Among, Common and Disjoint Constraints

Christian Bessiere!, Emmanuel Hebrard?, Brahim Hnich?,
Zeynep Kiziltan*, and Toby Walsh?

! LIRMM, CNRS/University of Montpellier, France
bessiere@lirmm.fr
2 NICTA and UNSW, Sydney, Australia
{ehebrard, tw}@cse.unsw.edu.au

3 Izmir University of Economics, Turkey

brahim.hnich@ieu.edu.tr
4 University of Bologna, Italy

zkiziltan@deis.unibo.it

Abstract. AMONG, COMMON and DISJOINT are global constraints use-
ful in modelling problems involving resources. We study a number of vari-
ations of these constraints over integer and set variables. We show how
computational complexity can be used to determine whether achieving
the highest level of consistency is tractable. For tractable constraints, we
present a polynomial propagation algorithm and compare it to logical de-
compositions with respect to the amount of constraint propagation. For
intractable cases, we show in many cases that a propagation algorithm
can be adapted from a propagation algorithm of a similar tractable one.

1 Introduction

Global constraints are an essential aspect of constraint programming. See, for
example, [81BLOL12]. They specify patterns that occur in many problems, and ex-
ploit efficient and effective propagation algorithms to prune search. In problems
involving resources, we often need to constrain the number of variables taking
particular values. For instance, we might want to limit the number of night shifts
assigned to a given worker, to ensure some workers are common between two
shifts, or to prevent any overlap in shifts between workers who dislike each other.
The AMONG, COMMON and DISJOINT constraints respectively are useful in such
circumstances. The AMONG, COMMON and DISJOINT constraints are useful in
such circumstances.

The AMONG constraint was first introduced in CHIP to model resource allo-
cation problems like car sequencing [3]. It counts the number of variables using
values from a given set. A generalization of the AMONG and ALLDIFFERENT con-
straints is the COMMON constraint [2]. Given two sets of variables, this counts
the number in each set which use values from the other set. A special case of
the COMMON constraint also introduced in [2] is the DISJOINT constraint. This
ensures that no value is common between two sets of variables. We study these
three global constraints as well as seven other variations over integer and set vari-
ables. For each case, we present a polynomial propagation algorithm, and identify
when achieving a higher level of local consistency is intractable. For example,

B. Hnich et al. (Eds.): CSCLP 2005, LNAI 3978, pp. 29-F3] 2006.
© Springer-Verlag Berlin Heidelberg 2006

30 C. Bessiere et al.

rather surprisingly, even though the DISJOINT constraint is closely related to
(but somewhat weaker than) the ALLDIFFERENT constraint, it is NP-hard to
achieve generalised arc consistency on it.

The rest of the paper is oragnised as follows. We first present the necessary
formal background in Section[2l Then, in Section Bland Section] we study vari-
ous generalisations and specialisations of the AMONG, COMMON, and DISJOINT
constraints on integer and set variables. Finally, we review related work in
Section [B] before we conclude and present our future plans in Section

2 Formal Background

A constraint satisfaction problem consists of a set of variables, each with a finite
domain of values, and a set of constraints specifying allowed combinations of
values for given subsets of variables. A solution is an assignment of values to the
variables satisfying the constraints. We consider both integer and set variables.
A set variable S can be represented by a lower bound [6(S) which contains the
definite elements and an upper bound ub(S) which contains the definite and po-
tential elements. We use the following notations: X, Y, N, and M (possibly with
subscripts) denote integer variables; S and T' (again possibly with subscripts)
denote set variables; S (possibly with a subscript) and K denote sets of inte-
gers; and v and k (possibly with a subscript) denote integer values. We write
D(X) for the domain of a variable X. For integer domains, we write min(X)
and maz(X) for the minimum and maximum elements in D(X). Throughout
the paper, we consider constraint satisfaction problems in which a constraint
contains no repeated variables.

Constraint solvers often search in a space of partial assignments enforcing
a local consistency property. A bound support for a constraint C' is a partial
assignment which satisfies C' and assigns to each integer variable in C' a value
between its minimum and maximum, and to each set variable in C' a set between
its lower and upper bounds. A bound support in which each integer variable takes
a value in its domain is a hybrid support. If C' involves only integer variables,
a hybrid support is a support. A constraint C' is bound consistent (BC') iff for
each integer variable X, min(X) and maz(X) belong to a bound support, and
for each set variable S, the values in ub(S) belong to S in at least one bound
support and the values in [b(S) are those from ub(S) that belong to .S in all bound
supports. A constraint C' is hybrid consistent (HC) iff for each integer variable
X, every value in D(X) belongs to a hybrid support, and for each set variable S,
the values in ub(S) belong to S in at least one hybrid support and the values in
Ib(S) are those from ub(S) that belong to S in all hybrid supports. A constraint
C over integer variables is generalized arc consistent (GAC) iff for each variable
X, every value in D(X) belongs to a support. If all variables in C are integer
variables, HC is equivalent to GAC, whilst if all variables in C' are set variables,
HC is equivalent to BC. Finally, we will compare local consistency properties
applied to (sets of) logically equivalent constraints. A local consistency property
@ on (1 is strictly stronger than ¥ on Cy iff, given any domains, ¢ removes all
values ¥ removes, and sometimes more.

Among, Common and Disjoint Constraints 31

3 Integer Variables

3.1 Among Constraint

The AMONG constraint counts the number of variables using values from a given
set [3]. More formally, we have:

AMONG([Xh..,Xn], [kl,..7]€m]7N) iff N = ‘{Z | 3] . ‘XZ =]ﬂ]}‘

For instance, we can use this constraint to limit the number of tasks (variables)
assigned to a particular resource (value). Enforcing GAC on such a constraint
is polynomial. Before we give an algorithm to do this, we establish the following
theoretical results.

Lemma 1. Given K = {ki1,..,kn}, Ib=|{i | D(X;) CK}|, and ub=n — |{i |
D(X;)NK =0}, a value v € D(N) is GAC for AMONG iff b < v < ub.

Proof. At most ub variables in [X7,.., X,] can take a value from K and [b of
these take values only from K. Hence v is inconsistent if v < Ib or v > ub. We
now need to show any value between [b and ub is consistent. We have ub — [b
variables that can take a value from K as well from outside K. A support for
Ib < v < ub can be constructed by assigning v variables to a value from K and
ub — v variables to a value from outside K. O

Lemma 2. Given K = {k1,...km}, Ib = |[{i | D(X;) C K}|, ub = n — |{¢ |
D(X;)NK =0}, and Ib < min(N) < max(N) < ub, a value in D(X;) may not
be GAC for AMONG iff Ib = min(N) = maz(N) or min(N) = max(N) = ub.

Proof. The variables [X7, .., X,,] can be divided into three categories: 1) those
whose domain contains values only from K (Ib of them), 2) those whose domain
contains both values from I and from outside (ub — Ib of them), and 3) those
whose domain does not intersect with K (n — ub of them). If b = min(N) =
maz(N) then exactly Ib variables must take a value from K. These variables can
then only be those of the first category and thus K cannot be in the domains
of the second category. If min(N) = max(N) = ub then exactly ub variables
must take a value from K. These variables can then only be those of the first
and the second category and thus any value v € K cannot be in the domains
of the second category. We now need to show this is the only possibility for
inconsistency. Consider an assignment to the constraint. Due to the variables of
the first and the third category we have [b values from K and n — ub values from
outside K. If Ib < maxz(N) then in the second category we can have at least one
variable assigned to a value from /C, the rest assigned to a value outside K and
satisfy the constraint. Similarly, if min(N) < ub then in the second category we
can have at least one variable assigned to a value outside of IC, the rest assigned
to a value from K and satisfy the constraint. Hence, all values are consistent
when b < max(N) or min(N) < ub. O

We now give an algorithm for the AMONG constraint.

32 C. Bessiere et al.

Algorithm 1. GAC for AMONG([X1, .., X,], K, N).

Ib:={i | D(Xi) C K};
ub:=n—|{i| D(X;)NK = 0};
min(N) := maz(min(N),1b);
maz(N) := min(maz(N), ub);
if (maxz(N) < min(N)) then fail;
if (1b = min(N) = maxz(N)) then
foreach X, . D(X;) £ K do D(X;) := D(X;) \ K;
7 if (min(N) = max(N) = ub) then
foreach X; . D(X;)NK £ 0 do D(X;) := D(X;) N K;

S Uk W N

Theorem 1. Algorithmdmaintains GAC on AMONG([X1, .., Xpn], [k1s - km], N)
and runs in O(nd) where d is the mazimum domain size.

Proof. (Sketch) By Lemmas[Il and 2] the algorithm maintains GAC. Computing
Ib and ub is in O(nd). Updating the bounds of N is constant time. Updating
D(X;) is in O(d). Since there are n variables, pruning X;’s is in O(nd). Thus,
GAC on AMONG is in O(nd). O

The behaviour of the algorithm can be simulated by encoding the AMONG
constraint using the sum constraint:

AMONG([X71,...,X,], K, N) iff

Vie{l,.,n} Bi=1<X,eKA Y Bi=N
ie{1,..,n}

where each B; is a Boolean variable with the domain {0,1}. In the algorithm,
b corresponds to the number of Boolean variables assigned 1, and ub to the
number of Boolean variables not assigned 0 (that is, either assigned 1 or having
the domain {0,1}). Lines 3 and 4 of the algorithm can be seen as the propagation
of the sum constraint: min(N) is computed by taking the maximum of min(N)
and the sum of min(B;) which is equivalent to Ib; similarly max(N) is computed
by taking the minimum of max(N) and the sum of max(B;) which is equivalent
to ub. If Ib = min(N) = max(N), all the Booleans having the {0, 1} domain will
be assigned 0, meaning that the associated variables do not take values from /.
Likewise, if min(N) = max(N) = ub, all the Booleans having the {0, 1} domain
will be assigned 1, meaning that the associated variables take values only from
KC. Otherwise, no propagation will occur. Consequently, the sum decomposition
maintains GAC.

An alternative method of propagating an AMONG constraint is using the
global cardinality constraint Gce [9):

AMONG([X1, -+, X, [kt s ko, N iff
C;(]C([)(l7 Ce 7Xn]7 []4}17 o km]7 [01, o Om]) A

> 0i=N

ie{l,..,m}

As shown in [6], this decomposition may not always achieve GAC.

Among, Common and Disjoint Constraints 33

Even if GAC on AMONG can be maintained by a simple decomposition, the
presented algorithm is useful when we consider a number of extensions of the
AMONG constraint. An interesting extension is when we count not the variables
taking some given values but those taking values taken by other variables. This
is useful when, for example, the resources to be used are not initially known. We
consider here two such extensions in which we replace [k, .., k] either by a set
variable S or by a sequence of variables [Y71, .., Y]

AMONG([X1, .., Xp], S, N) holds iff N variables in X; take values in the set
S. That is, N = |{i | X; € S}|. Enforcing HC on this constraint is NP-hard in
general.

Theorem 2. Enforcing HC on AMONG([X1, .., X,],S, N) is NP-hard.

Proof. We reduce 3-SAT to the problem of deciding if such an AMONG con-
straint has a satisfying assignment. Finding hybrid support is therefore NP-
hard. Consider a formula ¢ with n variables (labelled from 1 to n) and m
clauses. Let kK be m + n + 1. To construct the AMONG constraint, we create
2k + 1 variables for each literal ¢ in the formula such that X;..X;x € {i},
Xi(et1)--Xiary € {—1}, and X;op41) € {i, —i}. We create a variable Y; for each
clause j in ¢ and let Y; € {x, —y, 2z} where the jth clause in ¢ is V -y V z.
We let N = n(k+1)+mand {} €S C {1,-1,..,n,—n}. The constraint
AMONG([XH, . X1(2k+1)7 vy Xl oo Xn(QkJrl)’ Yi,.., Ym], S, N) has a solution iff
© has a satisfying assignment. Q

In Algorithm 2] we give a propagation algorithm for this AMONG constraint.
Notice that we assume all values are strictly positive. We highlight the differences
with Algorithm [[l The first modification is to replace each occurrence of I by
either 1b(S) or ub(S). As a consequence, instead of a single lower bound and
upper bound on N, we have now two pairs of bounds, one under the hypothesis
that S is fixed to its lower bound (Ib[0] and ¢1b[0]), and one under the hypothesis
that S is fixed to its upper bound (lub[0] and ub[0]). Moreover, in loop [we
compute the contingent values of Ib (resp. ub) when a value v is added to 1b(S)
(resp. removed from ub(S)) and store the results in Ib[v] (resp. ub[v]). These
arrays are necessary for pruning N (lines Bl @ [l [7]), when the minimum (resp.
maximum) value of N cannot be achieved with the current lower (resp. upper)
bound of S (conditionals [2 and Bl). In this case, we know that at least one of
these values must be added to Ib(S) (resp. removed from ub(S)). Therefore the
smallest value [b[v] (resp. greatest value ub[v]) is a valid lower bound (resp. upper
bound) on N. We also use them for pruning S (lines [§ and [@)). Finally, we need
to compute b and ub, as they may have been affected by the pruning on S. This
is done in line The worst case time complexity is unchanged, as loop [l can
be done in O(nd).

The level of consistency achieved by this propagation algorithm is incompa-
rable to BC. The following example shows that BC is not stronger: X; € {2, 3},
Xy € {2,3}, X3 € {1,2,3,4}, 1b(S) = ub(S) = {2,3}, min(N) = max(N) = 2.
The algorithm will prune {2,3} from X3, whereas a BC algorithm will not do

34 C. Bessiere et al.

Algorithm 2. Propagation for AMONG([X7, .., X»], S, N).
[0] := [{X: | D(X:) C Ib(S)};
glb[0] :=n — |{X; | D(X;) N1b(S) = 0};
wb[0] :=n — |{X; | D(X;) Nub(S) = 0};
lub[0] := [{X: | D(X3) C ub(S)};
1 foreach v € ub(S) \ lb(s) do
o] := [{X: | D(Xi) € (Ib(S) U{v})}];
ublv] :=n — [{Xi | D(X:) N (ub(5) \ {v}) = 0}f;
2 if glb[0] < min(N) then
3 LB —{lb[HUG(ub()\ Ib(S))};
4 if (LB ¢) then min(N) = min
else
min(N) := maz(min(N), [b[0]);
5 if (ub[0] > max(N) then
o UB = {40l | v (h(S) \ IS}
7 if (UB 0) then maxz(N) = maz(UB);
else
mazx(N) = min(mam(N),ub[O]);
if (max(N) < min(N)) then fail;
8 Ib(S) :=1b(S)U {v | ublv] < min(N)};
o ub(S) := ub(8) \ {v | Ib[u] > maz(N)};
10 if (min(N) = maz(N)) then
Ib:=|{i| D(X1) CI(S)};
ub = |{i | D(X1) N ub(S) £ 0}
if (Ib =min(N)) then
foreach X, . D(X;) € Ib(S) do D(X;) := D(X;) \ Ib(S);
if (ub = max(N)) then
foreach X; . D(X;) Nub(S) £ () do D(X;) := D(X;) Nub(S);

(LB);

any pruning. On the other hand, the following example shows that this algorithm
does not enforce BC. Consider X; € {1,2}, X, € {1,2}, X5 € {3}, X4 € {3},
X5 € {4}, Xo € {4}, X6 € {5}, X5 € {5}, Ib(S) = {1,2}, ub(S) ={1,2,3,4,5},
N € {5,6,7,8}. The algorithm will not do any pruning whereas a BC algorithm
will prune 5 from N.

We can again use the sum constraint to encode the AMONG constraint:

AMONG([X1, .., Xp], S, N) iff

Vie{l,.,n} Bi=1-X,eSA > B =N
i€{1,..,n}

where each B; is a Boolean variable with the domain {0,1}. Algorithm [is
strictly stronger than such a decomposition. It is easy to see that whenever the
decomposition prunes a value from N, X;’s, or S, our algorithm also can de-
tect these inconsistencies. However, Algorithm 2] might detect more inconsistent
values than the decomposition. For instance, consider X7 € {1,2}, X» € {1,2},
X3=3,X4=3,X5=4, Xe¢ =4,16(5) ={1,2}, ub(S) = {1,2,3,4}, and N €
{2,3}. Algorithm [prunes 3 and 4 from ub(S) but the decomposition does not.

Among, Common and Disjoint Constraints 35

The level of consistency achieved by this decomposition is also incomparable
to BC. The example which demonstrates the incomparability of Algorithm [2and
BC also shows that the decomposition is incomparable to BC.

It remains an open question, however, whether BC on such a constraint is
tractable or not.

We now consider the second generalization. AMONG([X1, .., Xy], [Y1, .., Yin], N)
holds iff IV variables in X; take values in common with Y;. That is, N =
{i | 3j . Xi = Y;}|. As before, we cannot expect to enforce GAC on this con-
straint.

Theorem 3. Enforcing GAC on AMONG([X1, .., Xp], [Y1, .., Y], V) is NP-hard.

Proof. We again use a transformation from 3-SAT. Consider a formula ¢ with
n variables (labelled from 1 to n) and m clauses. We construct the constraint
AMONG([Y1, .., Yinl, [X1, .., Xp], M) in which X; represents the variable ¢ and Y
represents the clause j in . We let M =m, X; € {i,—i} and Y; € {z,—y, 2z}
where the jth clause in ¢ is V =y V z. The constructed AMONG constraint has
a solution iff ¢ has a model. Q@

To propagate AMONG([X7, .., X,,], [Y1,.., Yin], V), we can use the following de-
composition:
AmoNG([X7y, .., Xn], [Y1, .., Yin], N) iff

AMONG([X1,., Xu], S, N)A | {1 =5
je{1,..,m}

We can therefore use the propagation algorithm proposed for AMONG([X7,
.y Xu], S, N). However, even if we were able to enforce HC on the decomposition

(which is NP-hard in general to do), we may not make the original constraint
GAC.

Theorem 4. GAC on AMONG([X1,.., Xy], [Y1,.., Y], N) is strictly stronger
than HC on the decomposition.

Proof: It is at least as strong. To show the strictness, consider Y; € {1,2,3},
X1 e{1,2}, X5 €{1,2,3}, N =2. We have {} C S C {1, 2,3}, hence the decom-
position is HC. However, enforcing GAC on AMONG([X1, X2, [Y1], V) prunes 3
from Y7 and Xs. Q

Again, we still do not know whether BC on such a constraint is tractable or not.

3.2 Common Constraint

A generalization of the AMONG and ALLDIFFERENT constraints introduced in
[2] is the following COMMON constraint:

CoMMON(N, M, [X1, .., X,], [Y1, .., Vo)) iff

N={il3. Xi=Y}[AM=|{j]|3i. X;=Yj}

36 C. Bessiere et al.

That is, N variables in X; take values in common with Y; and M variables in
Y; take values in common with X;. Hence, the ALLDIFFERENT constraint is a
special case of the COMMON constraint in which the Y; enumerate all the values
Jin X;,Y; = {j} and M = n. Not surprisingly, enforcing GAC on COMMON is
NP-hard in general, as the result immediately follows from the intractability of
the related AMONG constraint.

Theorem 5. Enforcing GAC on COMMON is NP-hard.

Proof. Consider the reduction in the proof of Theorem[3 We let N € {1,..,n}.
The constructed COMMON constraint has a solution iff the original 3-SAT prob-
lem has a model. Y%

As we have a means of propagation for AMONG([X7, .., X,.], [Y1, .., Yin], N), we
can use it to propagate the COMMON constraint using the following decomposi-
tion:

COMMON(N, M, [X1,.., Xy], [Y1, .., Yin]) iff
AMONG([X1, .., Xu], [Y1, -, Y], N) A
AmMoNG([Y1, .., Y, [X1, .y Xn], M)

In the next theorem, we prove that we might not achieve GAC on COMMON
even if we do so on AMONG.

Theorem 6. GAC on COMMON is strictly stronger than GAC on the decompo-
sition.

Proof: It is at least as strong. To show the strictness, consider N =2, M =1,
X1, Y1 € {1,2}, X3 € {1,3}, Y2 € {1}, and Y5 € {2,3}. The decomposition is
GAC. However, enforcing GAC on COMMON(N, M, [X1, X5], [Y1, Y2, Y3]) prunes
2 from X1, 3 from X, and 1 from Y. Q

Similar to the previous cases, the tractability of BC on such a constraint needs
further investigation.

3.3 Disjoint Constraint

We may require that two sequences of variables be disjoint (i.e. have no value
in common). For instance, we might want the sequence of shifts assigned to one
person to be disjoint from those assigned to someone who dislikes them. The
DiSJOINT([X71, .., Xp], [Y1, .., Yim]) constraint introduced in [2] is a special case of
the COMMON constraint where N = M = 0. It ensures X; # Y} for any ¢ and j.
Surprisingly, enforcing GAC remains intractable even in this special case.

Theorem 7. Enforcing GAC on DISJOINT is NP-hard.

Proof: We again use a transformation from 3-SAT. Consider a formula ¢ with n
variables (labelled from 1 to n) and m clauses. We construct the DISJOINT con-
straint in which X; represents the variable ¢ and Y} represents the clause j in .

Among, Common and Disjoint Constraints 37

We let X; € {i,—i} and Y; € {—=z,y, —2} where the jth clause in ¢ is xV -y V z.
The constructed DISJOINT constraint has a solution iff ¢ has a model. Q@

An obvious decomposition of the DISJOINT constraint is to post an inequality
constraint between every pair of X; and Y}, for all ¢ € {1,..,n} and for all
j € {1,..,m}. Not surprisingly, the decomposition hinders propagation (other-
wise we would have a polynomial algorithm for a NP-hard problem).

Theorem 8. GAC on DISJOINT is strictly stronger than AC on the binary de-
composition.

Proof: It is at least as strong. To show the strictness, consider X1,Y; € {1, 2},
Xo,Ys € {1,3}, Y3 € {2,3}. Then all the inequality constraints are AC. However,
enforcing GAC on DI1sJOINT([X1, X2, [Y1, Y2, Y3]) prunes 2 from X7, 3 from Xo,
and 1 from both Y; and Y5. Q

This decomposition is useful if we want to maintain BC on DISJOINT.

Theorem 9. BC on DISJOINT is equivalent to BC on the decomposition.

Proof. 1t is at least as strong. To show the equivalence, we concentrate on X;’s,
but the same reasoning applies to Y;’s. Given X where k € {1,..,n}, we show
that for any bound by of Xj (b = min(Xg) or by = max(Xy)) there exists a
bound support containing it. We partition the integers as follows. Sx contains
all integers v such that 3X;, D(X;) = {v}, Sy contains all integers w such that
3Y;, D(Y;) = {w}, and T contains the remaining integers. 7" inherits the total
ordering on the integers. So, we can partition T in two sets T; and T, such
that no pair of integers consecutive in T belong both to T} or both to 7. T
denotes the one containing by if by € T. The four sets Sx,Sy,T1,T> all have
empty intersections. Hence, if all X; can take their value in Sx UT; and all Y; in
Sy U Th, we have a bound support for (X}, bx) on the DISJIOINT constraint. We
have to prove that [min(X;)..maxz(X;)] intersects Sx U T for any i € {1,..,n}
(and similarly for Y; and Sy UT3). Since X; # Y; is BC for any j, min(X;) and
maz(X;) cannot be in Sy. If min(X;) or max(X;) is in Sx or Ty, we are done.
Now, if both min(X;) and max(X;) are in T, this means that there is a value
between min(X;) and max(X;), which is in T3, by construction of 77 and Tb.
As a result, any bound is BC on Di1sJOINT if the decomposition is BC. Q

From Theorem[d we deduce that BC can be achieved on DISJOINT in polynomial
time. In fact, we can achieve more than BC in polynomial time.

Theorem 10. AC on the binary decomposition is strictly stronger than BC on
DiSJOINT.

Proof. AC on the decomposition is at least as strong BC on the decompo-
sition which is equivalent to BC on the original constraint. The following ex-
ample shows strictness. Consider X7 € {1,2,3} and Y7 € {2}. The constraint
Di1sJOINT([X1], [Y1]) is BC whereas GAC on the decomposition prunes 2 from
X;. Q

38 C. Bessiere et al.

Algorithm 3. BC for AMONG([S1, .., S»], K, N).

InLb := f([Ib(S1,..,1b(Sn))], K);

InUb := f([ub(S1,..,ub(Sn))], K);

min(N) := max(min(N), InLb);

maz(N) := min(maz(N), InUb);

if min(N) > max(N) then fail;

if max(N) = InLb then
foreach S; . 1b(S;) NK =0 do ub(S;) := ub(S:) \ K;

7 if min(N) = InUb then

foreach S; . Ib(S;) NK =0A|KNub(S;)|=1do
Ib(S;) := Ib(S:) U K N ub(S;);

S Uk W N

4 Set Variables

Many problems involve finding a set of values (for example, the set of nurses
on a particular shift). It is useful therefore to have global constraints over set
variables [10]. For instance, we might want to count the number of times each
nurse has a shift during the monthly roster where each shift is a set variable
listing the nurses on duty. This could be achieved with a global constraint that
counted the values occurring in a sequence of set variables.

4.1 Among Constraint

We consider an AMONG constraint over set variables that counts the number of
these variables which contain one of the given values. More formally, we have:

AMONG([S1, .., Sul, [1, o k], N) iff N = [{i | 3j . k; € Si}]

Enforcing BC on such a constraint is polynomial. We propose an algorithm
to do this where we define the function f([Sy,..,S,],K) to be [{i | S; N K # 0}].

Theorem 11. Algorithm [3 maintains BC' on AMONG([S1,.., Sn],K,N) and
runs in O(nd) where d is the size of the mazimum upper bound of the S; .

Proof. Soundness is relatively immediate. N cannot be greater than the number
of variables having k;’s in their upper bounds or smaller than the number of
variables having k;’s in their lower bounds. Furthermore, if maz(N) is equal
to the number of variables having £;’s in their lower bound, there is no hope
to satisfy the AMONG constraint if we use a value k; in another variable. If
min(N) = InUb, then for each S;, if there exists only one element in its upper
bound (but not in its lower bound) which is also in &, then that element has
necessarily to belong to the lower bound of S; as it cannot be covered by another
S; otherwise min(N) < InUb. Finally, if min(N) > max(N) we necessarily fail.

To show completeness, we need that when we do not fail, the domains returned
are bound consistent. Consider an integer k£ such that InLb < k < InUb. We can
construct an assignment of S;’s where exactly k of them take a value in K. We

Among, Common and Disjoint Constraints 39

first assign all S;’s with their lower bound. InLb of the S;’s necessarily contain
some k; since their lower bound overlaps K. For k — InLb variables among the
InUb—InLb variables with some k; in their upper bound but none in their lower
bound, we take some k; from their upper bound to obtain a satisfying assign-
ment with N = k. Since min(N) > InLb and max(N) < InUb (lines B and [,
N is BC. Suppose now a value v in ub(S;). The only case in which v should not
belong to ub(S;) is when v is in the k;’s, none of the k;’s appear in [b(S;), and
no more variable can take values in the k;’s, i.e., InLb = maz(N). Then, v will
have been removed from ub(S;) (line [Bl). In addition, suppose v should belong
to [b(S;). This is the case only if there is no k; in 1b(S;), and v is the only value
in ub(S;) appearing in the k;’s, and InUb = min(N). Then, v will have been
added in Ib(S;) (line [1).

Computing the counters InLb and InUb is in O(nd). Updating the bounds
on N is constant time. Deleting values that are not bound consistent in a ub(.S;)
or adding a value in [6(S;) is in O(d). Since there are n variables, this phase is
again in O(nd). Bound consistency on AMONG is in O(nd). @

Note we can also add non-empty or cardinality conditions to the S; without
making constraint propagation intractable.

We again consider an extension in which we replace [k1, .., k] by a set vari-
able S. Unlike the previous AMONG constraint, enforcing BC on AMONG([S1, ..,
Sp], S, N) is NP-hard in general.

Theorem 12. Enforcing BC on AMONG([S1, .., Sp], S, N) is NP-hard.

Proof. We reuse the reduction from the proof of Theorem [2] with minor mod-
ifications. We create 2k + 1 set variables for each literal ¢ in the formula such
that S;1..5% € {i}..{i}, Si(k+1)-~5i(2k) € {—i}..{—i}, and Si(2k+1) e {}..{i,—i}.
We create a set variable T; for each clause j in ¢ and let T; € {}..{z, —y, 2z}
where the jth clause in ¢ is zV -y Vz. We let N = n(k+ 1) + m and
{} €85 < {1,-1,..,n,—n}. The constraint AMONG([S11, .., S1(2k+1)>--» Snl, -,
Sn(2k+1)> T1, .., Tm], S, N) has a solution iff ¢ has a model. Q

Note that the constraint remains intractable if the S; are non-empty or
have a fixed cardinality. We can easily modify the reduction by adding distinct
“dummy” values to S; and T} respectively. We also add these dummy values to
the lower bound of S.

Despite this intractability result, we can easily modify Algorithm [B] to derive
a filtering algorithm for AMONG([S, .., Sy], S, N) without changing the com-
plexity. We use the lower bound of S (resp. ub(5)) in the computation of InLb
(resp. InUb). Also, instead of K in line [@ (resp. line [M), we use [b(S) (resp.
ub(S)). Finally, we need to consider the bounds of S. We remove v from ub(S)
if |{a | Ib(S;) C 1b(S) U{v}} > max(N). Similarly, we add v to Ib(S) if |{i |
ub(S;) Nub(S)\ {v} # 0} < min(N). We can easily extend the soundness proof
of Theorem [[T] for this algorithm as well. Such an algorithm does not achieve
BC (otherwise we would have a polynomial algorithm for a NP-hard problem).

Finally, the constraint AMONG([S1, .., Sn], [11, --, Ti], N) is very similar to the
previous one since several set variables [T1, . .., Ty,] behave like their union. That

40 C. Bessiere et al.

Algorithm 4. BC for D1sJoINT([S1, .., Sn), [T1, -, Trm])-

1 8= Uie{l,..,n}(lb(si));

2 T := Uie{1,..,m}(lb(Ti))§

3 if SNT # 0 then fail;

4 foreach S; do wub(S;) := ub(S;) \ T}
5 foreach T; do ub(T}) := ub(T}) \ S;

is, AMONG([S1, .-, Su], [T1, --, Tin], N) is similar to AMONG([S1, .., Sy], T, N) with
T=Ujecprm T

4.2 Common Constraint

We may also want to post a COMMON constraint on set variables. We have:

COMMON(N, M, [S1, .., Spl, [T1, .., T]) ift
N={i|3j.SinT;#0AM=1|{j|3i.SNT;+0}

Enforcing BC on such a constraint is intractable as it is an extension of the
previous AMONG constraint. We can reduce AMONG([S1, .., Sn], [T1, ., Tm], N)
to COMMON(N, M, [S1, .., Sn], [T, .., Tim]) by setting M to {0,..,m}.

Since we have a means of propagation for AMONG([S1, .., Sp], [T1, .-, Trm], N),
we can use it to propagate the COMMON constraint by decomposing it into two
such AMONG constraints. However, such a decomposition hurts propagation.
Consider the set variables Sy, 52, 53,71, T> and T3 with {i} C S; C {i}, N =1,
{} € T; C {i}, and M = 2. The two AMONG constraints of the decomposition
are BC while COMMON is inconsistent.

4.3 Disjoint Constraint

We finally consider D1sJOINT([S1, .., Spn], T4, .-, Tin]). Unlike GAC on DISJOINT
with integer variables, we can maintain BC on DISJOINT([SY, .., Sn], [T1, .-, Tin])
in polynomial time.

Theorem 13. Algorithm [{] maintains BC on DISJOINT([S1, .., Snl, [T1, s Tim])
and runs in O((n + m)d).

Proof. We first show that the algorithm is sound. If there exists one value which
occurs both in the lower bound of one of S; and in the lower bound of one of
the T, then we necessarily fail (Line3]). If a value is consumed by one of the T7,
then we cannot satisfy the constraint if this value is allowed to be consumed by
one of the S; (Line H). Similarly, if a value is consumed by one of the S;, then
we cannot satisfy the constraint if this value is allowed to be consumed by one
of the Tj (Line [().

To show completeness, we prove that either we fail or we return bound consis-
tent domains. We only consider the S; as the reasoning is analogous for the 7.

Among, Common and Disjoint Constraints 41

First, if the lower bounds of the .S; do not overlap those of the T}, then assigning
all S; and T} to their lower bound is a solution. Thus, the lower bounds are BC.
Now, for each value in the upper bound of each S;, we can construct a satisfying
assignment involving v by assigning all other S; to their lower bounds, S; to
its lower bound plus the element v, and all the T} to their corresponding lower
bounds as none has v as an element.

If d is the total number of values appearing in the upper bounds of the set
variables, then at worst case the complexity of line M is O(nd) and of line [is
O(md). Hence, the algorithm runs in O((n + m)d). @

Note that if we add a cardinality restriction to the size of the set variables, it
becomes NP-hard to enforce BC on this constraint.

5 Related Work

AMONG([X71, .., Xy, [k1, .-, km], N) was first introduced in CHIP by [3]. A closely
related constraint is the COUNT constraint [I1I]. CouNT([X7, .., X,],v,0p, N)
where op € {<,>,<,>,%#,=} holds ifft N op |{i | X; = v}|. The AMONG con-
straint is more general as it counts the variables taking values from a set whereas
COUNT counts those taking a given value. The algorithm of AMONG can easily
be adapted to cover the operations considered in COUNT.

There are other counting and related constraints for which there are
specialised propagation algorithms such as Gcce [d], NVALUE [I], SAME and
USeEDBY [4].

In [6], a wide range of counting and occurrence constraints are specified using
two primitive global constraints, ROOTS and RANGE. For instance, the AMONG
on integer variables constraint is decomposed into a RoOTs and set cardinality
constraint. Similarly, the COMMON constraint is decomposed into two ROOTS,
two RANGE and two set cardinality constraints. However, ROOTS and RANGE
cannot be used to express the AMONG, COMMON, and DISJOINT constraints on
set variables.

Finally our approach to the study of the computational complexity of rea-
soning with global constraints has been proposed in [5]. In particular, as in [5],
we show how computational complexity can be used to determine when a lesser
level of local consistency should be enforced and when decomposing constraints
will lose pruning.

6 Conclusions

We have studied a number of variations of the AMoNG, COMMON and DISJOINT
constraints over integer and set variables. Such constraints are useful in mod-
elling problems involving resources. Our study shows that whether a global con-
straint is tractable or not can be easily affected by a slight generalization or
specialization of the constraint. However, a propagation algorithm for an in-
tractable constraint can often be adapted from a propagation algorithm of a

42 C. Bessiere et al.

Table 1. Summary of complexity results

Constraint Tractability
Integer Variables

AMONG([X1, .., Xn], K, N) GACisin P
AMONG([X1, .., X»], S, N) HC is NP-hard

AMONG([X1, .., Xn], [Y1,.., Ym], N) GAC is NP-hard
COMMON(N, M, [X1, .., Xx], [Y1, .., Ym]) GAC is NP-hard

DISJOINT([X1, .., Xn], [Y1, -, Yim]) GAC is NP-hard, BC is in P
Set Variables

AMONG([S1, .., Sn], K, N) BCisin P

AMONG([S1, .., Sn], S, N) BC is NP-hard

AMONG([S1, -, Sn), [T, .., Tm], N) BC is NP-hard

CoMMON(N, M, [S1, .., Sx], [T, -, Tm]) BC is NP-hard
Di1sJOINT([S1, .., Snl, [T1, .., Tm]) BCisin P

similar tractable one. In Table[I] we present a summary of our complexity results.
For integer variables, we propose a polynomial time propagation algorithm for
the AMONG constraint that achieves GAC. We prove that AMONG is intractable
when we count the number of variables using values from a set variable or a se-
quence of integer variables. Nevertheless, we propose a polynomial algorithm to
propagate the former and show how this algorithm can be used to propagate the
latter. We also show that the COMMON constraint is intractable in general, and
this holds even in the special case of the DISJOINT constraint when the number
of values in common is zero. The last result is somewhat surprising, since the
DISJOINT constraint is related to (and weaker than) the ALLDIFFERENT con-
straint. When we demonstrate the intractability of a constraint like DISJOINT,
we also present a polynomial method to propagate the constraint. Finally, we
consider AMONG, COMMON and DISJOINT constraints over set variables rather
than integer variables. We show that most of the results on integer variables hold
for set variables with the exception that the DISJOINT constraint now becomes
tractable.

In future work, we will focus on determining whether BC on AMONG([X1, ..,
X,), S, N) is tractable or not. Such a result will also help us answer the still
open questions of whether BC on the related AMONG([X1, .., Xu], [Y1, .-, Yin], N)
and COMMON(N, M, [X1, .., X,], [Y1, .., Yin]) is tractable or not. We will also im-
plement these constraints and see their value in practice.

Acknowledgements

Hebrard and Walsh are supported by the National ICT Australia, which is
funded through the Australian Government’s Backing Australias Ability initia-
tive, in part through the Australian Research Council. Hnich received support
from Science Foundation Ireland (Grant 00/P1.1/C075). We would like to thank
our reviewer for helping to improve the paper.

Among, Common and Disjoint Constraints 43

References

10.

11.

. Beldiceanu, N. 2001. Pruning for the minimum constraint family and for the

number of distinct values constraint family. In Proc. of CP 2001, 211-224. Springer.

. Beldiceanu, N. 2000. Global constraints as graph properties on a structured

network of elementary constraints of the same type. Technical report T2000/01,
Swedish Institute of Computer Science.

Beldiceanu, N., and Contegean, E. 1994. Introducing global constraints in CHIP.
Mathematical Computer Modelling 20(12):97-123.

Beldiceanu, N., Katriel, I., and Thiel, S. 2004. Filtering algorithms for the same
and wusedby constraints. MPI Technical Report MPI-1-2004-1-001.

Bessiere, C., Hebrard, E., Hnich, B. and Walsh, T. 2004. The Complexity of
Global Constraints. In Proc. of AAAI 2004. AAAI Press / The MIT Press.
Bessiere, C., Hebrard, E., Hnich, B., Kizilitan Z. and Walsh, T. 2005. The Range
and Roots Constraints: Specifying Counting and Occurrence Problems. In Proc.
of IJCAI 2005, 60-65. Professional Book Center.

Cheng, B.M.W., Choi, K.M.F., Lee, J.H.M. and Wu, J.C.K. 1999. Increasing Con-
straint Propagation by Redundant Modeling: an Experience Report. Constraints
4(2): 167-192.

Régin, J.-C. 1994. A filtering algorithm for constraints of difference in CSPs. In
Proc. of AAAI 1994, 362-367. AAAI Press.

Régin, J.-C. 1996. Generalized arc consistency for global cardinality constraints.
In Proc. of AAAT 1996, 209-215. AAAI Press / The MIT Press.

Sadler, A., and Gervet, C. 2001. Global reasoning on sets. In Proc. of Workshop
on Modelling and Problem Formulation (FORMUL’01). Held alongside CP 2001.
Swedish Institue of Computer Science. 2004. SICStus Prolog User’s Manual,
Release 3.12.0. Available at http://www.sics.se/sicstus/docs/latest/pdf/
sicstus.pdf.

http://www.sics.se/sicstus/docs/latest/pdf/
sicstus.pdf

	Introduction
	Formal Background
	Integer Variables
	Among Constraint
	Common Constraint
	Disjoint Constraint

	Set Variables
	Among Constraint
	Common Constraint
	Disjoint Constraint

	Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

