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Abstract. We have started a systematic study of global constraints on set and
multiset variables. We consider here disjoint, partition,and intersection constraints
in conjunction with cardinality constraints. These globalconstraints fall into one
of three classes. In the first class, we show that we can decompose the constraint
without hindering bound consistency. No new algorithms therefore need be de-
veloped for such constraints. In the second class, we show that decomposition
hinders bound consistency but we can present efficient polynomial algorithms
for enforcing bound consistency. Many of these algorithms exploit a dual view-
point, and call upon existing global constraints for finite-domain variables like
the global cardinality constraint. In the third class, we show that enforcing bound
consistency is NP-hard. We have little choice therefore butto enforce a lesser
level of local consistency when the size of such constraintsgrows.

1 Introduction

Global (or non-binary) constraints are one of the factors central to the success of con-
straint programming [7, 8, 1]. Global constraints permit the user to model a problem
easily (by compactly specifying common patterns that occurin many problems) and
solve it efficiently (by calling fast and effective constraint propagation algorithms).
Many problems naturally involve sets and multisets. For example, the social golfers
problem (prob010 at CSPLib.org) partitions a set of golfersinto foursomes. Set or mul-
tiset variables have therefore been incorporated into mostof the major constraint solvers
(see, for example, [3, 6, 5, 11] for sets, [4] for multisets —under the namebags). In a
recent report, Sadler and Gervet describe a propagator for aglobal disjoint constraint
on set variables with a fixed cardinality [10]. The aim of thispaper is to study other
such global constraints on set and multiset variables. Using the techniques proposed in
[2], we have proved that some of these global constraints areNP-hard to propagate. For
example, both theatmost1-incommon anddistinct constraints on sets of fixed
cardinality proposed in [9] are NP-hard to propagate. We prove that others are polyno-
mial but not decomposable without hindering propagation. We therefore give efficient
algorithms for enforcing bound consistency on such constraints.? The last three authors are supported by Science Foundation Ireland and an ILOG software

grant. We wish to thank Zeynep Kiziltan for useful comments.



2 Formal background

A multiset is an unordered list of elements in which repetition is allowed. We assume
that the elements of sets and multisets are integers. Basic operations on sets general-
ize to multisets. We leto

(m;X) be the number of occurrences ofm in the multisetX . Multiset union and intersection are defined by the identities o

(m;X [ Y ) =max(o

(m;X); o

(m;Y )) ando

(m;X \ Y ) = min(o

(m;X); o

(m;Y )). Fi-
nally, we writejX j for the cardinality of the set or multisetX , and use lower case to
denote constants and upper case to denote variables.

An integer variableN is a variable whose domain is a set of integers,dom(N).
The minimum (maximum) element ofN is denoted bymin(N) (max(N)). A set
(resp. multiset) variableX is a variable whose domain is a set of sets (resp. mul-
tisets) of integers, given by an upper boundub(X) and a lower boundlb(X) (i.e.,lb(X) � X � ub(X)). We define bound consistency for integer, set and multiset vari-
ables. We can therefore reason about constraints which simultaneously involve integer,
set and multiset variables. An assignment is bound valid if the value given to each set or
multiset variable is within these bounds, and the value given to each integer variable is
between the minimum and maximum integers in its domain. A constraint is bound con-
sistent (denoted byBC(C)) iff for each set or multiset variableX , ub(X) (resp.lb(X))
is the union (resp. intersection) of all the values forX that belong to a bound valid as-
signment satisfying the constraint, and for each integer variableN , there is a bound
valid assignment that satisfies the constraint for the maximum and minimum values in
the domain ofX . An alternative definition of BC for set and multiset variables is that
the characteristic function (a vector of 0/1 variables) foreach set variable, or the occur-
rence representation (a vector of integer variables) for each multiset variable is bound
consistent [12]. We say that a constraint is “decomposable”if there exists a decompo-
sition into a polynomial number of bounded arity constraints, and this decomposition
does not hinder bound consistency. We will also use generalized arc consistency (GAC).
A constraint is GAC iff every value for every variable can be extended to a solution of
the constraint.

3 Taxonomy of global constraints

Global constraints over set and multiset variables can be composed from the following
(more primitive) constraints:

Cardinality constraints: Many problems involve constraints on the cardinality of a
set or multiset. For example, each shift must contain at least five nurses.

Intersection constraints: Many problems involve constraints on the intersection be-
tween any pair of sets or multisets. For example, shifts musthave at least one person
in common.

Partition constraints: Many problems involve partitioning a set or multiset. For ex-
ample, orders must be partitioned to slabs in the steel mill slab design problem.

Ordering constraints: Many problems involve sets or multisets which are indistin-
guishable. For example, if each group in the social golfers problem is represented
by a set then, as groups are symmetric, these sets can be permuted. We can break
this symmetry by ordering the set variables.
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Counting constraints: We often wish to model situations when there are constraints
on the number of resources (values) used in a solution. For example, we might have
set variables for the nurses on each shift and want to count the number of times each
nurse has a shift during the monthly roster.

Weight and colour constraints: Many problems involve sets in which there is a weight
or colour associated with each element of a set and there are constraints on the
weights or colours in each set. For example, the weight of theset of orders assigned
to a slab should be less than the slab capacity.

Tables 1 and 2 summarize some of the results presented in thispaper. Given a col-
lection of set or multiset variables, Table 1 shows different combinations of restrictions
on the cardinality of the intersection of any pair of set or multiset variables (rows) with
constraints restricting the cardinality of each set or multiset variable (columns). For
instance, the top left corner is theDisjoint constraint, in which where all pairs of
set or multiset variables are disjoint (i.e., their intersection is empty) and there is no
restriction on the cardinality of the individual sets or multisets. On the other hand, the
NEDisjoint also ensures that each set or multiset is non-empty. Table 2 is similar to
Table 1, except that we also ensure that the set or multiset variables form a partition.
Constraints likeDisjoint, Partition, andFCDisjoint on set variables have
already appeared in the literature [3, 5, 9, 10, 4].

All results apply to set or multiset variables unless otherwise indicated. In each
entry, we name the resulting global constraint, state whether it is tractable to enforce
BC on it and whether it is decomposable. For example, theFCPartition constraint
over set variables (see Table 2) is not decomposable but we can maintain BC on it in
polynomial time. Over multiset variables, the constraint becomes intractable.8i < j : : :8k : : : jXi \Xj j = 0 jXi \Xj j � k jXi \Xj j � k jXi \Xj j = k

Disjoint Intersect� Intersect� Intersect=
- polynomial polynomial polynomial NP-hardde
omposable de
omposable de
omposable not de
omposable

NEDisjoint NEIntersect� NEIntersect� FCIntersect=jXkj > 0 polynomial polynomial polynomial NP-hardnot de
omposable de
omposable de
omposable not de
omposable
FCDisjoint FCIntersect� FCIntersect� NEIntersect=jXkj = mk poly on sets, NP-hard on multisets NP-hard NP-hard NP-hardnot de
omposable not de
omposable not de
omposable not de
omposable

Table 1. Intersection� CardinalitySiXi = X ^ 8i < j : : :8k : : : jXi \Xj j = 0 jXi \Xj j � k jXi \Xj j � k jXi \Xj j = k
- Partition: polynomial ? ? ?de
omposablejXkj > 0 NEPartition: polynomial ? ? ?not de
omposable

FCPartitionjXkj = mk polynomial on sets, NP-hard on multisets ? ? ?not de
omposable
Table 2.Partition + Intersection� Cardinality
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4 Disjoint constraints

The Disjoint constraint on set or multiset variables is decomposable into binary
empty intersection constraints without hindering bound consistency [12]. When it is
over sets, it appears in a number of constraint solvers such as ILOG Solver (under the
nameIlcAllNullIntersect) and ECLiPSe. On multisets, the binary version of
Disjoint appears in ILOG Configurator [4].

We now study bound consistency on theNEDisjoint andFCDisjoint con-
straints over set and multiset variables. These constraints are not decomposable so we
present algorithms for enforcing BC on them or we prove intractability.

4.1 FCDisjoint

A filtering algorithm forFCDisjoint over set variables was independently proposed
in [10]. We give here an alternative polynomial algorithm that uses a dual encoding
with integer variables (also briefly described at the end of [10]). J.F. Puget has pointed
out to us that this algorithm is very similar to the propagation algorithm used in ILOG
Solver for theIlcAllNullIntersect constraint when cardinalities are specified
for the set variables involved, and when the “extended” propagation mode is activated.
We further show that bound consistency onFCDisjoint is NP-hard on multisets.

WhenX1; : : : ; Xn are set variables andk1; : : : ; kn are given constants, we can
achieve BC on aFCDisjoint(X1; : : : ; Xn; k1; : : : ; kn) constraint as follows:

AlgorithmBC-FCD-Sets

1. For allv 2 Sub(Xi), introduce an integer variableYv with dom(Yv) = fg
2. Initialize the domain of eachYv as follows:

(a) dom(Yv) fi j v 2 lb(Xi)g
(b) if jdom(Yv)j > 1 thenfail
(c) if jdom(Yv)j = 0 thendom(Yv) fi j v 2 ub(Xi)g [ fn+1g /* n+1 is a dummy */

3. Maintain GAC ongcc(Y; f1::n+1g; B) whereY is the array ofYv ’s, andB is the array
of the corresponding bounds of thei’s where for alli � n we haveB[i℄ = ki::ki andB[n + 1℄ = 0::1

4. Maintain the following channelling constraints, for alli � n and for allv:
(a) i 2 dom(Yv)$ v 2 ub(Xi)
(b) dom(Yv) = fig $ v 2 lb(Xi)

Remark. gcc(Y; f1::n+ 1g; B) is the global cardinality constraint that imposes that in
any assignmentS of the variablesY , the valuei from f1::n+ 1g appears a number of
times in the rangeB[i℄. The dummy valuen+ 1 is necessary to prevent a failure of the
gcc when anYv cannot take any value in1::n (i.e., valuev cannot be used by anyXi).

We first prove the following lemma.

Lemma 1. Define the one-to-one mapping between assignmentsS of the dual variablesY and assignmentsS0 of the original set variablesXi by: v 2 S0[Xi℄ iff S[Yv℄ = i.
ThenS is consistent withgcc in step (3) ofBC-FCD-Sets iff S0 is consistent for
FCDisjoint.
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Proof. ()) We prove thatS0 is:
Disjoint: Each dual variableYv has a unique value, sayi. Therefore inS0 a valuev cannot appear in more than one of the variablesX1 : : : Xn. In the case whereYv =n+ 1, v does not belong to any set variable assignment.
Fixed Cardinality:gcc ensures that the valuesi are used by exactlyki dual vari-

ablesYvj . Hence,jS0[Xi℄j = ki.
(() We prove thatS is:
Consistent withgcc: By construction ofY , if jS0[Xi℄j = ki for eachi 2 1::n, eachi will appear exactlyki times inS, thus satisfying thegcc. (The dummy valuen+ 1

has no restriction on its number of occurrences inY .)
Consistent withY domains:By construction. ut
In the algorithmBC-FCD-Sets, let d be the number ofYv variables introduced,

where eachYv has domain of size at mostn+ 1.

Theorem 1. BC-FCD-Sets is a sound and complete algorithm for enforcing bound
consistency onFCDisjoint with set variables, that runs inO(nd2) time.

Proof. Soundness. A value v is pruned fromub(Xi) in step (4) ofBC-FCD-Sets
either becausei was not put indom(Yv) in step (2) or because thegcc has removedi
from dom(Yv) in step (3). Lemma 1 tells us that both cases imply thatv cannot belong
to Xi in a satisfying tuple forFCDisjoint. A value v is added tolb(Xi) in step
(4) if dom(Yv) = fig after applying GAC on thegcc. From Lemma 1 we deduce
that any satisfying tuple forFCDisjoint necessarily containsv in Xi. We must also
show that the algorithm does not fail ifFCDisjoint can be made bound consistent.
BC-FCD-Sets can fail in only two different ways. First, it fails in step (2) if a value
belongs to two different lower bounds. Clearly,FCDisjoint cannot then be made
bound consistent. Second, it fails in step (3) if thegcc cannot be made GAC. In this
case, we know by Lemma 1 thatFCDisjoint cannot then be made bound consistent.

Completeness. Let v 2 ub(Xi) after step (4). Then,i 2 dom(Yv) after step (3).
Thegcc being GAC, there exists an assignmentS satisfyinggcc, with S[Yv℄ = i.
Lemma 1 guarantees there exists an assignmentS0 with fvg � S0[Xi℄. In addition, letv 62 lb(Xi) after step (4). Then, there existsj 2 dom(Yv); j 6= i, after step (3). Thus,
there is an assignmentS satisfyinggcc with S[Yv℄ = j. Lemma 1 tells us that there is
a satisfying assignmentS0 of FCDisjoint with v not inS0[Xi℄.

Complexity. Step (1) is inO(d), and step (2) inO(nd). Step (3) has the complexity
of thegcc, namelyO(nd2) since we haved variables with domains of size at mostn+ 1. Step (4) is inO(nd). Thus,BC-FCD-Sets is inO(nd2). ut
Theorem 2. Enforcing bound consistency onFCDisjoint with multiset variables is
NP-hard.

Proof. We transform 3SAT into the problem of the existence of a satisfying assign-
ment forFCDisjoint. Let F = f
1; : : : ; 
mg be a 3CNF on the Boolean variablesx1; : : : ; xn. We build the constraintFCDisjoint(X1; : : : ; X3n+m; k1; : : : ; k3n+m)
as follows. Each time a Boolean variablexi appears positively (resp. negatively) in a
clause
j , we create a valuevji (resp.wji ). For each Boolean variablexi, we create two
valuespi andni. Then, we build the3n+m multiset variables as follows.
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1. 8i 2 1::n, /* Xi will take thepi’s iff xi = 1 */
(a) ki = number of occurrences ofxi in a clause
(b) fg � Xi � fvji j xi 2 
jg [ fpi; : : : ; pig /*ki copies ofpi*/

2. 8i 2 n+ 1::2n, /* Xi will take theni’s iff xi = 0 */
(a) ki = number of occurrences of:xi in a clause
(b) fg � Xi � fwji j :xi 2 
jg [ fni; : : : ; nig /*ki copies ofni*/

3. 8i 2 2n+ 1::3n, /* Xi forcesXi�n andXi�2n to be consistent */
(a) ki = 1
(b) fg � Xi � fni; pig

4. 8j 2 1::m, /* X3n+j represents the clause
j */
(a) k3n+j = 1
(b) fg � X3n+j � fvji1 ; wji2 ; vji3g if 
j = xi1 _ :xi2 _ xi3
LetM be a model ofF . We build the assignmentS on theXi’s such that8i 2 1::n,

if M [xi℄ = 1 thenS[Xi℄ = fpi; : : : ; pig, S[Xi+n℄ = fwji 2 ub(Xi+n)g, S[Xi+2n℄ =fnig, elseS[Xi℄ = fvji 2 ub(Xi)g, S[Xi+n℄ = fni; : : : ; nig, S[Xi+2n℄ = fpig.
By construction, the cardinalitieski are satisfied and the disjointness are satisfied

onX1 : : : ; X3n. In addition, the construction ensures that if a Boolean variablexi is
true inM (resp. false inM ) none of thevji (resp.wji ) are used and all thewji (resp.vji )
are already taken byX1 : : : ; X3n. Thus,8j 2 1::m, S[X3n+j ℄ is assigned one of the
valuesvji orwji representing a true literalxi or:xi in M . AndM being a 3SAT model,
we are sure that there exists such values not already taken byX1 : : : ; X3n. Therefore,S satisfiesFCDisjoint.

Consider now an assignmentS of theXi’s consistent withFCDisjoint. Build the
interpretationM such thatM [xi℄ = 1 iff S[Xi+2n℄ = fnig. Thanks to the disjointness
and cardinalities amongX1 : : : ; X3n, we guarantee that ifS[Xi+2n℄ = fnig all thewji
are already taken byXi+n, and ifS[Xi+2n℄ = fpig all thevji are already taken byXi,
so that they cannot belong to anyX3n+j . ButS satisfyingFCDisjoint, we know that
for eachj 2 1::m, X3n+j is assigned a value consistent withX1 : : : ; X3n. Therefore,M is a model ofF .

As a result, deciding the existence of a satisfying assignment for FCDisjoint
with multiset variables is NP-complete. Then, deciding whether GAC finds a wipe out
on the occurrence representation is coNP-complete. In addition, on the transformation
we use, if GAC detects a wipe then BC does3 (because of the waypi andni values
are set). So, deciding whether BC detects a wipe out is coNP-complete, and enforcing
bound consistency onFCDisjoint with multiset variables is NP-hard. ut
4.2 NEDisjoint

The constraintNEDisjoint(X1; : : : ; Xn) on set variables can be seen as a particular
case of constraintFCDisjoint in which the cardinality of the variablesXi can vary

3 GAC on the occurrence representation of multisets is in general not equivalent to BC (whilst
on sets it is). Ifub(X1) = ub(X2) = f1; 1; 2; 2g, andk1 = k2 = 2, GAC on the occurrence
representation ofFCDisjoint removes the possibility forX1 to have 1 occurrence of 1. BC
does not remove anything since the bounds 0 and 2 foro

(1; X1) are consistent.
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from 1 to1 instead of being fixed toki. Since the way the algorithmBC-FCD-Sets
is written permits to express such an interval of values for the cardinality of the set
variablesXi, the algorithmBC-NED-Sets is a very simple modification of it. In step
(3) of BC-FCD-Sets it is indeed sufficient to assignB[i℄ to 1::1 instead ofki::ki,
for 1 � i � n. J.F. Puget has pointed out to us that theIlcAllNullIntersect
constraint in “extended” mode will also achieve BC on non-empty set variables.

WhenNEDisjoint involves multiset variables, BC remains polynomial. In fact, it
is sufficient to transform the multisets in sets and to useBC-NED-Sets on the obtained
sets. Once BC achieved on these sets, we just have to restore the initial number of
occurrences, notedinit-occ, for each remaining value. The cardinality of the multisets
are not bounded above, so that if one value has support, any number of occurrences of
the same value have support also.

AlgorithmBC-NED-Msets

1. for each i 2 1::n; v occurring inub(Xi) do
init-occub(Xi; v) occ(v; ub(Xi)); occ(v; ub(Xi)) 1
init-occlb(Xi; v) occ(v; lb(Xi)); occ(v; lb(Xi)) min(1; init-occlb(Xi; v))

2. BC-NED-Sets(X1; : : : ; Xn)
3. for each i 2 1::n; v 2 ub(Xi) do

occ(v; ub(Xi)) init-occub(Xi; v)
if v 2 lb(Xi) then occ(v; lb(Xi)) max(1; init-occlb(Xi; v))

5 Partition constraints

ThePartition constraint is decomposable into binary empty intersectionconstraints
and ternary union constraints involvingn additional variables without hindering bound
consistency [12]. It appears in a number of constraint solvers such as ILOG Solver
(under the nameIlcPartition) and ECLiPSe when it is over sets. On the other
hand, the non-empty and fixed cardinality partition constraints are not decomposable.
We therefore present algorithms for enforcing BC on them or we prove intractability.

5.1 FCPartition

It is polynomial to enforce BC on theFCPartition constraint on set variables, but
NP-hard on multisets. On set variables, enforcing BC onFCPartition is very similar
to enforcing BC onFCDisjoint. Indeed, if the setX being partitioned is fixed, then
we can simply decompose a fixed cardinality partition constraint into a fixed cardinality
disjoint, union and cardinality constraints without hindering bound consistency.4 If X
is not fixed, we need to do slightly more reasoning to ensure that theXi’s are a partition
of X . We present here the additional lines necessary to deal withthis.

Line numbers with a prime represent lines modified wrtBC-FCD-Sets. The oth-
ers are additional lines.

4 As in the FCDisjoint case, J.F. Puget tells us that the filtering algorithm of the
IlcPartition constraint in [5] uses a similar approach when the ”extended” mode is set.
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AlgorithmBC-FCP-Sets

1’. For allv 2 ub(X), introduce an integer variableYv with dom(Yv) = fg
2. Initialize the domain of eachYv as follows:

...
(c’) if jdom(Yv)j = 0 thendom(Yv) fi j v 2 ub(Xi)g
(d) if v 62 lb(X) thendom(Yv) dom(Yv) [ fn + 1g
(e) if jdom(Yv)j = 0 thenfail

...
4. Maintain the following channelling constraints, for alli � n and for allv:

...
(c) n+ 1 62 dom(Yv)$ v 2 lb(X)
(d) ub(X) � Sub(Xi)

Lemma 2. Define the one-to-one mapping between assignmentsS of the dual variablesY and assignmentsS0 of the original set variablesXi andX by:S0[X ℄ = SS0[Xi℄ andv 2 S0[Xi℄ iff S[Yv℄ = i. ThenS is consistent withgcc in step (3) ofBC-FCP-Sets
iff S0 is consistent forFCPartition.

Proof. ()) We prove thatS0 is:
Disjoint and Fixed Cardinality:See Lemma 1.
Partition: Lines (2.c’-d) guarantee that for a valuev 2 lb(X),Yv cannot be assigned

the dummy valuen+1 in S. Hence,S0 necessarily has anXi with v 2 S0[Xi℄. Because
of line (1’), none of theYv represent a valuev 62 ub(X). Hence, for alli, S0[Xi℄ �ub(X), thenS0[X ℄ � ub(X).

(() We prove thatS is:
Consistent withgcc: See Lemma 1.
Consistent withY : If S0 is a satisfying assignment forFCPartition, S0[Xi℄ �S0[X ℄;8i. SinceS0[X ℄ � ub(X), we know that any valuev appearing inS0 has a

corresponding variableYv . And by construction (lines 2.a, 2.c, 2.d, we know thatS is
consistent withY domains. ut
Theorem 3. BC-FCP-Sets is a sound and complete algorithm for enforcing bound
consistency onFCPartition with set variables that runs inO(nd2) time.

Proof. Soundness. A value v is pruned fromub(Xi) in step (4) ofBC-FCP-Sets
for one of the reasons that already held inFCDisjoint or becauseYv has not been
created in line (1’). Lemma 2 tells us that all cases imply that v cannot belong toXi
in a satisfying tuple forFCPartition. Soundness oflb(Xi) comes from Lemma 2
as it came from Lemma 1 onFCDisjoint. We must also show that the algorithm
does not fail ifFCPartition can be made bound consistent.BC-FCP-Sets can
fail in line (2.e) if a valuev that belongs tolb(X) cannot belong to anyXi. Clearly,
FCPartition cannot then be made bound consistent. The other cases of failure are
the same as forFCDisjoint. A valuev is pruned fromub(X) in step (4.d) because
none of theXi containsv in its upper bound. This means that this value cannot belong
to any satisfying assignmentS0 (Lemma 2). A valuev is added tolb(X) in line (4.c)
if no assignmentS satisfying thegcc verifiesS[Yv℄ = n+ 1. This means thatv is
assigned to a variableXi in all assignments satisfyingFCPartition.
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Completeness. Letv 2 ub(X) after step (4). Then, there existsXi with v 2 ub(Xi),
and soi 2 dom(Yv) after step (3).gcc being GAC, there exists an assignmentS
satisfyinggcc, with S[Yv ℄ = i. Lemma 2 guarantees there exists an assignmentS0
with fvg � S0[X ℄. Thus,v is in ub(X). In addition, letv 62 lb(X) after step (4).
Then,n+ 1 2 dom(Yv) after step (3). Thus, there is an assignmentS satisfying
gcc with S[Yv℄ = n+ 1. Lemma 2 tells us that there is a satisfying assignmentS0
of FCPartition with v not inS0[X ℄.

Complexity. See proof ofBC-FCD-Sets. ut
Theorem 4. Enforcing BC onFCPartition(X1; : : : ; Xn; X; k1; : : : ; kn) with mul-
tiset variables is NP-hard.

Proof. We know that deciding the existence of a satisfying assignment is NP-complete
for FCDisjoint(X1; : : : ; Xn; k1; : : : ; kn) with multiset variables. If we build a mul-
tiset variableX with lb(X) = ; andub(X) = Si ub(Xi), thenFCPartition(X1;: : : ; Xn; X; k1; : : : ; kn) has a satisfying assignment if and only ifFCDisjoint(X1;: : : ; Xn; k1; : : : ; kn) has one. Thus, enforcing bound consistency onFCPartition is
NP-hard. ut
5.2 NEPartition

The constraintNEDisjoint(X1; : : : ; Xn) on set variables was a particular case of
FCDisjoint in which the cardinality of the variablesXi can vary from 1 to1 instead
of being fixed toki. This is exactly the same forNEPartition on set variables, which
is a particular case ofFCPartition. Replacing “B[i℄  ki::ki” by “B[i℄  1::1”
in BC-FCP-Sets, we obtainBC-NEP-Sets.

WhenNEPartition involves multiset variables, BC remains polynomial. As for
BC-NED-Msets, the trick is to transform multisets in sets and to useBC-NEP-Sets
on the obtained sets. We just need to be careful with the compatibility of the occurrences
of values inXi variables and theX being partitioned. Once BC is achieved on these
sets, we have to restore the initial number of occurrences and check again compatibility
with X .

AlgorithmBC-NEP-Msets

1. if
Si lb(Xi) 6� ub(X) or lb(X) 6� Si ub(Xi) then failure

2. for each i 2 1::n; v occurring inub(Xi) do
2.1. if occ(v; ub(Xi)) < occ(v; lb(X)) then occ(v; ub(Xi)) 0
2.2. if occ(v; ub(Xi)) > occ(v; ub(X)) then occ(v; ub(Xi))  occ(v; ub(X))
2.3. init-occub(Xi; v) occ(v; ub(Xi)); occ(v; ub(Xi)) 1
2.4. init-occlb(Xi; v) occ(v; lb(Xi)); occ(v; lb(Xi)) min(1; init-occlb(Xi; v))

3. storelb(X); lb(X) set-of(lb(X)); ub(X) set-of(ub(X))
4. BC-NEP-Sets(X1; : : : ; Xn; X)
5. restorelb(X)
6. for each i 2 1::n; v 2 ub(Xi) do

6.1.occ(v; ub(Xi)) init-occub(Xi; v)
6.2. if v 2 lb(Xi) then occ(v; lb(Xi)) max(1; init-occlb(Xi; v);occ(v; lb(X)))

7. lb(X) lb(X) [Si lb(Xi);ub(X) Si ub(Xi)
9



Theorem 5. BC-NEP-Msets is a sound and complete algorithm for enforcing bound
consistency onNEPartition with multiset variables, that runs inO(nd2) time.

Proof. (Sketch.) As forNEDisjoint on multiset variables, enforcing bound consis-
tency onNEPartition after having transformed the multisets in sets (i.e., we keep
only one occurrence of each value in the lower and upper bounds), the removal of a
valuev from an upper bound byBC-NEP-Sets is a sufficient condition for the re-
moval of all occurrences ofv in the original multiset upper bound. The additionv to a
lower bound is a sufficient condition for the addition of someoccurrences ofv in the
lower bound (the right number depends on the number of occurrences ofv in lb(X)
and in the lower bound of theXi holdingv. It is then sufficient to ensure consistency
between the number of occurrences in theXi andX (lines 1, 2.1, 2.2, and 7), to trans-
form multisets in sets (lines 2.3, 2.4, and 3), to callBC-NEP-Sets (line 4), and to re-
store appropriate numbers of occurrences (lines 5 and 6). Line 1 guarantees thatub(X)
can cover all theXi’s lower bounds and thatlb(X) can be covered by theXi’s upper
bounds. A valuev can be assigned inXi if and only if it can cover the occurrences ofv
in lb(X) (line 2.1), and it cannot occur more than inub(X) (line 2.2). Finally, a valuev
occurs inlb(X) at least as many times as it occurs in somelb(Xi), and occurs inub(X)
exactly as many times as in theub(Xi) having its greatest number of occurrences (line
7). The complexity is dominated by line 4, with the call toBC-NEP-Sets which isO(nd2). ut
6 Intersection constraints

TheDisjoint constraint restricts the pair-wise intersection of any twoset or multiset
variables to the empty set. We now consider the cases where the cardinality of the
pair-wise intersection is either bounded or equal to a givenconstant or integer variable
(lower case characters denote constants while upper case denote variables):

Intersect�(X1; : : : ; Xn;K) iff jXi \Xj j � K for anyi 6= j.
Intersect�(X1; : : : ; Xn;K) iff jXi \Xj j � K for anyi 6= j.
Intersect=(X1; : : : ; Xn;K) iff jXi \Xj j = K for anyi 6= j.
As usual, we can also add non-emptiness and fixed cardinalityconstraints to the

set or multiset variables. For example,FCIntersect�(X1; : : : ; Xn;K;C) iff jXi \Xj j � K for any i 6= j and jXij = C for all i. If K = 0, Intersect� and
Intersect= are equivalent toDisjoint.

6.1 At most intersection constraints

We show thatIntersect� andNEIntersect� can be decomposed without hin-
dering bound consistency, but that it is NP-hard to enforce BC onFCIntersect�.

Theorem 6. BC(Intersect�(X1; : : : ; Xn;K)) is equivalent toBC(jXi \Xj j �K) for all i < j.
Proof. SupposeBC(jXi\Xj j � K) for all i < j. We will show thatBC(8i < j:jXi\Xj j � K). Consider the occurrence representation of the set or multiset variables. Let
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Xil be the number of occurrences of the valuel in Xi. Consider the upper bound onXil. We will construct a support for this value forXil that simultaneously satisfiesjXi \ Xj j � K for all i < j. The same support will work for the lower bound onXil. First, we assignK with its upper bound. Then we pick anyj with i 6= j. AsBC(jXi \Xj j � K), there is some assignment forXjn andXim (l 6= m) within their
bounds that satisfiesjXi\Xj j � K. We now extend these assignments to get a complete
assignment for every other set or multiset variable as follows. Every otherXpq (p 6= i
andp 6= j) is assigned its lower bound. This can only help satisfyjXi \ Xj j � K for
all i < j. This assignment is therefore support forXil. We can also construct support
for the upper of lower bound ofK in a similar way. Maximality of the bound consistent
domains is easy. Consider any value forXil smaller than the lower bound or larger than
the upper bound. As this cannot be extended to satisfyjXi \ Xj j � K for somej, it
clearly cannot be extended to satisfyjXi \Xj j � K for all i < j. A similar argument
holds for any value forK smaller than the lower bound or larger than the upper bound.
Hence,BC(8i < j:jXi \Xj j � K). ut

Given a set of set or multiset variables, the non-empty intersection constraintNEInt-
ersect�(X1; : : : ; Xn;K) ensures thatjXi \Xj j � K for i 6= j andjXij > 0 for alli. If K = 0, this is theNEDisjoint constraint which is not decomposable. IfK > 0,
the constraint is decomposable.

Theorem 7. If K > 0 thenBC(NEIntersect�(X1; : : : ; Xn;K)) is equivalent toBC(jXi \Xj j � K) for all i < j andBC(jXij > 0) for all i.
Proof. SupposeBC(jXi \ Xj j � K) for all i < j andBC(jXij > 0) for all i.
Thenjlb(Xi) \ lb(Xj)j � max(K) for all i < j. And if jub(Xi)j = 1 for any i thenlb(Xi) = ub(Xi). Consider some variableXi and any valuea 2 ub(Xi) � lb(Xi).
We will find support in the global constraint forXi to take the valuefag [ lb(Xi).
Consider any other variableXj . If jlb(Xj)j = 0 then we pick any valueb 2 ub(Xj)
and setXj to fbg. This will ensure we satisfy the non-emptiness constraint onXj . Ask > 0 and jXj j = 1, we will satisfy the intersection constraint betweenXj and any
other variable. Ifjlb(Xj)j > 0 then we setXj to lb(Xj). This again satisfy the non-
emptiness constraint onXj . Sincejlb(Xi) \ lb(Xj)j � max(K) for all i < j, we
will also satisfy the intersection constraints. Support can be found in a similar way forXi to take the valuelb(Xi) if this is non-empty. Finally,min(K) has support sinceBC(jXi \Xj j � K) for all i < j. HenceNEIntersect�(X1; : : : ; Xn;K) is BC.ut

Enforcing BC onFCIntersect� is intractable.

Theorem 8. Enforcing BC onFCIntersect�(X1; : : : ; Xn; k; 
) for 
 > k > 0 is
NP-hard.

Proof. Immediate from Theorem 5 in [2]. ut
Sadler and Gervet introduce theatmost1-incommonanddistinct constraints

for set variables with a fixed cardinality [9]. Theatmost1-incommon constraint is
FCIntersect�(X1; : : : ; Xn; 1; 
). Similarly, thedistinct constraint on sets of
fixed cardinality is isFCIntersect�(X1; : : : ; Xn; 
 � 1; 
). The reduction used in
Theorem 5 in [2] works with all these parameters. Hence, all are NP-hard to propagate.
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6.2 At least intersection constraints

Similar to the at most intersection constraint,Intersect� andNEIntersect� can
be decomposed without hindering bound consistency. However, it is NP-hard to enforce
BC onFCIntersect�.

Theorem 9. BC(Intersect�(X1; : : : ; Xn;K)) is equivalent toBC(jXi \Xj j �K) for all i < j.
Proof. The proof is analogous to that of Theorem 6 except we extend a partial assign-
ment to a complete assignment that is interval support by assigning each of the addi-
tionalXpq with the upper bound and (where appropriate)K with its lower bound. ut

Two sets cannot have an intersection unless they are non-empty. Hence this result
also shows thatBC(NEIntersect�(X1; : : : ; Xn;K)) for K > 0 is equivalent to
BC on the decomposition. By comparison, enforcing BC onFCIntersect� is in-
tractable.

Theorem 10. Enforcing BC onFCIntersect�(X1; : : : ; Xn; k; 
) for 
 > k > 0 is
NP-hard.

Proof. We letk = 1. We can reduce thek = 1 case to thek > 1 case by addingk � 1
additional common values to each set variable. The proof again uses a reduction of a
3SAT problem inn variables. The same reduction is used for set or multiset variables.
We let
 = n and introduce a set variable,S with domainfg � S � f1;:1; : : : ; n;:ng.
This will be set of literals assigned true in a satisfying assignment. For each clause,'
we introduce a set variable,X'. Suppose' = xi _ :xj _ xk, thenX' has domainfd'1 ; : : : ; d'n�1g � X' � fi;:j; k; d'1 ; : : : ; d'n�1g, whered'1 ; : : : ; d'n�1 are dummy
values. To satisfy the intersection and cardinality constraint,S must take at least one
of the literals which satisfy'. Finally, we introducen set variables,Xi to ensure that
one and only one ofi and:i is in S. EachXi has domainff i1; : : : ; f in�1g � Xi �ff i1; : : : ; f in�1; i;:ig. The constructed set variables then have a solution which satisfies
the intersection and cardinality constraints iff the original 3SAT problem is satisfiable.
Hence enforcing bound consistency is NP-hard. ut
6.3 Equal intersection constraints

Unlike the at most or at least intersection constraints, enforcing BC onIntersect=
is intractable even without cardinality constraints on theset or multiset variables.

Theorem 11. Enforcing BC onIntersect=(X1; : : : ; Xn; k) is NP-hard fork > 0.

Proof. Immediate from Theorem 6 in [2]. ut
The same reduction can also be used with the constraint that each set or multiset

has a non-empty or fixed cardinality.

Lemma 3. Enforcing BC onFCIntersect=(X1; : : : ; Xn; k) is NP-hard fork > 0.

Lemma 4. Enforcing BC onNEIntersect=(X1; : : : ; Xn; k; 
) is NP-hard fork > 0.
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7 Experimental results

To show the benefits of these global constraints, we ran some experiments using ILOG’s
Solver toolkit with a popular benchmark involving set variables. The social golfers
problemhp;m; n; ti is to schedulet golfers intom groups of sizen for p weeks, such
that no golfer plays in the same group as any other golfer twice. To model this prob-
lem, we introduce a set variable of fixed cardinality to represent every group in each
week. Each week is then a partition of the set of golfers. Between any two groups, their
intersection must contain at most one golfer. We also consider a generalization of the
problem in which there is an excess of golfers and some golfers rest each week. When
there is no excess of golfers,FCPartition shows no improvement upon its decom-
position into ILOG’sIlcPartition and cardinality constraints. When there is an
excess of golfers, the partitioning constraint is replacedby a disjointness constraint.

We compare the same model using theFCDisjoint constraint and its decomposi-
tion into ILOG’sIlcAllNullIntersect constraint and cardinality constraints on
groups. In the latter case, the filtering level is fixed eitherto “Default” or “Extended”.
We understand from conversations with Ilog that “Default” implements the decomposi-
tion whilst “Extended” enforces BC on the global constraint. We ran experiments with a
time limit of 10 minutes, and five settings form andn. For each, we present the results
for all numbersp of weeks such that at least one strategy needs at least one fail, and at
least one strategy can solve the problem within the time limit. We solved each problem
using five different variable ordering strategies:

– static golfer: picks each golfer in turn, and assigns him to the first possible group
of every week.

– static week:picks each golfer in turn, and assigns him to one group in the first
incomplete week.

– min domain: picks a pair (golfer, week) such that the total number of groups in
which the golfer can participate in during the given week is minimum, then assigns
this golfer to one group.

– default (group): ILOG Solver’s default strategy for set variables ordered bygroups;
this picks an elementv 2 ub(S) and adds it to the lower bound (v 2 S).

– default (week):ILOG Solver’s default strategy for set variables ordered byweeks.

We observe that, in terms of fails,FCDisjoint andIlcAllNullIntersect-
Extended are equivalent, with two exceptions5. Both outperform the decomposition
model or are the same. The runtimes follow a similar behaviour, although the decompo-
sition model can be faster when the number of fails are equal.The speed-up obtained by
reasoning on the global constraint rather than on disjointness and cardinality separately
can be of several orders of magnitude in some cases. With the two default heuristics
(last two columns in the table), we notice no difference between our global constraint
and the decomposition. These heuristics are not, however, always the best. The min do-
main heuristic can be superior, but sometimes needs the pruning provided by the global
constraint to prevent poor performance.

5 We do not understand these two exceptions but suspect there may be some complex interaction
with the dynamic branching heuristic.
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Number of Fails / CPU Time (s)
problem model static golfer static week min domain group (set) week (set)h6; 8; 4; 36i FCDisjoint 10 / 0.15 - 52 / 0.14 183 / 0.11 -

IlcAllNullIntersect (Extended) 10 / 0.13 - 52 / 0.11 183 / 0.11 -
IlcAllNullIntersect (Default) - - 190 / 0.13 183 /0.08 -h3; 6; 6; 37i FCDisjoint - 548 / 0.21 0 / 0.02 27 / 0.02 22232 / 2.36
IlcAllNullIntersect (Extended) - 548 / 0.2 0 / 0.02 27 / 0.03 22232 / 1.6
IlcAllNullIntersect (Default) - - 0 / 0.01 27 / 0.02 22232 / 1.3h3; 6; 6; 38i FCDisjoint - 67 / 0.03 0 / 0.03 4 / 0.02 3446 / 0.39
IlcAllNullIntersect (Extended) - 67 / 0.04 0 / 0.02 4 / 0.03 3446 / 0.26
IlcAllNullIntersect (Default) - - 0 / 0.01 4 / 0.02 3446 / 0.2h3; 6; 6; 39i FCDisjoint - 1261 / 0.3 0 / 0.02 7 / 0.03 171574 / 16.52
IlcAllNullIntersect (Extended) - 1261 / 0.27 0 / 0.02 7 / 0.02 171574 / 11.39
IlcAllNullIntersect (Default) - - 0 / 0.02 7 / 0.02 171574 / 8.85h3; 6; 6; 40i FCDisjoint 12 /0.02 48 / 0.03 0 / 0.02 0/ 0.02 8767 / 0.79
IlcAllNullIntersect (Extended) 12 / 0.03 48 / 0.03 0 / 0.02 0/ 0.03 8767 / 0.6
IlcAllNullIntersect (Default) - - 0 / 0.02 0/ 0.02 8767 / 0.46h3; 5; 5; 26i FCDisjoint - 44 / 0.03 0 / 0.01 2 /0 813 / 0.08
IlcAllNullIntersect (Extended) - 44 / 0.02 0 / 0.01 2 / 0.01 813 / 0.07
IlcAllNullIntersect (Default) - 177880 / 9.62 0 / 0.01 2 /0 813 / 0.05h3; 5; 5; 27i FCDisjoint 967161 / 160.92 5 / 0.01 0 / 0.01 1 / 0.01 62 / 0.01
IlcAllNullIntersect (Extended) 967161 / 96.94 5 / 0.01 0 / 0.02 1 / 0.01 62 / 0.01
IlcAllNullIntersect (Default) - 1106 / 0.09 0 / 0 1 / 0.01 62 / 0.02h3; 5; 5; 28i FCDisjoint 9 / 0.01 32 / 0.03 0 / 0.01 19 / 0.01 661 / 0.08
IlcAllNullIntersect (Extended) 9 / 0.01 32 / 0.01 0/ 0.01 19 / 0.01 661 / 0.06
IlcAllNullIntersect (Default) 58218 / 3.65 22860 / 1.23 0 / 0.01 19 / 0.01 661 / 0.05h3; 5; 5; 29i FCDisjoint 6 / 0.02 2 / 0.01 0 / 0.01 0 / 0,01 18 / 0.01
IlcAllNullIntersect (Extended) 6 / 0.01 2 / 0.01 0 / 0.01 0 / 0,01 18 / 0.01
IlcAllNullIntersect (Default) 37208 / 2.25 209 / 0.02 0 / 0.01 0 / 0 18 / 0.01h3; 9; 9; 83i FCDisjoint - - 0 / 0.12 453 / 0.17 -
IlcAllNullIntersect (Extended) - - - 453 / 0.13 -
IlcAllNullIntersect (Default) - - - 453 /0.11 -h3; 9; 9; 84i FCDisjoint - - 0 / 0.12 5 / 0.09 -
IlcAllNullIntersect (Extended) - - 5 / 0.13 5 / 0.1 -
IlcAllNullIntersect (Default) - - - 5 / 0.08 -h3; 9; 9; 85i FCDisjoint - - 0 / 0.13 30 / 0.09 -
IlcAllNullIntersect (Extended) - - 0 / 0.13 30 / 0.1 -
IlcAllNullIntersect (Default) - - 1442064 / 159.75 30 /0.08 -h10; 9; 3; 30i FCDisjoint 464 / 0.84 264 / 0.45 - 16055 / 3.75 15 / 0.26
IlcAllNullIntersect (Extended) 464 / 0.56 264 / 0.32 - 16055 / 2.2 15 / 0.23
IlcAllNullIntersect (Default) - - - 16055 / 1.99 15 / 0.22h10; 9; 3; 31i FCDisjoint 37 / 0.46 1 / 0.25 0 / 0.39 2 / 0.28 113 / 0.29
IlcAllNullIntersect (Extended) 37 / 0.41 1 / 0.24 0 / 0.32 2 / 0.26 113 / 0.24
IlcAllNullIntersect (Default) - 51223 / 10.45 0 / 0.32 2 / 0.25 113 /0.23
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8 Conclusions

We have begun a systematic study of global constraints on setand multiset variables.
We have studied here a wide range of disjoint, partition, andintersection constraints.
The disjoint constraint on set or multiset variables is decomposable (and hence polyno-
mial). On the other hand, the non-empty and fixed cardinalitydisjoint constraints are not
decomposable without hindering bound consistency. We therefore present polynomial
algorithms for enforcing bound consistency on the non-empty disjoint constraints for
set or multiset variables, for enforcing BC on the fixed cardinality disjoint constraint
for set variables, and prove that enforcing BC on the fixed cardinality disjoint con-
straint on multiset variables is NP-hard. We give very similar results for the partition,
non-empty and fixed cardinality partition constraints. We also identify those non-empty
intersection constraints which are decomposable, those which are not decomposable but
polynomial, and those that are NP-hard. Many of the propagation algorithms we pro-
pose here exploit a dual viewpoint, and call upon existing global constraints for finite-
domain variables like the global cardinality constraint. We are currently extending this
study to counting constraints on set and multiset variables. Propagation algorithms for
such constraints also appear to exploit dual viewpoints extensively.
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8. J-C. Régin. Generalized arc consistency for global cardinality constraints. InProc. AAAI’96,

pages 209–215. AAAI Press/The MIT Press, 1996.
9. A. Sadler and C. Gervet. Global reasoning on sets. InProc. of Workshop on Modelling and

Problem Formulation (FORMUL’01), 2001. Held alongside CP-01.
10. A. Sadler and C. Gervet. Global Filtering for the Disjointness Constraint on Fixed Cardinal-

ity Sets. In Technical report IC-PARC-04-02, Imperial College London, March 2001.
11. J. Schimpf, A. Cheadle, W. Harvey, A. Sadler, K. Shen, andM. Wallace. ECLiPSe. In

Technical report IC-PARC-03-01, Imperial College London,2003.
12. T. Walsh. Consistency and propagation with multiset constraints: A formal viewpoint. In

Proc. CP’03. Springer, 2003.

15


