect <(X,...,X,, K)) is equivalent to
BC(|X;nX,| < K)forall i < jandBC(|X;| > 0) for all 5.

Proof. SupposeBC'(|X; N X;| < K) for all i < j andBC(|X;| > 0) for all 1.
Then|lb(X;) N 1b(X;)| < maz(K) foralli < j. And if |ub(X;)| = 1 for anyi then
1b(X;) = ub(X;). Consider some variabl&; and any value: € ub(X;) — Ib(X;).
We will find support in the global constraint foY; to take the valuga} U Ib(X;).
Consider any other variabl&;. If |Ib(X;)| = 0 then we pick any valué € ub(X;)
and setX; to {b}. This will ensure we satisfy the non-emptiness constrainko. As
k > 0 and|X;| = 1, we will satisfy the intersection constraint betwe&pn and any
other variable. Ifib(X;)| > 0 then we setX; to [b(X;). This again satisfy the non-
emptiness constraint o ;. Since|lb(X;) N Ib(X;)| < maz(K) for alli < j, we
will also satisfy the intersection constraints. Support ba found in a similar way for
X; to take the valuéb(X;) if this is non-empty. Finallymin(K) has support since
BC(|X;nX;| < K)foralli < j. HenceNEl nt er sect <(X;,...,X,, K) is BC.

O

Enforcing BC onFCl nt er sect < is intractable.

Theorem 8. Enforcing BC orFCl nt er sect <(Xy,..., X, k,c)forc > k> 0is
NP-hard.

Proof. Immediate from Theorem 5 in [2]. O
Sadler and Gervetintroduce thenpst 1- i ncommon anddi st i nct constraints
for set variables with a fixed cardinality [9]. Tta& nost 1- i ncomnmon constraint is
FCl ntersect <(Xi,...,X,,1,¢). Similarly, thedi sti nct constraint on sets of
fixed cardinality is isSFCl nt er sect <(Xi,..., X,,c — 1,¢). The reduction used in
Theorem 5 in [2] works with all these parameters. Hence ralNP-hard to propagate.
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6.2 Atleast intersection constraints

Similar to the at most intersection constralntt er sect > andNEl nt er sect > can
be decomposed without hindering bound consistency. Howii®eNP-hard to enforce
BC onFCl nt er sect ».

Theorem 9. BC(I nt er sect >(Xy,...,X,, K)) is equivalent taBC (| X; N X;| >
K)foralli < j.

Proof. The proof is analogous to that of Theorem 6 except we exteradtapassign-
ment to a complete assignment that is interval support higrisg each of the addi-
tional X,,, with the upper bound and (where appropridiejvith its lower bound. O

Two sets cannot have an intersection unless they are notyefgnce this result
also shows thaBC'(NEI nt er sect >(Xq,...,X,, K)) for K > 0 is equivalent to
BC on the decomposition. By comparison, enforcing BCF@h nt er sect > is in-
tractable.

Theorem 10. Enforcing BC orFCl nt er sect >(Xy,...,X,,k,c)forc > k > 0is
NP-hard.

Proof. We letk = 1. We can reduce the = 1 case to thé& > 1 case by adding — 1
additional common values to each set variable. The prodhagses a reduction of a
3SAT problem inn variables. The same reduction is used for set or multisédlvias.
We letc = n and introduce a set variablg with domain{} C S C {1,-1,...,n,-n}.
This will be set of literals assigned true in a satisfyinggssent. For each clause,
we introduce a set variabl&l,. Supposep = z; V —z; V z, thenX,, has domain
{d7,....d7_} € X, C {i,~j,k,dy,...,d7_,}, whered},...,d"_, are dummy
values. To satisfy the intersection and cardinality caistr.S must take at least one
of the literals which satisfy. Finally, we introduce: set variablesX; to ensure that
one and only one of and—i is in S. EachX; has domain{f{,...,fi_,} C X; C
{fi,..., fi_,,i,—i}. The constructed set variables then have a solution whiedfisa
the intersection and cardinality constraints iff the arai3SAT problem is satisfiable.
Hence enforcing bound consistency is NP-hard. O

6.3 [Equal intersection constraints

Unlike the at most or at least intersection constraintspmeirig BC onl nt er sect —
is intractable even without cardinality constraints ongheor multiset variables.

Theorem 11. Enforcing BC onl nt er sect —(X3, ..., X, k) is NP-hard fork > 0.

Proof. Immediate from Theorem 6 in [2]. O
The same reduction can also be used with the constraint dicht ®et or multiset
has a non-empty or fixed cardinality.

Lemma 3. Enforcing BC or=Cl nt er sect (X3, ..., X,, k) is NP-hard fork > 0.

Lemma 4. Enforcing BC oNEl nt er sect _ (X, ..., Xy, k, ¢) is NP-hard fork > 0.
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7 Experimental results

To show the benefits of these global constraints, we ran sgpegienents using ILOG's
Solver toolkit with a popular benchmark involving set vates. The social golfers
problem(p, m,n,t) is to schedule golfers intom groups of size: for p weeks, such
that no golfer plays in the same group as any other golferetwio model this prob-
lem, we introduce a set variable of fixed cardinality to reprd every group in each
week. Each week is then a partition of the set of golfers. Betwany two groups, their
intersection must contain at most one golfer. We also censidjeneralization of the
problem in which there is an excess of golfers and some golé=t each week. When
there is no excess of golfelsCPar t i t i on shows no improvement upon its decom-
position into ILOG’sl | cParti ti on and cardinality constraints. When there is an
excess of golfers, the partitioning constraint is repldogd disjointness constraint.

We compare the same model using@Di sj oi nt constraint and its decomposi-
tioninto ILOG's| | cAl'l Nul I | nt er sect constraint and cardinality constraints on
groups. In the latter case, the filtering level is fixed eitioetDefault” or “Extended”.
We understand from conversations with Ilog that “Defaulitblements the decomposi-
tion whilst “Extended” enforces BC on the global constrailie ran experiments with a
time limit of 10 minutes, and five settings for andn. For each, we present the results
for all numberg of weeks such that at least one strategy needs at least granfhiat
least one strategy can solve the problem within the timet.liwé solved each problem
using five different variable ordering strategies:

— static golfer: picks each golfer in turn, and assigns him to the first posgibbup
of every week.

— static week: picks each golfer in turn, and assigns him to one group in tisé fi
incomplete week.

— min domain: picks a pair (golfer, week) such that the total number of gsoin
which the golfer can participate in during the given week isimum, then assigns
this golfer to one group.

— default (group): ILOG Solver’s default strategy for set variables orderedinups;
this picks an element € ub(S) and adds it to the lower bound € ).

— default (week):ILOG Solver’s default strategy for set variables ordereavegks.

We observe that, in terms of failBCDi sj oi nt andl | cAl | Nul | I nt er sect -
Extended are equivalent, with two excepti@anBoth outperform the decomposition
model or are the same. The runtimes follow a similar behayalthough the decompo-
sition model can be faster when the number of fails are el speed-up obtained by
reasoning on the global constraint rather than on disjesgrand cardinality separately
can be of several orders of magnitude in some cases. Withwiheefault heuristics
(last two columns in the table), we notice no difference eetvour global constraint
and the decomposition. These heuristics are not, howdwatya the best. The min do-
main heuristic can be superior, but sometimes needs théngrprovided by the global
constraint to prevent poor performance.

5 We do not understand these two exceptions but suspect tiagrbersome complex interaction
with the dynamic branching heuristic.
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Number of Fails / CPU Time (s)

problem model static golfer  static week min domain group (set)  week (set)
(6, 8,4, 36) FCDI s oi nt 1070.15 E 52/0.14 18370.11 E
11 cAll Nulllntersect (Extended 10/0.13 - 52/0.11 183/0.11 -
I'l cAll Nul I I ntersect (Default) - - 190/0.13 1830.08 -
(3,6,6,37) FCDi sj oi nt - 548/0.21 0/0.02 2770.02 22232/2.36
Il cAll Nulllntersect (Extended - 548/0.2 0/0.02 27/0.03 22232/1.6
I'l cAll Nul I I ntersect (Default) - - 0/0.01 27/0.02 22232/1.3
(3,6,6,38) FCDi sj oi nt - 67/0.03 0/0.03 470.02 3446/0.39
Il cAll Nulllntersect (Extended - 67/0.04 0/0.02 4/0.03 3446/0.26
Il cAl'l Nul I'l ntersect (Default) - - 0/0.01 4/0.02 3446/0.2
(3,6,6,39) FCDi sj oi nt - 1261/0.3 0/0.02 710.03 171574/16.52
11 cAll Nulllntersect (Extended - 1261/0.27 0/0.02 7/0.02 171574/11.39
Il cAl'l Nul I'l ntersect (Default) - - 0/0.02 710.02 171574/8.85
(3,6,6,40) FCDi sj oi nt 12/0.02 48/0.03 0/0.02 0/0.02 8767/0.79
Il cAl Nulllntersect (Extended) 12/0.03 48/0.03 0/0.02 0/0.03 8767/0.6
I'l cAll Nul Il ntersect (Default) - - 0/0.02 0/0.02 8767/0.46
(3,5,5,26) FCDi sj oi nt - 44/0.03 0/0.01 2/0 813/0.08
Il cAll Nulllntersect (Extended - 44/0.02 0/0.01 2/0.01 813/0.07
Il cAl'l NulI'l ntersect (Default) - 177880/9.62 0/0.01 2/0 813/0.05
(3,5,5,27) FCDi sj oi nt 967161/160.92 5/0.01 0/0.01 1/0.01 62/0.01
11 cAll Nulllntersect (Extended) 967161 /96.94 5/0.01 0/0.02 1/0.01 62/0.01
Il cAl'l Nul I'l ntersect (Default) - 1106/0.09 0/0 1/0.01 62/0.02
(3,5,5,28) FCDI s oi nt 970.01 3270.03 0/0.01 19/0.01 661/0.08
11 cAll Nulllntersect (Extended 9/0.01 32/0.01 0/0.01 19/0.01 661/0.06
I'l cAl'l Nul I I ntersect (Default) | 58218/3.65 22860/1.23 0/0.01 19/0.01 661/0.05
(3,5,5,29) FCDi s oi nt 670.02 270.01 0/0.01 0/0,01 1870.01
Il cAll Nulllntersect (Extended 6/0.01 2/0.01 0/0.01 0/0,01 18/0.01
I'l cAll Nul I I ntersect (Default) | 37208 /2.25 209/0.02 0/0.01 0/0 18/0.01
(3,9,9,83) FCDi sj oi nt - - 0/0.12 45370.17 -
Il cAll Nulllntersect (Extended - - - 453/0.13 -
Il cAl'l Nul I'l ntersect (Default) - - - 453/0.11 -
(3,9,09, 84) FCDi s oi nt B - 0/0.12 570.09 B
11 cAll Nulllntersect (Extended - - 5/0.13 5/0.1 -
Il cAl'l Nul I'l ntersect (Default) - - - 5/0.08 -
(3,9,9,85) FCDI s oi nt B - 0/0.13 3070.09 -
Il cAll Nulllntersect (Extended - - 0/0.13 30/0.1 -
I'l cAll Nul I I ntersect (Default) - - 1442064 /159.75 300.08 -
(10, 9, 3, 30) FCDi sj oi nt 46470.84 26470.45 B 16055/3.75 15/ 0.26
Il cAll Nulllntersect (Extended) 464/0.56 264/0.32 - 16055/2.2 15/0.23
Il cAl'l Nul I'l ntersect (Default) - - - 16055/1.99 15/0.22
(10,9, 3,31) FCDi sj oi nt 3770.46 1/0.25 0/0.39 2/0.28 1137/0.29
11 cAll Nulllntersect (Extended 37/0.41 1/0.24 0/0.32 2/0.26 113/0.24
Il cAl'l Nul I'l ntersect (Default) - 51223/10.45 0/0.32 2/0.25 1130.23
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8 Conclusions

We have begun a systematic study of global constraints cargkmultiset variables.
We have studied here a wide range of disjoint, partition, iatefsection constraints.
The disjoint constraint on set or multiset variables is aagosable (and hence polyno-
mial). On the other hand, the non-empty and fixed cardindigipint constraints are not
decomposable without hindering bound consistency. Westher present polynomial
algorithms for enforcing bound consistency on the non-gndfgjoint constraints for
set or multiset variables, for enforcing BC on the fixed caatlty disjoint constraint
for set variables, and prove that enforcing BC on the fixedlioatity disjoint con-
straint on multiset variables is NP-hard. We give very samiksults for the partition,
non-empty and fixed cardinality partition constraints. W@adentify those non-empty
intersection constraints which are decomposable, thogghaine not decomposable but
polynomial, and those that are NP-hard. Many of the propagailgorithms we pro-
pose here exploit a dual viewpoint, and call upon existirapgl constraints for finite-
domain variables like the global cardinality constrainge We currently extending this
study to counting constraints on set and multiset varialflezpagation algorithms for
such constraints also appear to exploit dual viewpointsresively.
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