
Binary vs. Non-Binary Constraints
�

Fahiem Bacchus
Department of Computer Science

University of Toronto
Toronto, Canada

fbacchus@cs.toronto.edu

Xinguang Chen
Department of Computing Science

University of Alberta
Alberta, Canada

xinguang@cs.ualberta.ca

Peter van Beek
Department of Computer Science

University of Waterloo
Ontario, Canada

vanbeek@uwaterloo.ca

Toby Walsh
Department of Computer Science

University of York
York, England

tw@cs.york.ac.uk

�
This paper includes results that first appeared in [1, 4, 23]. This research has been supported in part by

the Canadian Government through their NSERC and IRIS programs, and by the EPSRC Advanced Research
Fellowship program.

1

Abstract

There are two well known transformations from non-binary constraints to bi-
nary constraints applicable to constraint satisfaction problems (CSPs) with finite
domains: the dual transformation and the hidden (variable) transformation. We
perform a detailed formal comparison of these two transformations. Our com-
parison focuses on two backtracking algorithms that maintain a local consistency
property at each node in their search tree: the forward checking and maintaining
arc consistency algorithms. We first compare local consistency techniques such
as arc consistency in terms of their inferential power when they are applied to the
original (non-binary) formulation and to each of its binary transformations. For
example, we prove that enforcing arc consistency on the original formulation is
equivalent to enforcing it on the hidden transformation. We then extend these re-
sults to the two backtracking algorithms. We are able to give either a theoretical
bound on how much one formulation is better than another, or examples that show
such a bound does not exist. For example, we prove that the performance of the
forward checking algorithm applied to the hidden transformation of a problem is
within a polynomial bound of the performance of the same algorithm applied to
the dual transformation of the problem. Our results can be used to help decide if
applying one of these transformations to all (or part) of a constraint satisfaction
model would be beneficial.

2

1 Introduction

To model a problem as a constraint satisfaction problem (CSP), we specify a search
space using a set of variables each of which can be assigned a value from some fi-
nite domain of values. To specify the assignments that solve the problem, the model
includes constraints that restrict the set of acceptable assignments. Each constraint is
over some subset of the variables and imposes a restriction on the simultaneous val-
ues these variables may take. In general, there are many possible ways of modeling a
problem as a CSP. Each model might contain a different set of variables, domains, and
constraints. The choice of model can have a large impact on the time it takes to find a
solution [3, 17, 21], and various modeling techniques have been developed, including
adding redundant and symmetry-breaking constraints [9, 22, 25], adding hidden vari-
ables [6, 24], aggregating or grouping variables together [3, 7], and transforming a CSP
model into an equivalent representation over a different set of variables [7, 11, 19, 26].

One important modeling decision is the arity of the constraints used. Constraints
can be either binary over pairs of variables, or non-binary over three or more variables.
Although a problem may be naturally modeled with non-binary constraints, these con-
straints can be easily (and automatically) transformed into binary constraints. Many
CSP search algorithms are designed specifically for binary constraints, and further-
more, like all modeling decisions, the choice of binary or non-binary constraints can
have a significant impact on the time it takes to solve the CSP.

In general, there is much research that remains to be done on the question of which
modeling techniques one should choose when attacking a particular problem. In this
paper, we formally study the effectiveness of two modeling techniques that can be used
to transform a general (non-binary) CSP model into an equivalent binary CSP: the dual
and hidden transformations [7, 19]. Our results give some guidance on the question
of choosing between binary and non-binary constraints. Further, the dual and hidden
transformations can be seen as extensions of the widely used techniques of aggregating
variables together or adding hidden variables to reduce the arity of constraints and thus
our results also provide information about these modeling techniques.

The choice of a CSP model also depends on the algorithm that will be used to
solve the model. We focus here on backtracking search algorithms that maintain a
local consistency property at each node in their search tree. Various types of local
consistency have been defined, and algorithms developed for enforcing them (e.g, [5,
13, 14]). Algorithms that maintain a local consistency property during backtracking
search (e.g., [8, 10, 15, 16, 20]) can detect dead-ends sooner and thus have the potential
of significantly reducing the size of the tree they have to search. Such algorithms
have demonstrated significant empirical advantages and are the algorithms of choice in
practice. Hence, they are the most relevant objects of study.

We compare the performance of local consistency techniques and backtracking al-
gorithms on three different models of a problem: the original formulation, the dual
transformation, and the hidden transformation. For the local consistency techniques,
we establish whether a local consistency property on one model is stronger than or
equivalent to a local consistency property on another. Among other results, we prove
that arc consistency on the original formulation is equivalent to arc consistency on the
hidden transformation, but that arc consistency on the dual transformation is stronger

3

than arc consistency on the original formulation. For backtracking algorithms, we give
either a theoretical bound on how much better one model can be over another when
using a given algorithm, or we give examples to show that no such polynomial bound
exists. For example, we prove that the performance of an algorithm that maintains
arc consistency when applied to the original formulation is equal to its performance
when applied to the hidden transformation. As another example, we also show that the
performance of the forward checking algorithm on the hidden transformation is never
more than a polynomial factor worse than its performance on the dual, but that its per-
formance on the dual can be an exponential factor worse than its performance on the
hidden. Hence we have good theoretical reasons to prefer using the forward check-
ing algorithm on the hidden transformation rather than on the dual transformation. In
this way, our results can provide general guidelines as to which transformation, if any,
should be applied to a non-binary CSP.

2 Background

In this section, we formally define constraint satisfaction problems and the dual and
hidden transformations. In addition we briefly review local consistency techniques and
the search tree explored by backtracking algorithms.

2.1 Basic definitions

Definition 1 (Constraint Satisfaction Problem (CSP)) A constraint satisfaction prob-
lem,

�
, is a tuple ���������
	�� whose components are defined below.

 � = ���������������
����� is a finite set of � variables.

 � = ������ !�"�#���$���������%���& !�"���'�(� is a set of domains. Each variable �*)+� has a
corresponding finite domain of possible values, ���& !�"��� .

 	 = ��,-�%���������(,/.0� is a set of 1 constraints. Each constraint ,2)3	 is a pair
��4�5�6(78�9,:�$��6<;�=��9,:�
� defined as follows.

1. 4&5�6(7>�9,:� is an ordered subset of the variables, called the constraint scheme.
The size of 4�5�6(78�9,:� is known as the arity of the constraint. A binary
constraint has arity equal to 2; a non-binary constraint has arity greater
than 2.

2. 6<;�=��9,:� is a set of tuples over 4�5�6$78�9,:� , called the constraint relation, that
specifies the allowed combinations of values for the variables in 4�5�6(7>�9,:� .
A tuple over an ordered set of variables ?A@B�%�C�%���������
��D8� is an ordered
list of values ��E'�����������<E�D�� such that E�F-)3�>�� !�"��FG� , HI@KJ>���������(L . A tuple
over ? can also be viewed as a set of variable-value assignments ���-�NM
EO�%���������
��D:M2E�D8� .

4

Throughout the paper, we use � , � , 1 , and � to denote the number of variables,
the size of the largest domain, the number of constraints, and the arity of the largest
constraint scheme in the CSP, respectively. As well, we assume throughout that for any
variable �)!� , there is at least one constraint ,)�	 such that �) 4�5�6(7��9,:� .

Example 1 Propositional satisfiability (SAT) problems can be formulated as CSPs.
Consider a SAT problem with � propositions, �C�����������<��� , and � clauses, (1) � ��� ���	�
��� , (2)
 �#����
 ���
� ��� , (3) ������
 ����� ��� and (4) ���
� ������
 ��� . In one CSP
representation of this SAT problem, there is a variable for each proposition, � �����������
��� ,
each variable has the domain of values ���O��J&� , and there is a constraint for each clause,
,-���������
�����
����� , ,��>�"�����
�����
���%� , ,	�>�"���>�
���&�
���%� and ,��>�"�����
���>�
����� . Each constraint
specifies the value combinations that will make its corresponding clause true. For
example, ,��8�"�����<�����
���%� , the constraint associated with the clause �����C������
 ��� , allows
all tuples over the variables ��� , ��� , and ��� except the falsifying assignment ���O���'��J%� .

We use the notation 4�5�6(78���
� to denote the set of variables a tuple � is over. If ? is
any subset of 4�5�6(7>���
� then �! ?#" is used to denote the tuple over ? that is obtained by
restricting � to the variables in ? . Given a constraint , and a subset of its variables$&% 4�5�6(78�9,:� , the projection ')(�, is a new constraint, where 4�5�6(78��'�(�,:� @ $

and
6<;�= ��'�(�,:�C@ �*�! $ ",+��/) 6<;�=��9, �(� .

An assignment to a set of variables ? is simply a tuple over ? . An assignment � is
consistent if, for all constraints , such that 4�5�6(7>�9,:� % 4&5�6(7>���
� , �! 4�5�6(7>�9, �-") 6<;�= �9,:� .
A solution to a CSP is a consistent assignment to all of the variables in the CSP. If no
solution exists, the CSP is said to be insoluble.

Local consistency is an important concept in CSPs. Local consistencies are proper-
ties of CSPs that are defined over “local” parts of the CSP, e.g., properties defined over
subsets of the variables and constraints of the CSP. Many local consistency properties
on CSPs have been defined (see [5] for a large collection).

Local consistency properties are generally neither necessary nor sufficient condi-
tions for a CSP to be soluble. For example, it is quite possible for a CSP that is not
arc consistent to have solutions, and for an arc consistent CSP to be insoluble. The im-
portance of local consistency properties arise instead from the existence of (typically
polynomial) algorithms for enforcing these properties.

We say that a local consistency property . 	 can be enforced if there exists a (com-
putable) function from CSPs to new CSPs, such that if

�
is a CSP then . 	 � � � is a

new CSP with the same set of solutions (and thus it must necessarily have the same set
of variables).1 We call applying this function to a CSP enforcing the local consistency.
Furthermore, we require that . 	 � � � satisfy the property . 	 , i.e., enforcing . 	 must
yield a CSP satisfying .C	 , and that if

�
satisfies . 	 then . 	 � � �C@ �

, i.e., enforcing a
local consistency on a CSP that already satisfies it does not change the CSP. The reason
for enforcing a local consistency property is that often . 	 � � � is easier to solve than

�
.

In this paper we further restrict our attention to local consistency properties whose
enforcement involves only three types of transformations to the CSP: (1) the domains of
some of the variables might be reduced, (2) some constraint relations might be reduced

1Note that we use the notation /�0 to denote the property of a problem 1 , and /�032 154 to denote the
problem resulting from enforcing the property /�0 .

5

(i.e., elements of 6<;�=��9,:� might be removed), and (3) some new constraints might be
added to the CSP.2 Note however, in all cases the variables of the CSP are unchanged
and their domain of values can only be reduced.

A CSP is said to be empty if at least one of its variables has an empty domain
or at least one of its constraints has an empty relation. An empty CSP is obviously
insoluble. Given a local consistency property . 	 , we say that a CSP

�
is not empty

after enforcing .C	 if . 	 � � � is not empty.
One of the most important local consistency properties is arc consistency [13, 14].

Definition 2 (Arc Consistency) Let
� @ ����������	�� be a CSP. Given a constraint ,

and a variable �) 4�5�6(78�9,:� , a value E)+���� !����� has a support in , if there is a tuple
�) 6<;�=��9,:� such that �! � " @ E . � is then called a support for ��� M E'� in , . , is arc
consistent iff each value E of each variable �!) 4�5�6(78�9, � has a support in , . The entire
CSP,

�
, is arc consistent iff it has non-empty domains and each of its constraints is arc

consistent.

Arc consistency can be enforced on a CSP by repeatedly removing unsupported
values from the domains of its variables to create a subdomain.

Definition 3 (Subdomain) A subdomain � �
of a CSP

� @ ���������
	�� , is a set of
domains, ������

���
�"����� , �������%����

���
�"���'�(� , where ����

���
�"��F � % ���� !�"��FG� , for each

��F) � . We say a subdomain is empty if it contains at least one empty domain. We say
a subdomain � �

is arc consistent iff the CSP
� � @ ��� ��� � ��	 � � is arc consistent, where

	 � are the original constraints 	 reduced so they contain only tuples over � �
.3

Definition 4 (Arc Consistency Closure) An algorithm that enforces arc consistency
computes the maximum arc consistent subdomain, and when applied to a CSP,

� @
�����
����	�� , it gives rise to a new arc consistent CSP called the arc consistency closure
of
�

, which we denote by 5��>� � � . We have that 5��8� � �-@ ������� �	��
 ��
 ��	 �	��
 ��
 � , where
� �	��
 ��

is the maximum arc consistent subdomain of
�

, and 	 �	��
 ��
 are the original
constraints 	 reduced so that they contain only tuples over the subdomain � �	��
 ��

.

Constraint satisfaction problems are often solved using backtracking search (for a
detailed presentation see, for example, [12, 25]). A backtracking search may be seen
as traversing a search tree. In this approach we identify tuples (assignments of values
to variables) with nodes: the empty tuple is the root of the tree, the first level nodes
are 1-tuples (an assignment of a value to a single variable), the second level nodes
are 2-tuples (a first level assignment extended by selecting an unassigned variable,
called the current variable, and assigning it a value from its domain), and so on. We
say that a backtracking algorithm visits a node in the search tree if at some stage of the

2Only in Section 3.3 will we consider local consistency properties that might add new constraints.
3According to Definition 1, the tuples of each constraint must only contain values that are in the domains

of the variables. A constraint can be reduced by deleting from the relation all tuples that contain a value �
that was removed in the process of enforcing arc consistency. However, arc consistency algorithms do not
normally physically remove tuples from the constraint relations of 1 as this requires that the relations be
represented extensionally. Nevertheless, it is always implicit that the constraint relations are tuples over the
reduced variable domains.

6

algorithm’s execution the algorithm tries to extend the tuple of assignments at the node.
The nodes visited by a backtracking algorithm form a subset of all the nodes belonging
to the search tree. We call this subset, together with the connecting edges, the search
tree visited by a backtracking algorithm.

The chronological backtracking algorithm (BT) is the starting point for all of the
more sophisticated backtracking algorithms. BT checks a constraint only if all the
variables in its scheme have been instantiated. In contrast, the more widely used back-
tracking algorithms enforce a local consistency property at each node visited in the
backtracking search. The consistency enforcement algorithm is applied to the induced
CSP. This is the original CSP reduced by the current assignment.

Definition 5 (Induced CSP) Given an assignment � of some of the variables of a CSP�
, the CSP induced by � , denoted by

� + � , is the same as
�

except that the domain
of each variable �)B4�5�6(7>���
� contains only one value �! � " , the value that has been
assigned to � by � , and the constraints are reduced so that they contain only tuples over
the reduced domains.

If the induced CSP is empty after enforcing the local consistency, the instantiation
of the current variable cannot be extended to a solution and it should be uninstantiated;
otherwise, the instantiation of the current variable is accepted and the search contin-
ues to the next level. The forward checking algorithm (FC) [10, 15, 25] enforces arc
consistency only on the constraints which have exactly one uninstantiated variable. By
comparison, on a problem that is not empty after enforcing arc consistency, the main-
taining arc consistency or really-full lookahead algorithms [8, 16, 20], as their names
suggest, enforce full arc consistency on the induced CSP.

2.2 Dual and hidden transformations

The dual and hidden transformations are two general methods for converting a non-
binary CSP into an equivalent binary CSP. The dual transformation comes from the
relational database community and was introduced to the CSP community by Dechter
and Pearl [7].

The hidden transformation, on the other hand, arose from the work of the philoso-
pher Peirce. In particular, Rossi et al. [19] credit Peirce [18] with first showing that bi-
nary relations have the same expressive power as non-binary relations. Peirce’s method
for representing non-binary relations with a collection of binary relations forms the
foundation of the hidden transformation.

In the dual transformation, the constraints of the original formulation become vari-
ables in the new representation. We refer to these variables, which represent the original
constraints, as the dual variables, and the variables in the original CSP as the ordinary
variables. The domain of each dual variable is exactly the set of tuples that are in the
original constraint relation. There is a binary constraint, called a dual constraint, be-
tween two dual variables iff the two original constraints share some variables. A dual
constraint prohibits pairs of tuples that do not agree on the shared variables.

Definition 6 (Dual Transformation) Given a CSP
� @ ����������	�� , its dual transfor-

mation ���'5�=�� � � = ��� ��� ���
 ��
 ��� ��� ���
 ��
 ��	 ��� ���
 ��
 � is defined as follows.

7

��� 2 � ��� ��� � ���!4 �
	 2 � ��� ��� � ���!4

� � 2 ��� � ��
 � ���!4 � �*2 � 	�� ��� � ��
 4��� � ��

� �

� �

��� ��� ���

� �

� �

� ��� ���

Figure 1: The dual transformation of the CSP in Example 1.

 � ��� ���
 ��

= � � � ��������� � . � where � � ��������� � . are called dual variables. For each

constraint ,-F of
�

there is a unique corresponding dual variable � F . We use
4�5�6(78� � FG� and 6<;�=�� � F9� to denote the corresponding sets 4�5�6(7>�G, FG� and 6<;�=��9, F �
(given that the context is not ambiguous).

 � ��� ���
 ��

= ������ !� � ���$���������%���� !� � . �(� is the set of domains for the dual vari-

ables. For each dual variable � F , ���� !� � FG�I@ 6<;�=��9,/F � , i.e., each value for � F is a
tuple over 4�5�6(7��9,-FG� . An assignment of a value � to a dual variable � F , � FIM � ,
can thus be viewed as being a sequence of assignments to the ordinary variables
�!) 4�5�6(78� � F9� where each such ordinary variable is assigned the value �! � " .

 	 ��� ���
 ��
 is a set of binary constraints over � ��� � �
 ��

called the dual constraints.

There is a dual constraint between dual variables � F and ��� if
$ @ 4�5�6(7>� � FG���

4�5�6(78� ��� ���@�� . In this dual constraint a tuple ��F) ���� !� � FG� is compatible with a
tuple � �) ���� !� ��� � iff �
F� $ "/@ � � $ " , i.e., the two tuples have the same values
over their common variables.

It is important to note that in our definition all of the constraints of
�

are converted to
dual variables, even the binary and unary constraints.

Example 2 In the dual transformation of the CSP given in Example 1, there are � dual
variables, � �%��������� � � , one for each constraint in the original formulation as shown in
Figure 1. For example, the dual variable � � corresponds to the non-binary constraint
,-���������
�����
����� and the domain of � � contains all possible tuples except ���O���O���>� . As
an example of a dual constraint, the constraint between � � (,-���������
���&�
���%�) and � �
(,	�>�"�����
�����
���%�) requires that the first and second arguments of the tuples assigned to� � and � � agree. Hence, � � � M ���O���O��J%�$� is compatible with � � � M ���O���O���>�$� , but
� � �-MA���O���O��J%�(� is incompatible with � � ��M ���O��J����>�(� .

In the hidden transformation, the set of variables consists of all the ordinary vari-
ables in the original formulation with their original domains plus all the dual variables
as defined by the dual transformation. There is a binary constraint, called a hidden
constraint, between a dual variable and each of the ordinary variables in the constraint

8

� � ��� 2 � � � ��� � ��� 4

� � ��� 2 � � � ��� � ��� 4

� � � �*2 ��� � ��
 � ��� 4

� � � �*2 � 	 � ��� � ��
 4

���

���

���

���

���

���

Figure 2: The hidden transformation of the CSP in Example 1.

represented by the dual variable. A hidden constraint enforces the condition that a
value of the ordinary variable must be the same as the value assigned to it by the tuple
that is the value of the dual variable.

Definition 7 (Hidden Transformation) Given a CSP
� @ ������� ��	�� , its hidden trans-

formation
��� ����;�� � � � = �����	� � �	
��
 ��
 , �
�	� � �	
��
 ��
 , 	��	� � �	
��
 ��
 � is defined as follows.

 ���	� � �	
��
 ��
 = ���������������<������� � � ����������� � . � , where �������������
��� is the original set
of variables in � (called the ordinary variables) and � �%��������� � . are dual vari-
ables generated from the constraints in 	 . There is a unique dual variable � F
corresponding to each constraint , F�) 	 . When dealing with the hidden trans-
formation, the dual variables are sometimes called hidden variables [6].

 � �	� � �	
��
 ��
 = ������ !�"�����$���������%���� !�����'�(��� ������ � � ���$���������%���& !� � . �(� . For each
dual variable � F , ���� !� � FG�C@ 6<;�=��9,/F � .

 	��	� � �	
��
 ��
 is a set of binary constraints over ����� � �	
��
 ��
 called the hidden con-
straints. For each dual variable � , there is a hidden constraint between � and
each of the ordinary variables �!) 4�5�6(7�� � � . This constraint specifies that a tuple
�/)+���� !� � � is compatible with a value E�)+���� !�"��� iff �! � "�@3E .

The hidden transformation has some special properties. The constraint graph of the
hidden transformation is a bipartite graph, as ordinary variables are only constrained
with dual variables, and vice versa, and the hidden constraints are one-way functional
constraints, in which a tuple in the domain of a dual variable is compatible with at most
one value in the domain of the ordinary variable. The dual transformation can in fact
be built from the hidden transformation by composing the hidden constraints between

9

the dual variables and the ordinary variables to obtain dual constraints between the
dual variables, and then discarding the hidden constraints and ordinary variables [23].
Note that we need not add hidden variables for binary constraints. However, as we
obtain similar results if hidden variables are only introduced for ternary and higher
arity constraints, we do not consider this further.

Example 3 In the hidden transformation of the CSP given in Example 1, there are
J*� variables (� ordinary variables and � dual variables), as shown in Figure 2. As
an example of a hidden constraint, the constraint between � � (,-���������
���&�
���%�) and ���
requires that the first argument of the tuple assigned to � � agrees with the value assigned
to �#� . Hence, � � � M ���O���O��J��(� is compatible with �����:M ��� , and � � � M ���O���O��J%�(� is
incompatible with ��� �IM J&� .

In the following, we call a CSP instance
�

the original formulation with respect
to its dual transformation and hidden transformation. Because we usually deal with
more than one formulation of

�
simultaneously, we use the notation ���
 ��
 , ���
 ��
 and

	��
 ��
 to denote the set of variables, the set of domains and the set of constraints in
�

after it has been reformulated by some transformation � (to become a new CSP � � � �).
Also, we use ���& �
 ��
 �"��� to denote the domain of variable � in � � � � .

3 Local Consistency Techniques

In this section, we compare the strength of arc consistency on the original formula-
tion, and on the dual and hidden transformations. We show that arc consistency on
the original formulation and the hidden transformation are equivalent, but arc consis-
tency on the dual transformation is stronger. We then compare several stronger local
consistency properties defined over the binary constraints in the dual and hidden for-
mulations. We establish a hierarchy, with respect to a simple ordering relation, for the
various combinations of local consistency and problem formulation.

Debruyne and Bessière [5] compare local consistency properties defined on binary
CSPs. They define a local consistency property . 	�� to be stronger than another . 	��
(. 		��

��� . 	��) iff in any CSP instance in which . 	�� holds, then .C		� holds, and
. 		� to be strictly stronger than . 	�� (. 		���
��� . 	��) if .C		��
���� . 	�� and not
. 	���

��� . 		� .

However, their definition of ordering among different local consistency properties
does not provide sufficient discrimination for our purposes as we wish to simultane-
ously compare changes in problem formulation and local consistency properties. To
this end we define the following ordering relation.

Definition 8 Given two local consistency properties . 	�� and . 	�� , and two transfor-
mations � and � for CSP problems (perhaps identity transformations), .C	�� on � is
tighter than . 	�� on � , written . 	��'���0��
 . 	������-� , iff

given any problem
�

, if � � � � is not empty after enforcing . 	�� , then
� � � � is also not empty after enforcing . 	�� .

10

. 		� on � is strictly tighter than .C	�� on � , . 		�'��� � � . 	������-� , iff . 	 �'� �0��

. 	 � ���-� and not . 	 � ���-�
 . 	 � ���0� . And . 	 � on � is equivalent to . 	 � on � ,
. 		�'���0� � . 	������-� , iff . 		�����0�
 . 	������-� and . 	������-��
 . 		�'� �0� . If the transfor-
mations are identical; i.e., � @ � , then we simply write .C	 ��
�. 	�� .

The ordering relation we define is motivated by our desire to examine backtracking
search algorithms in which some form of local consistency is maintained during search.
In such algorithms it is the occurrence of an empty subproblem at a node of the search
tree that justifies backtracking. Thus if . 	 � is tighter than . 		� it follows (using the
contrapositive form of the definition: if

�
is empty after enforcing . 	�� , then

�
is also

empty after enforcing . 	��) that when an algorithm that maintains . 	�� backtracks at
a node, then an algorithm that maintains . 	�� would backtrack at that node as well.

Debruyne and Bessière’s ordering relation is defined by whether or not a problem
satisfies some local consistency property, whereas our ordering relation is defined by
whether or not a non-empty subproblem satisfies some local consistency property. This
distinction is important. For example, there exist problems for which the dual trans-
formation is arc consistent but the original formulation is not, and problems where
the original formulation is arc consistent while the dual is not. Thus, under Debruyne
and Bessière’s ordering (suitably modified to deal with two different problem formu-
lations) arc consistency on these two formulations would be incomparable. Under our
ordering relation, however, arc consistency on the dual transformation can be shown
to be strictly tighter than arc consistency on the original formulation. As the following
lemma demonstrates, Debruyne and Bessière’s ordering relation is stronger than ours.
The relation ����� is therefore unable to make as fine distinctions between different
local consistencies as the relation
 .

Lemma 1 . 	��

��� . 	�� implies . 		��
�. 	�� .

Proof: Let
�

be a problem which is not empty after enforcing . 	�� . Then there is a
non-empty subdomain of

�
in which . 	
� holds and hence . 	 � holds, since .C	 � �
���

. 	�� . Therefore
�

is also not empty after enforcing .C	�� , and . 		�
�. 	�� .

Note also that .C		���
��� . 	�� implies . 		��
 .C	�� , but not necessarily . 	�� �
. 	�� . In particular, . 	 �

��� . 		� failing to hold does not imply that . 	���
 . 		�
also fails to hold, as an
 ordering might exist between . 	�� and . 	�� even though no

��� ordering exists.

3.1 Arc consistency on the hidden transformation

Consider a CSP
�

with � variables, �������������
��� , each with domain ���O��J>� � � and con-
straints given by, � ��� ����� ��� , ����� ����� ��� and ���	� ����� ��� . Figure 3
shows the mappings between

�
, its arc consistency closure 5��>� � � , its hidden trans-

formation
� � ����;�� � � � , and the arc consistency closure of its hidden transformation

5���� � � ����;�� � � �
� . It turns out that 5���� � � ����;�� � � �
� is the same as the hidden transfor-
mation of the arc consistency closure

� � ����; � �<5��>� � �
� . In this example, an ordinary
variable has the same domain in 5���� � � and 5 ��� � � ����;��C� � �
� and the domain of a dual

11

variable in 5���� ��� ����;�� � � �
� is the same as the set of tuples in the corresponding con-
straint that remain after enforcing arc consistency on the original formulation. We show
in the following that these properties are true in general.

Lemma 2 If
�

is arc consistent; i.e.,
� @ 5���� � � , then

� � ����;�� � � � is empty if and only
if
�

is empty.

Proof: If
�

is empty then either it has an empty variable domain or an empty con-
straint relation or both. In either of these cases

� � ����;�� � � � will have an empty variable
domain. That is, for any

�
, if

�
is empty, then

� � ����;��C� � � is empty. (We do not need
arc consistency for this direction.)

If
� � ����;��C� � � is empty then we have one of two cases. (1)

� � ����; � � � � has an empty
variable domain. In this case

�
must also be empty. Otherwise, (2) there are no empty

variable domains but
� � ����;�� � � � has an empty constraint relation. We claim that case

(2) cannot occur if
�

is arc consistent. Let ,���� � be any of the hidden constraints,
and say that it is a constraint between an ordinary variable � and a dual variable � .
���� �"��� is not empty so it must contain at least one value E . Furthermore, since

�
is

arc consistent there must be a tuple � in ���� � � � such that the pair �"��� �
� is a support
for E in ,���� � . That is, 6<;�= �9,���� �(� must contain at least the pair �"��� �
� . So none of the
constraints of

� � ���>;�� � � � can be empty.

Theorem 1 Given a CSP
�

,

1.
�

is arc consistent if and only if
� � ����;�� � � � is arc consistent,

2.
� � ����;��C�<5��>� � �
� @ 5 ��� � � ����;��C� � �
� , and

3. arc consistency on
�

is equivalent to arc consistency on
� � ���>;�� � � � ; i.e., 5�� �

5��>� � � ����;�� � .

Proof: (1) If the original formulation
�

is not arc consistent, then there is at least one
value E in the domain of an ordinary variable � and a constraint , such that � M E does
not have a support in , . Hence, in

� � ����;�� � � � , �+MAE will not have a support in the
hidden constraint between the ordinary variable � and the corresponding dual variable� , and

� � ����;�� � � � is not arc consistent either. On the other hand, suppose
� � ����;�� � � �

is not arc consistent. Since by definition for every constraint , , 6<;�=��G,:� contains only
tuples whose values are in the product of the domains of 4�5�6(78�9,:� , each tuple in the
domain of a dual variable must have a support in a hidden constraint between the dual
variable and an ordinary variable. Hence, for

� � ����;�� � � � not to be arc consistent there
must be a value E of an ordinary variable � and a dual variable � such that ��� M
E'� does not have a support in the hidden constraint between � and � ; thus ��� M
E'� cannot have a support in the corresponding original constraint , . Therefore, the
original formulation

�
is not arc consistent either.

(2) First,
� � ����; � � � � , � � ����;�� �<5 �>� � �
� , and 5��>� ��� ����;�� � � �
� all have the same set of

variables (ordinary and dual) and the same constraint schemes since (a) enforcing arc
consistency does not alter the variables or the constraint schemes of a problem and (b)

12

� ��� � 	 � ��� � ��� ����� ��� 	���� �� �	��
 �	� � �	
��
 ��

 :

� �	��
 �	�
� �	
��
 ��

:

E � � � H ������� � � �
� @ � H ������� ��E � � � �<�

�	��

����� ��� ��������� ����� 2 � � 4�� ��!	"
�	��

����� ��� ��������� ����� 2 ���!4�� �$#�"
�	��
 ����� ��� ��������� ����� 2 � 	 4�� ��!	"
�	��

����� ��� ��������� ����� 2 ���!4�� ��%	"�	��
 ����� ��� ��������� ����� 2 ��� 4�� �!2�! � ! � #�4�"�	��

����� ��� ��������� ����� 2 � 	 4�� �!2�! � # � %!4�"�	��
 ����� ��� ��������� ����� 2 � �!4�� �!2�! � # � %!4�"

	 �	��
 �	� � �	
��
 ��

 : �����

� � � � 	�� ��� � ���� � :

�$��

� 2 � � 4�� ��! � # � %	"�$��

� 2 � 	 4�� ��! � # � %	"�$��

� 2 ��� 4�� ��! � # � %	"�$��

� 2 ��� 4�� ��! � # � %	"

� �'& �)(���+* ���
� 	 & � �,(���+* ���
� � & � � (� 	 * � �

� �
:

	 � :

� � � � 	�� ��� � ���
�$��

����� �)� 2 � � 4��-��!	"�$��

����� �)� 2 � 	 4��-��!	"

� � & � 	 (� � * � �
� 	 & � �,(���+* ���
��� & � �,(� 	 * ���

� �	��
 ��
 :

� �	��
 ��

:

	 �	��
 ��
 :

�$��

����� �)� 2 ��� 4��-�$#�"�$��

����� �)� 2 ��� 4��-��%	"

E � � � �

Achieving Arc Consistency Achieving Arc Consistency

���	� � �	
��
 ��
 :� ��� � 	 � ��� � ��� ����� ��� 	���� �
�
�	� � �	
 �
 ��
 :�	��
.��� ��������� �)� 2 � � 4�� ��! � # � %	"�	��
.��� ��������� �)� 2 � 	 4�� ��! � # � %	"�	��
.��� ��������� �)� 2 ���!4�� ��! � # � %	"�	��
.��� ��������� �)� 2 ���!4�� ��! � # � %	"

�!2�! � ! � #�4 � 2/# � ! � %!4 � 2�! � # � %!4�"
�	��
.��� ��������� �)� 2 � � 4��

�

�!2�! � ! � #�4 � 2/# � ! � %!4 � 2�! � # � %!4�"
�	��
 ��� ��������� �)� 2 ��	 4��

�!2�! � ! � #�4 � 2/# � ! � %!4 � 2�! � # � %!4�"
�	��
.��� ��������� �)� 2 � � 4��

	��	� � �	
��
 ��
 : �����

� H ������� � � �

Hidden Transformation

Hidden Transformation

Figure 3: An example to show the mappings between an original CSP, its hidden trans-
formation, its arc consistency closure, the arc consistency closure of its hidden trans-
formation, and the hidden transformation of its arc consistency closure.

13

the variables of the hidden are completely determined by the variables and the schemes
of the constraints of the original problem.

Second, the set of domains of
��� ����;�� �<5��>� � �
� , � ��� � �	
��
 �	��
 ��

 , is a subdomain of� � ���>;�� � � � : enforcing 5�� on

�
reduces the variable domains and the constraint rela-

tions, which simply has the effect, after applying the hidden transformation, of reducing
the domains of the ordinary and dual variables from their state in

� � ����;��C� � � . Further-
more, by (1)

� � ����;�� �<5��>� � �
� must be arc consistent. Thus � �	� � ��
��
 �	��
 ��

 is also a
subdomain of 5��>� � � ���>;�� � � �
� as � �	��
 �	�

� �	
��
 ��

is the (unique) maximal arc consis-

tent subdomain of
� � ����;�� � � � . This means that for every variable � (ordinary or dual)

���� �	�
� �	
��
 �	��
 ��

 ���&� % ���� �	��
 �	�

� �	
��
 ��

 ���&� .
Third, we show for every variable � , ���� �	��
 �	�

� �	
��
 ��

 ���&� % ���& �	�
� �	
��
 �	��
 ��

 ���&� ,

and hence that � �	� � �	
��
 �	��
 ��

 @ � �	��
 �	�
� �	
��
 ��

. There are two cases to consider.
(a) � is an ordinary variable. Since, 5���� � � ����;��C� � �
� is arc consistent, each value E)
���� �	��
 �	�

� �	
��
 ��

 ���&� must have a supporting tuple in every dual variable � that � is
constrained with. Furthermore, these supporting tuples must themselves have supports
in every ordinary variable that � is constrained with. In other words, E has a support
in each constraint by a tuple consisting of values from � �	��
 �	�

� �	
��
 ��

. Thus the set of

domains of the ordinary variables in 5��>� � � ����;��C� � �
� are an arc consistent subdomain
of
�

, and by maximality we must have that ���� �	��
 �	�
� �	
��
 ��

 ����� % ���� �	��
 ��
 ���&� .

Furthermore ���� �	��
 ��
 ���&�:@ ���� �	�
� �	
��
 �	��
 ��

 ���&� by the construction of the hidden.

Thus for ordinary variables ���& �	��
 �	�
� �	
��
 ��

 ���&� % �>�� �	�

� �	
��
 �	��
 ��

 ���&� . (b) � is a
dual variable. From (a) we know that every tuple �) ���� �	��
 �	�

� �	
��
 ��

 ���&� consists
of values of ordinary variables taken from � �	��
 ��

. Hence, in 5���� � � , � will be in
the constraint relation of the constraint corresponding to � , and thus � will also be in
���� �	�

� �	
��
 �	��
 ��

 ���&� .
Finally, in any hidden formulation the hidden constraints have the same intension.

Thus given that the variable domains � ��� � �	
��
 �	��
 ��

 and � �	��
 �	�
� �	
��
 ��

are identi-
cal all of the constraint relations (extensions) will be the same in

� � �>��;�� �<5��>� � �
� and
5���� � � ����;�� � � �
� . (The constraint schemes are determined by the dual variables which
also agree in these two formulations). Hence,

� � ����;�� �<5 ��� � �
� and 5 ��� � � ����;��C� � �<�
have the same set of variables, domains for these variables, and constraints. That is,
they are syntactically identical.

(3) Since 5��>� � � is arc consistent, 5���� � � is empty iff 5��>� � � ���>;�� � � �
� is empty by
(2) and Lemma 2.

Corollary 1 In any CSP
�

, for each of the ordinary variables � in
�

, ���� �	��
 ��
 �"��� =
���� �	�

� �	
��
 �	��
 ��

 �"��� = ���� �	��
 �	�
� �	
��
 ��

 �"��� .

Proof: The first equality follows from the construction of the hidden; the second fol-
lows from (2) of Theorem 1.

3.2 Arc consistency on the dual transformation

We have proven that the original formulation is arc consistent if and only if its hidden
transformation is arc consistent. However, such an equivalence does not hold for the
dual transformation.

14

Example 4 Consider a CSP
�

with four Boolean variables and constraints:

,-���"�����<�����
����� @ �8���O���O���>�$���
J���J���J%�(�>�
,	���"�����<�����
���%� @ �8���O���O���>�$���
J���J���J%�(�>�
,	���"�����<�����
���%� @ �8���O���O��J%�$���
J���J����>�(�>�

The original formulation
�

is arc consistent. In its dual transformation, let the dual
variables � �%� � � , and � � correspond to the above constraints, respectively. Because
neither of the tuples ���'���O���>� and ��J���J���J%� in the domain � � has a support in the dual
constraint between � � and � � , the domain of � � is empty after enforcing arc consistency
on the dual transformation. Thus � �'5�=�� � � is not arc consistent and 5����<� �'5�=
� � �
� is
empty; i.e., 5�� �
 5 ���<� �'5�=9� .

Example 5 Consider a CSP
�

with three Boolean variables and constraints:

,-���"�����
���%� @ �8��J���J%�$�>�
,	���"�����
���%� @ �8��J���J%�$�>�
,	���"�����
���%� @ �8��J���J%�$�>�

The dual transformation � �'5�=�� � � is arc consistent. However, the original formulation
is not arc consistent, because the value � for each of the variables will be removed from
its domain when enforcing arc consistency.

We can show that if the dual transformation is not empty after enforcing arc consis-
tency, then the original formulation is not empty either after enforcing arc consistency;
i.e., 5����<� �'5�=9��
 5�� . Together with Example 4 this shows that 5����<� ��5�=9��� 5�� .

Lemma 3 If a subdomain � �
of a dual transformation � �'5�=�� � � is arc consistent,

then for each pair of dual variables � F and � � in � �'5�=
� � � such that
$ @ 4�5�6(7>� � FG� �

4�5�6(78� ��� � �@ � , and for each �!) $, '�� ��� ���&
���
� � FG� @ '�� ��� ����

���
� ��� � .

Proof: For each �) $
and each tuple �+)&'�� ��� ���&

� �
� � FG� there is a tuple �<F)

����
���
� � FG� such that �
F � "!@ � . Because � �

is arc consistent, there must also be
a tuple � �)2���&

���
� ��� � such that �
F� $ " @ � � $ " . Thus � @ �<F � " @ � � ��" . Be-

cause �) ' � ��� �>��
���
� � � � , we have ' � ��� ����

���
� � F � % ' � ��� ����

���
� � � � . Similarly,

we can show that '�� ��� ����
� �
� ��� � % '�� ��� ����

���
� � FG� . Therefore, '�� ��� ����

���
� � FG� @

'�� ��� ����
���
� ��� � .

From the arc consistency closure of � �'5�=
� � �
� , 5����<���'5�=
� � �
� , we can construct a
subdomain for the original formulation

�
(in Theorem 2 below we show that this sub-

domain is in fact an arc consistent subdomain of
�

).

Definition 9 Let � ��� ��� �	��
 ��

denote the subdomain for the ordinary variables in

�
that

is constructed from the domains for the dual variables in 5����<� �'5�=
� � �<� as follows: for
each ordinary variable � in

�
, choose a dual variable � in 5��>�<� �'5�=�� � �
� such that

15

�) 4�5�6(7>� � � and set ����
��������� ����	
��

�"��� to be ' � ��� ���� �	��
 ��� ���
 ��

 � � � . Note that each

����
��� ����� ��� 	
��

�"��� is well defined as (1) by our assumption that each variable is con-
strained by at least one constraint, it is always possible to choose one such � , and (2)
by Lemma 3, if there is more than one such � the result does not depend on the dual
variable we choose.

For example, the dual transformation of the CSP in Example 5 is arc consistent.
Hence � �	��
 ��� ���
 ��

is ���>�� !� � ��� @ �8��J���J��(�>�%���� � � �%�C@ �8��J���J%�(�>�%�>�� � � ���C@ ����J���J%�(��� ,
and � ��� ��� �	��
 ��

is ������ �"�����C@ �>J&�>�%���� �"���%� @ �>J&�>������ �"���%� @ �>J&��� .

Theorem 2 Given a CSP
�

, arc consistency on � �'5�=�� � � is strictly tighter than arc
consistency on

�
; i.e., 5����<� �'5�=9��� 5�� .

Proof: We show that if 5����<� �'5�=
� � �
� is not empty, then neither is 5���� � � ; i.e. 5��>�<� ��5�=���

5�� . Because the domain of each dual variable in 5��>�<���'5�=�� � �
� is not empty, its projec-
tion over an ordinary variable cannot be empty either. So there is no empty domain

in � ��� ��� �	��
 ��

. In

�
, for each ordinary variable � , each value E*) ����

��� ����� ��� 	
��
�"��� ,

and each constraint , , where �) 4�5�6(78�G,:� , let E be the projection of the tuple � of
the corresponding dual variable � . For each of the variables
)B4�5�6(78�9, � , �!
�"�)
����

��� ����� ��� 	
��
��
O� . Thus � is a support for �%� M E'� in constraint , , and furthermore

� is a tuple of values all of which come from � ��� ��� �	��
 ��

. Therefore, � ��� ��� �	��
 ��

is a
non-empty arc consistent subdomain of

�
and thus 5��8� � � is not empty.

Example 4 shows that arc consistency on the dual transformation may be strictly
tighter than arc consistency on the original formulation; i.e., 5�� �
B� �'5�=
�<5��%� . There-
fore, 5����<� ��5�=9��� 5�� .

By combining Theorem 1 and Theorem 2, we can make the following comparison
between arc consistency on the dual transformation and on the hidden transformation.

Corollary 2 Given a CSP
�

, arc consistency on � �'5�=
� � � is strictly tighter than arc
consistency on

� � ���>;�� � � � ; i.e., 5��8�<� �'5�=���� 5��>� � � ����;�� � .

3.3 Beyond arc consistency

Because the dual and hidden transformations are binary CSPs, we can enforce local
consistency properties that are defined only over binary constraints. Following [5], a
binary CSP is (H ,�)-consistent if it is not empty and any consistent assignment over H
variables can be extended to a consistent assignment involving � additional variables.
A CSP is arc consistent (AC) if it is (J , J)-consistent. A CSP is path consistent (PC) if
it is (

�
, J)-consistent. A CSP is strongly path consistent (SPC) if it is (H , J)-consistent

for each J�� H�� � . A CSP is path inverse consistent (PIC) if it is (J , �)-consistent. A
CSP is neighborhood inverse consistent (NIC) if any instantiation of a single variable
� can be extended to a consistent assignment over all the variables that are constrained
with � , called the neighborhood of � . A CSP is restricted path consistent (RPC) if it
is arc consistent and whenever there is a value of a variable that is consistent with just
one value of an adjoining variable, every other variable has a value that is compatible

16

with this pair of values. A CSP is singleton arc consistent (SAC) if it is not empty, and
the CSP induced by any instantiation of a single variable is not empty after enforcing
arc consistency.

Debruyne and Bessière [5] demonstrated that, SPC ����� SAC �
��� PIC �
��� RPC
�
��� AC, and NIC ����� PIC, where “ ����� ” is the ordering relation defined in their
paper, as discussed in Section 3. Thus, by Lemma 1 we immediately have that SPC

SAC
 PIC
 RPC
 AC, and NIC
 PIC.

Theorem 3 Given a CSP
�

, neighborhood inverse consistency on
� � ���>;�� � � � is equiv-

alent to arc consistency on
��� ����;�� � � � ; i.e., � � ��� � � ����;�� � � 5���� � � ���>;�� � .

Proof: Since � � �
A5�� , we immediately have � � ��� � � �>��;����
A5���� � � ����;���� . Con-
versely, suppose 5���� � � ����;�� � � �
� is not empty. For a dual variable � , its neighborhood
in 5���� � � �>��;��C� � �
� is 4�5�6(7>� � � . Thus an instantiation of � with a tuple � from its do-
main in 5���� � � ����;��C� � �
� can be extended to a consistent assignment of its neighboring
variables, where for each of the ordinary variables �) 4&5�6(7>� � � , � is instantiated with
�! � " (�! ��" must be in the domain of � because it is the only support for � in the hidden
constraint between � and �). For an ordinary variable � , � only has constraints with
dual variables. An instantiation of � with a value E from its domain in 5���� ��� ����;��C� � �
�
can be extended to a consistent assignment including all its neighborhood, where for
each of the dual variables � in its neighborhood, � is instantiated with a tuple � such that
�! � "#@ E (also, such a tuple must exist because ��� M E'� has at least one support in the
hidden constraint between � and �). Therefore, the hidden transformation is not empty
after enforcing neighborhood inverse consistency; i.e., � � ��� � � ����;�� � � �
� is not empty.
In fact, 5���� ��� ����;�� � � �
� is already neighborhood inverse consistent.

Because neighborhood inverse consistency on the hidden transformation collapses
down onto arc consistency those consistencies that are weaker than neighborhood in-
verse consistency but tighter than arc consistency, e.g., path inverse consistency and re-
stricted path consistency, are also equivalent to arc consistency. That is, � � ��� � � ����; ��� �
� � �>� � � ����;���� � 6 � ��� � � ����;���� � 5���� � � ����;�� � (and by the equivalence 5���� ��� ����;�� � � 5��
established in Theorem 1, each of these local consistencies on the hidden transforma-
tion is in turn also equivalent to arc consistency on the original formulation).

However, neighborhood inverse consistency on the dual transformation does not
collapse. It is strictly tighter than arc consistency. In fact, the even weaker restricted
path consistency is strictly tighter than arc consistency on the dual.

Example 6 Consider a CSP with three Boolean variables and constraints:

,-���"���%�
���%� @ �8���O���>�$����J>��J%�(�>�
,	�8�"���&�
���%� @ �8���O���>�$����J>��J%�(�>�
,	�8�"���%�
���%� @ �8���O��J%�$����J>���>�(�>�

The dual transformation of this problem is arc consistent but not restricted path con-
sistent (RPC). Furthermore, enforcing RPC on the dual transformation yields an empty
CSP. Thus we have that 6 � ���<� �'5�=9��� 5����<� �'5�=�� ; i.e., 6 � � is strictly tighter on the dual.

17

Along with the previous orderings this immediately gives that both � � �>�<� �'5�=�� �
5����(� �'5�=9� , and � � ���<� ��5�=9��� 5��>�<� ��5�=�� .

Although neighborhood inverse consistency and path inverse consistency on the
hidden transformation do not provide any additional power over arc consistency, the
same is not true for singleton arc consistency.

Example 7 Consider a CSP with three parity constraints: even(�C� � ��� �����), even(� � �
��� � ���), and even(� � � ��� � ���). If �#� is set to 1, and the other variables have domain
���O��J&� then the hidden transformation is arc consistent but not singleton arc consis-
tent. Furthermore, enforcing singleton arc consistency on this problem yields an empty
CSP. Thus we have 7�5��>� � � �>��;���� �A5��>� � � ����;�� � and 7�5���� � � ����;�� � � � � ��� � � �>��;�� �
(since � � ��� � � ����;���� � 5���� � � ����;�� �).

Theorem 4 Given a CSP
�

, singleton arc consistency on � �'5�=
� � � is tighter than sin-
gleton arc consistency on

� � �>��;�� � � � ; i.e., 7�5����<� �'5�=9��
 7�5���� � � ����;���� .

Proof: First we define a function � from the arc consistent subdomains of � �'5�=�� � �
to subdomains of

� � ����; � � � � . Let � be an arc consistent subdomain of � �'5�=�� � � . In
�#� � � each dual variable � will have the same domain as it did in � , ���&

�
� � � @

���� �

�
 � � � , and the domain of each ordinary variable � , ���� �

�
 �"��� , is set to be
equal to '�� ��� ���&

�
� � � for some dual variable � such that �) 4�5�6(7>� � � . � is well

defined, as from Lemma 3 we know that since � is an arc consistent subdomain of
� �'5&=�� � � , ���� �

�
 �"��� is independent of which dual variable � we choose to project.
� has three relevant properties. (1) �#� �N� is an arc consistent subdomain of

� � ����;�� � � � .
For each ordinary variable � we have that ���� �

�
 �"���/@ '�� ��� ����
�
� � � for every dual

variable � that � is constrained with. Thus, every value of � has a support in each of
the dual variables it is constrained with (take one of the tuples whose projection was
that value), and every tuple � of every dual variable � has a support in each of the or-
dinary variables it is constrained with (take the projection of � on that variable). (2)
If � �

is a subdomain of � , then �#� � � � is a subdomain of �#� �N� . This is obvious from
the definition of � . (3) �#� �N� is an empty subdomain, if and only if � is an empty
subdomain.4 The only non-trivial case is when �#� � � contains an empty domain for an
ordinary variable � . But in that case there must be a dual variable � with �)*4&5�6(7>� � �
such that ' � ��� ���&

�
� � �C@ � . And this can only be the case if ����

�
� � � is itself empty;

i.e., � contains an empty domain.
Now we show that if 7�5����<� ��5�=�� � �
� is not empty then neither is 7�5��>� � � ����;�� � � �<� ;

i.e., 7�5����<� �'5�=G��
 7�5���� � � ���>;�� � . Let ��� @3� � �	��
 ��� ���
 ��

 and ���N@��#� ����� . Our claim
is that ��� is a non-empty singleton arc consistent subdomain of

� � ����;�� � � � .
First, since 7�5����<���'5�=
� � �
� is arc consistent and non-empty, � � �	��
 ��� ���
 ��

 @ ���

is an arc consistent and non-empty subdomain of � �'5�=�� � � . Thus, ��� is a non-empty
member of the domain of the function � and by (3) ���N@	�#� ����� is non-empty and we
need only prove that it is singleton arc consistent.

Let � be a dual variable, and � a tuple in ����
��

� � � . We must show that ����+ ��
 � (i.e.,

��� in which ����
��

� � � has been reduced to the singleton �*�(�) contains a non-empty

4By Definition 3 a subdomain is empty if it contains an empty domain for some variable.

18

arc consistent subdomain. However, since � � is singleton arc consistent, � ��+ ��
 � con-
tains a non-empty arc consistent subdomain 5���� � � + ��
 � � . �#�<5��8� � � + ��
 � �
� is easily seen
to be a subdomain of � ��+ ��
 � , and thus by (1) and (3) �#�<5��8� � �3+ ��
 ���
� must be a non-
empty arc consistent subdomain of � ��+ ��
 � . On the other hand, let � be an ordinary
variable and E a value in its domain. To show that � ��+ �
 � contains a non-empty
arc consistent subdomain, we choose any dual variable � that � is constrained with,
and a tuple � from the domain of � such that � � " @BE . Now if we consider ����+ ��
 �
and its non-empty arc consistent subdomain 5���� � ��+ ��
 ��� , we can similarly show that
�#�<5 �>� ����+ ��
 ���
� is a non-empty arc consistent subdomain of � ��+ �
 � .

In the hidden transformation, for each pair of dual variables � F and ��� , where
4�5�6(78� � FG�
� 4�5�6(78� ��� � �@ � , enforcing strong path consistency adds a constraint between� F and ��� . This constraint ensures that a tuple from � F agrees with a tuple from � �
on the shared ordinary variables. The constraint is identical to the dual constraint be-
tween � F and ��� in the dual transformation. Thus, strong path consistency on the hidden
transformation must be as strong as on the dual. In fact, we can show their equivalence.

Theorem 5 Given a CSP
�

, strong path consistency on
� � ����;�� � � � is equivalent to

strong path consistency on � �'5�=�� � � ; i.e., 7 � ��� � � �>��;���� � 7 � ���(� �'5�=9� .
Proof: See [4].

Figure 4 summarizes our results. If there is a directed path between consistency
properties � and � , then � is tighter than � . If the path contains a strictly tighter
than link then � is strictly tighter than � . Note that some of the relationships between
consistency properties are not completely characterized. For example, it is an open
question whether or not 7�5���� � � ����;�����
 7�5��>�<� �'5�=�� .

4 Backtracking Algorithms

In this section, we compare the performance of three backtracking algorithms—the
chronological backtracking algorithm, the forward checking algorithm, and the main-
taining (generalized) arc consistency algorithm—when solving the original formulation
and the dual and hidden transformations of a problem. Our results are proven under the
assumption that a backtracking algorithm finds all solutions to a problem.

Given two backtracking algorithms and two formulations of a problem we identify
whether or not the relation “one combination can be only polynomially worse than an-
other combination” holds. To formalize this relation we must first specify quantitative
measures of the size of a CSP and the cost of solving a CSP using a given algorithm.

We denote by ��� ��� � � � the size of a CSP
�

. Consistent with real-world practice,
we assume that the domains of the variables are represented extensionally and that the
constraints are represented intensionally. Thus, to specify the variables, domains, and
constraints of a (possibly transformed) CSP

�
takes �N�"� � �)�	� 1 �&� space, where

� denotes the number of variables, � the size of the largest domain, 1 the number of
constraints, and � the arity of the largest constraint scheme in

�
. Since the dual and

the hidden are transformations of an original (non-binary) formulation
�

, we can also

19

sac(dual) pic(dual) rpc(dual) ac(dual)spc(dual)

spc(hidden) sac(hidden) pic(hidden) rpc(hidden) ac(hidden)

ac

nic(dual)

nic(hidden)

Figure 4: The hierarchy of relations between consistencies on the original, dual, and
hidden formulations. A bi-directional arrow is equivalence, � , a double headed arrow
is the strictly tighter relation, � , and an ordinary arrow is the tighter relation,
 .

20

specify their sizes in terms of the parameters of
�

. In particular, let � , � , 1 , and � be
the parameters of an original (non-binary) formulation

�
. In the worst case, the trans-

formation ���'5�=�� � � takes �N��1 �!1 ��� �!1 � � space and the transformation
� � ����;�� � � �

takes �N�<�"� � 1 � � �"���	� 1 ����� � 1 �&� space. Thus, the dual and hidden transfor-
mations can require space that grows exponentially with the arity of the constraints in
the original formulation. In practice, one would certainly want to limit the arity of the
constraints to which these transformations are applied.

To solve a CSP with a backtracking algorithm, one must specify the variable or-
dering the algorithm uses to determine which variable to instantiate next. It is well
known that the variable ordering used can have an exponential effect on the cost of
solving a CSP. Thus an exponentially difference in performance between two algo-
rithm/formulation pairs is always trivially possible under particular variable orderings.
Hence, to formalize a sensible notion of “only polynomially worse” we must do so in
a way that is independent of any particular variable ordering. In our definitions we
achieve this independence by quantifying over all possible orderings.

Formally, we define a variable ordering function � to be a mapping from a tuple �
(a node making a, possibly empty, set of variable-value assignments) and a CSP

�
to

a new variable not in 4�5�6$7>���
� . We say that a variable ordering � is an ordering for a
problem

�
if it is defined over the variables of

�
. In addition, we say that an algorithm�

uses the variable ordering � if � characterizes the choices made by
�

at the various
nodes

�
visits as it does its backtracking search; i.e.,

�
next instantiates the variable �

when it is at node � if and only if � �"���C@ � .
We denote by ��� �	� � � � � � � � the cost of solving a CSP

�
using an algorithm

�
and

a variable ordering � . This cost is determined by the number of nodes visited by the
algorithm and the cost at each node. In turn, the cost at each node is determined by
the cost of enforcing the local consistency property maintained by the backtracking
algorithm and the cost, if any, of determining the next variable to instantiate (the cost
of the function � � .

Definition 10 Let
�

- � denote algorithm
�

applied to problems transformed by a trans-
formation � . Given two backtracking algorithms

�
and
 (possibly identical), and two

transformations � and � for CSP problems (perhaps identity transformations),

1.
�

- � can be only polynomially worse than
 - � , written
�

- ���
���� �
 - � , iff given
any CSP

�
and variable ordering ��� for � � � � , there is a variable ordering ��� for

� � � � such that,

��� ��� � � � � � � �$� ��� �
��� ��� ��
 � � � � �$� ��� � � polynomial function of � � � � ��� � � ����� � �
�$� ��� � � ���:� � �
�$�

That is, the cost of solving � � � � using
�

and ��� is at most a polynomial factor
worse than the cost of solving � � � � using
 and ��� .

2.
�

- � can be superpolynomially worse than
 - � , written
�

- � �� ��
����
���� �
 - � , iff
�

- � ��
���� �
 - � (i.e., the negation of polynomially worse), iff there exists a CSP
�

and a variable ordering ��� for � � � � , such that for any variable ordering ��� for

21

� � � � ,
��� ��� � � � ��� � �$� ��� �
��� ��� ��
 � �:� � �$� ��� �

� superpolynomial function of � � � � ��� � � � � � � �
�$� ��� � � ��� � � �
�$�

That is, the cost of solving � � � � using
�

and ��� is at least a superpolynomial
factor worse than the cost of solving � � � � using
 and ��� .

To prove a relationship
�

- � �
���� �
 - � , we (1) establish that the number of nodes
visited by

�
on � is at most a polynomial factor more than the number of nodes visited

by
 on � , (2) establish that the time complexity of enforcing the local consistency
property maintained by

�
at each node is at most a polynomial factor worse than the

time complexity of enforcing the local consistency property maintained by
 at each
node, and (3) establish that the time complexity of � � is at most a polynomial factor
worse than the time complexity of ��� . In turn, to prove condition (1), we establish
a correspondence between the nodes in the ordered search tree generated by � � that
are visited by

�
and the nodes in the ordered search tree generated by � � that are

visited by
 . In the definition of
�

- � �
	��� �
 - � , the existential (there is a variable
ordering � �) occurs within the scope of two universal quantifiers (any CSP

�
and any

variable ordering � �) and thus � � can depend on both
�

and ��� . To prove condition
(3), we show how to construct ��� given only polynomial access to � � and polynomial
additional computation.

4.1 Discussion

Every variable ordering � for a CSP instance
�

generates a complete ordered search
tree for

�
. Starting with the root of the tree being the empty tuple, at every node �

we apply � to that node to obtain the variable � @ � �"� � that is to be instantiated by
the children of � . Then the children of � will be all of the possible extensions of �
that can be made by assigning � values from its domain. This process is continued
recursively until we reach nodes that assign all of the variables of the CSP instance.
Our formalization of variable orderings encompasses both static variable orderings (in
which � returns the same variable at every node that assigns the same number of vari-
ables) and dynamic orderings (in which � can return a different variable at each node).
Further, it assumes a static (possibly heuristically derived) of the values of each vari-
able. The children of a node are thus ordered in the search tree left to right following
this ordering.5

If we apply
�

to solve
�

using � as the variable ordering, then
�

will search in this
ordered search tree. Due to the constraints imposed by � on

�
’s operation,

�
cannot

visit a node (assignment) not in this ordered search tree. Depending on how
�

operates,
it will visit some subset of the nodes in this search tree. We refer to the sub-tree (of the
ordered search tree) visited by a backtracking algorithm on the original formulation as

5Our results would go through unchanged if the value ordering is dynamic assuming that all children of
a given node are instantiations of the same variable. All that would be needed is for � to return in addition to
the next variable an ordering over its domain. However, we avoid doing this since it would make the notation
unnecessarily complicated.

22

231231

321321

3121

1

321

}),({,}),({

}),({,}),({

})({,})({

({})

1,...,3},{)(

},,{

xbxaxxaxbx

xbxaxxaxax

xbxxax

x

ibaxdom

xxxVars

CSP P

i

======

======

====

=

==

=

νν

νν

νν

ν 1 ax = 1
bx =

2 ax = 2 bx = 3 ax = 3 bx =

3 ax = 3 bx = 3 ax = 3 bx = 2 ax = 2 bx = 2 ax = 2 bx =

Figure 5: The ordered search tree generated by a variable ordering.

the original search tree, the sub-tree visited when solving the dual transformation as
the dual search tree, and the one visited when solving the hidden transformation as the
hidden search tree. All of these sub-trees are defined with respect to particular variable
orderings (each of which generates a particular ordered search tree). Figure 5 shows an
example of a CSP instance

�
, variable ordering � for

�
, and the complete search tree

generated by � .
As we have defined them, a variable ordering can play either a descriptive or a

prescriptive role. Say that we run
�

on � � � � and we use some heuristic function to
compute the next variable to instantiate at every node of the search tree. This heuristic
function could use various pieces of the state of the program in computing its answer.
For example, in an algorithm like FC, the minimum remaining values heuristic uses
the domain sizes of the uninstantiated variables in computing the next variable. In
this case, � plays a descriptive role. After

�
has run on � � � � there will be some set

of variable ordering decisions that it has made that can be captured by specifying a
variable ordering function � , and we can say that

�
has used � when solving � � � � .

Note that there will in general be many different variable orderings that describe
�

’s
behavior on � � � � . In particular,

�
will only visit a subset of the possible tuples that

could be generated from the variables and values of � � � � , and � need only agree with�
on those tuples

�
actually visits. How � maps the other tuples to variables can be

decided arbitrarily.
On the other hand, � can also be used in a prescriptive role. If � can be computed

externally to
�

, then whenever
�

visits a node � it can invoke the computation of � �����
to tell it what variable to instantiate next.

In our definitions the variable ordering for
 - � is descriptive while the variable
ordering for

�
- � is prescriptive. In particular, we have that
 achieves some level of

performance when solving � � � � , and that the variable ordering it used to achieve this
performance is described by ��� . Then when we use

�
to solve � � � � we assume that

there is a variable ordering ��� that can be computed externally to
�

to prescribe the
variable ordering it should use when solving � � � � . The definitions specify conditions
on

�
’s performance on � � � � under all possible � � .

The relation
�

- � �� ��
����
���� �
 - � means that there is a problem
�

such that when

23

solves � � � � using a variable ordering described by ��� it achieves a performance that
is super-polynomially better than that of

�
on � � � � no matter what variable ordering

is prescribed for
�

to use.
The relation

�
- � �
���� �
 - � means that for any problem

�
the performance achieved

by
 when solving � � � � using a variable ordering described by � � can always be
matched within a polynomial by

�
when solving � � � � using a prescribed variable

ordering �	� .
Two potentially problematic cases arise from the fact that each algorithm utilizes

a different variable ordering. First, if
 used an exponential computation to compute
its variable ordering, then it would seem to be unfair to compare

�
’s performance with

it—
 might have unmatchable performance simply due to its superior variable order-
ing. Second, if

�
used exponential resources to compute its variable ordering, then it

would seem to be unfair to say that it was polynomially as good as
 —it could be that

 needed only polynomial resources to compute its ordering and yet

�
needed expo-

nential resources to achieve similar performance. Both of these problems are resolved
by our use of a ratio of costs as the metric for comparison. In particular, in the first case�

would also be allowed to use exponential resources to compute its variable ordering,
and in the second case if

�
used exponentially more resources than
 in computing its

variable ordering then the “only polynomially worse” relation would not hold.
We have used quantification as a mechanism for removing any dependence on a

particular variable ordering in our definitions. Quantification allows us to achieve a
number of useful properties.

First, we need to compare the performance of algorithms on problems that contain
different sets of variables. For example, the original formulation and the dual trans-
formation contain completely different sets of variables. Hence, it is not possible to
simply assume that the same variable ordering is used in each algorithm, as is com-
monly done. By quantifying over possible variable orderings we have the freedom to
allow each algorithm to employ a different variable ordering.

Second, since different variable orderings can yield such tremendous differences in
practice, it is not desirable to fix the variable ordering used by an algorithm indepen-
dently of the problem. By quantifying over all possible variable orderings we do not
need to fix the variable ordering.

Finally, another seemingly plausible way of comparing algorithm and problem for-
mulation combinations is to compare their performance when they are both using the
best possible variable ordering. That is, to look at

�������
 � � �
 ��
 � � 	

�������
�
 � �
 ��
 � ���
 under the condition

that � � is the best possible variable ordering for
�

on problem � � � � , and similarly for��� . However, the practical impact of such an approach would be limited since deter-
mining the best possible variable ordering for a given algorithm and problem combi-
nation is at least as hard as solving the problem itself. With quantification we achieve
something that is both stronger and more useful. In particular, it is easy to see that
if
�

- � �
���� �
 - � holds, it then also holds if we restrict our attention the best possible
variable ordering for each combination. The advantage of our stronger formulation
is that it tells us something about many different variable orderings, not only the best
ones, and thus our results have a much greater practical impact. For example, if we
have

�
- � �
���� �
 - � then no matter what variable ordering we use for
 we know that

24

there exists a variable ordering for
�

that will achieve a comparable performance. Im-
portantly, the variable ordering for

�
need not be the best possible; in fact, in most of

our proofs of this relation we show a way of constructing the ordering for
�

from the
ordering for
 .

4.2 Forward checking algorithm (FC)

In this section, we compare the performance of the forward checking backtracking
algorithm (FC) [10, 15, 25] on the three models.

We can make things simpler by restricting the class of variable orderings that we
need to consider for FC-hidden (FC applied to the hidden transformation). In particu-
lar, we assume that any variable ordering for FC-hidden always instantiates all of the
ordinary variables prior to instantiating any dual variable. Due to the following result
this restriction does not affect either of the two relations �
���� � or �� ��
����
���� � .

Theorem 6 Given a CSP
�

and a variable ordering � for the hidden transformation� � ���>;�� � � � , we can construct (in polynomial time given polynomial time access to �)
a new variable ordering � � that instantiates all of the ordinary variables of

� � ����; � � � �
prior to instantiating any dual variable such that FC-hidden using � � visits at most
�N��� �8� times as many nodes as it visits when using � , where � is the size of the largest
domain and � is the arity of the largest constraint scheme in

�
.

Proof: See [4].

In fact we can go even further, and assume that FC-hidden explores a search tree
containing the ordinary variables only. Using one of the above restricted variable or-
derings, FC-hidden will have instantiated all ordinary variables prior to instantiating
any dual variable. Due to the nature of the constraints in the hidden, once all of the
ordinary variables have been consistently instantiated, there will be only one consis-
tent tuple in the domain of each dual variable; FC will prune away all of the other,
inconsistent, tuples. FC will then proceed to descend in a backtrack free manner down
the single remaining branch to instantiate all of the dual variables. Thus we can stop
the search once all of the ordinary variables have been assigned—we already have a
solution. That is, we need only consider the top part of the search tree where the or-
dinary variables are being instantiated, and we can consider FC-hidden and FC-orig to
be exploring the same search tree consisting of all of the ordinary variables.

We now present examples that allow us to prove some relationships between the
three problem formulations.

Example 8 Consider a non-binary CSP with only one constraint over � Boolean vari-
ables, ,N�"�#�&���������
���'�/@ ����� @3���:@������'@3����� . FC applied to this formulation visits
�N� � � � nodes and performs �N� � � � consistency checks to find all solutions irrespective
of the variable ordering used. There are only two nodes in the search tree for FC-dual,
representing the two possible solutions. FC-hidden visits �N�"��� nodes and performs
�N�"� � consistency checks.

25

Theorem 7 FC-orig can be super-polynomially worse than FC-dual and FC-hidden;
i.e., FC-orig �� ��
�� �
���� � FC-dual and FC-orig �� ��
����
���� � FC-hidden.

Proof: See Example 8.

Example 9 Consider the non-binary CSP with � Boolean variables � �����������
��� and �
constraints given by ��� ��� , �
 �#��� ���&� , �
 �#���
 ���,�N�����>������� , �
 �#��� ����� �
 ��� � �)�
����� . FC applied to this formulation visits � nodes and performs

� � consistency checks
when using the static variable ordering �C�����������
��� . FC-hidden performs at least

� � � J
consistency checks irrespective of the variable ordering used, as the domain of the dual
variable associated with the constraint �
 � � � ����� �
 ��� � �5� ����� costs that much to
filter once any one of the ordinary variables is instantiated.

Theorem 8 FC-hidden can be super-polynomially worse than FC-orig; i.e., FC-hidden
�� ��
����
���� � FC-orig.

Proof: See Example 9.

Example 10 Consider a CSP with
� � variables, � �����������
���<� , each with domain �>J����������
� � ,

and � constraints,

,-���"�����
�����
��� � ��� @ ���#�I@ ���&�>�
,	�8�"�����
�����
��� � ��� @ ����� @ ���&�>�

�����

,/� � ���"��� � ���
�����
���<� � ��� @ ����� � �I@ �����>�
, �#�"�����
�����
���(�'� @ ���#� �@ �����>�

The problem is insoluble because the first � � J constraints force � � @B��� and the
last constraint forces � � �@3��� . Note that in each of the above constraints, the variable
��� � F merely increases the arity and the number of tuples of the constraint. Given the
lexicographic static variable ordering �C�%���������
���<� , FC-orig and FC-hidden will search
� paths, ���#�0M J����������
��� M J&� , �����0M � ���������
��� M � � , ����� , ���#�0M � ���������<��� M
� � : at each node, there is only one value in the domain of the current variable that is
consistent with every uninstantiated variable. Thus FC-orig and FC-hidden visit �N�"� � �
nodes to conclude that the problem is insoluble. However, irrespective of the variable
ordering used, along those paths where all of the �CF are set to the same value, FC-dual
has to instantiate at least

� �����"��� � J dual variables to reach a dead-end. In particular, it
must instantiate enough of the dual variables � �%��������� � � � � to allow it to conclude that
���-@ ��� , which will then yield a contradiction with the last dual variable � � . However,
even under the restriction that each of the variables � F get the same value, FC-dual
must additionally “instantiate” a variable from � � � �����������
���<� at each stage that has no
influence on the failure. This will cause it to backtrack uselessly to try � different ways
of setting each dual variable using different values for these variables

The best variable ordering strategy for FC-dual along these paths is to repeatedly
split the set of ordinary variables � �����������
��� by instantiating the dual variable over
the mid-point variables, so as to most quickly derive a relation between ��� and ��� .

26

For example, FC-dual would first branch on the dual variable corresponding to the
constraint ,N�"��� ���
���� � � �
� � � � ��� , thus instantiating the two mid-point variables in the
sequence �������������
��� . In the next two branches it would split the subproblems involv-
ing �#�����������
���� and ���� � �%���������
��� . Continuing this way it can instantiate all of the
variables �#�����������
��� by instantiating �N� � �����"���<� dual variables and thus conclude that
���I@3��� to obtain a contradiction. Once failure has been detected FC must then back-
track and try the other �N�"� � consistent values of each dual variable. Hence, FC-dual
has to explore at least �N��� � ���
 �
 � � � nodes.

Theorem 9 FC-dual can be super-polynomially worse than FC-orig and FC-hidden;
i.e., FC-dual �� ��
�� �
���� � FC-orig and FC-dual �� ��
����
���� � FC-hidden.

Proof: See Example 10.

Now we turn to the relation between FC-dual and FC-hidden. In Example 8, we
observe that FC-hidden visits �N�"��� times as many nodes as FC-dual does. As we now
show, this bound is true in general. We then show that FC-hidden �
	��� � FC-dual.

Let
�

be any CSP instance, and let � ��� ��� be any variable ordering for � �'5�=�� � � . We
must show that there exists a variable ordering �

�	�
� �	
 � such that the performance of

FC on
� � �>��;�� � � � using �

�	�
� ��
�� is within a polynomial of its performance on � �'5�=
� � �

using � ��� ��� . First, we show how to construct � �	�
� �	
�� using � ��� ��� , then we show that

under this variable ordering a polynomial bound is achieved.
Let � @ ����� M EO�%������������D M E�D>� be a sequence of assignments to ordinary

variables; i.e., a possible node in the search tree explored by FC-hidden. We need to
compute �

�	�
� �	
�� �"��� ; i.e., the next variable to be assigned by FC-hidden when and if

it visits � . This will be the variable instantiated by the children of � . Once we can
compute � �	�

� �	
�� �"��� for any node � , we will have determined the function �
�	�
� �	
 � , and

hence the ordered search tree generated by �
�	�
� �	
�� and searched by FC-hidden. To

do this we establish a correspondence between the nodes in the ordered search tree
generated by � ��� ��� , 	 ��� ��� , and nodes that would be in the ordered search tree generated
by �

�	�
� �	
�� ,

	
�	�
� ��
�� . Using Theorem 6 we can consider

	
�	�
� �	
�� to be an ordered search

tree over only the ordinary variables (i.e., the original variables of
�

).
The correspondence is based on the simple observation that every assignment to a

dual variable � by FC-dual corresponds to a sequence of assignments to the ordinary
variables in 4�5�6(7>� � � . Each node � � in

	 ��� ��� is a sequence of assignments to dual
variables. Let this sequence of assignments be � � �NM �<�%��������� � D M �
D>� , where �<F is
a tuple of values in the domain of the dual variable � F . Each dual variable represents
a constraint (from the original formulation

�
) over some set of ordinary variables.

Let 4�5�6$78� � FG� @ ��� ��
� ����������� ��
�
 � be the set of ordinary variables associated with the
dual variable � F with ��F being the arity of � F . Assigning � F a value assigns a value to
every variable in 4�5�6(7>� � FG� . Given a lexicographic ordering of the ordinary variables,� F M ��F thus corresponds to a sequence of assignments to the ordinary variables in
4�5�6(78� � FG� : ���&�IM ��F �&��"G����������� �
CM ��F� � �
 "G� , where �! � " is the value that tuple � assigns
to variable � . Thus we can convert each node � � in

	 � � ��� , � � @ � � � M �<�%��������� � D M
�
D>� into a sequence of assignments to ordinary variables ��� �
�� M �<� � �
�� "G����������� �
�� � M�<� � �
�� � "G�����������

���� M �
D� � ���� "G����������� ���� � M �
D3 � ���� � "9� .

27

If no ordinary variable is assigned two different values in this sequence, then for
each variable in the sequence we can delete all but its first assignment. This will yield
a non-repeating sequence of assignments to ordinary variables. The fundamental prop-
erty of � �	�

� �	
�� is that each such non-repeating sequence generated by the nodes of
	 ��� ��� will be a node in the ordered search tree

	
�	�
� ��
�� . We define a function, ��� �

from nodes of
	 ��� ��� to the nodes of

	
�	�
� �	
�� . Given a node � � of

	 ��� ��� , ��� � �"� ��� is
the non-repeating sequence of assignments to ordinary variables generated as just de-
scribed. If ��� contains two different assignments to an ordinary variable, then we leave
��� � �"� �%� undefined (in this case there is no corresponding node in

	
�	�
� �	
��).

One thing to note about the function ��� � is that if ��� and �)� are nodes of
	 ��� ���

such that ��� � is defined on both nodes and �I� is an ancestor of ��� then ��� � �"� ��� will
be a sub-sequence of or will be equal to ��� � �"�	�%� . This means that either ��� � �"� ��� is
the same node as ��� � �"����� or that ��� � �"� ��� is an ancestor of ��� � �"�,�%� in

	
�	�
� �	
 � .

Example 11 For example, the sequence of assignments � � @ � � �%�"�����
�����
���%� M
���O��J>���>� , � ���"�����<�����
���%�:M ��J>���O���>� , � ���"���>�
�����:M ���O� �>�(� , yields the sequence of as-
signments to ordinary variables ��� �-M � , ��� M J , ��� M � , ��� M J , ��� M � , ��� M � ,
��� M � , ����M ��� . No variable is assigned two different values in this sequence, so
��� � �"� �%� @ �����NM � , ��� M J , ��� M � , ��� M J , ����M ��� is the non-repeating se-
quence, and this sequence of assignments will be a node in

	
�	�
� �	
�� . On the other hand,

the sequence � � � @ � � ���"�����
���%�:M ���O��J%��� � ���"�����
���%� M ��J����>�(� has two different as-
signments to �#� so ��� � �"� � � � remains undefined, and � � � does not have a corresponding
node in

	
�	�
� �	
�� .

To compute �
�	�
� �	
�� �"��� for some node � (which could be the empty set of assign-

ments) we start by setting � � @ � ; i.e. the root of
	 ��� ��� . At each iteration ��� � �"� �%� will

be a prefix of (or sometimes equal to) � and we will extend � � so that it covers more
of � until ��� � �"���%� is a super-sequence of � . To extend � � we examine � ��� � � �"� �%� .
Let � ��� ��� �"� �%��@ � . � is the next dual variable assigned by the children of � � . Let�
�N@ ���&�%������������D8� be the lexicographically ordered sequence of ordinary variables that
will be newly assigned by � (these are the variables in 4�5�6$7>� � � that have not already
been assigned in � �), and let

�
 @ �
O�%���������
�F � be the sequence of variables assigned
by � that come after ��� � �"� ��� . (Note that either of, or both of, these sequences could
be empty.) There are three possibilities.

1. These two sequences do not match (i.e., neither is a prefix of the other). In this
case � does not have a matching node in

	 ��� ��� , and we can terminate the process
and choose �

�	�
� �	
�� �"��� arbitrarily.

2.
�
� is a sub-sequence of or is equal to

�
 . In this case � assigns a value to each of
the variables � F . In addition, all of the other variables in 4�5�6(78� � � (the ones that
are not newly assigned by �) will have been assigned by previous assignments in
� . Thus there is only one tuple of values that can be assigned to � that will be
compatible with � . Let this tuple be � . We check that � is in ���� !� � � . If it is, then
� � will have a child that makes the new assignment � M � , and we extend � � by
including that new assignment (i.e., we move � � to this single matching child).
��� � �"� �%� will still be a prefix of � and we can continue to the next iteration.

28

Otherwise, if � �) ���� !� � � , then � has no matching node in
	 ��� ��� and we can

terminate the process and choose �
���
� �	
�� �"��� arbitrarily.

3.
�
� is a strict super-sequence of

�
 . In this case we set � �	�
� �	
 � �"��� to be the first

ordinary variable �>F in
�
� that is unassigned by � .

The time complexity of the above process for computing �
�	�
� �	
 � is at most a poly-

nomial factor worse than the time complexity of � ��� ��� , as it only requires polynomial
time access to � � � ��� . (In particular, we do not need to do any search in

	 ��� ��� to compute�
�	�
� �	
�� , rather we only need to follow one path of

	 ��� ��� .)6

Given a problem
��� ����;�� � � � , the variable ordering �

�	�
� �	
�� generates an ordered

search tree
	
�	�
� ��
�� . Using ��� � , we can define an “inverse” function

�
� � that maps

nodes of
	
�	�
� �	
�� to nodes of

	 ��� ��� . The function is used in the proofs of Lemma 4 and
Theorem 11. If � is a node in

	
�	�
� �	
�� (i.e., a non-repeating sequence of assignments

to ordinary variables that occurs in
	
�	�
� �	
 �) then

�
� ���"��� is the first node of

	 ��� ��� in a
breadth-first ordering of

	 ��� � � that makes all of the same assignments as � . Formally,�
� �#�"��� is defined to be the shallowest (closest to the root) and leftmost node � �)
	 ��� ��� such that ��� � �"� �%� is a super-sequence of � (not necessarily proper). If there is
no such node in

	 ��� ��� then
�
� ���"��� is undefined.

Example 12 Consider the ordered search tree
	 ��� ��� shown in Figure 6 and the corre-

sponding ordered search tree
	
�	�
� �	
�� generated by � �	�

� �	
�� shown in Figure 7.
�
� ��� ��� �IM

E��
��� M E��
��� M������ @ �)� (nodes in the diagram include all assignments made
along the arcs from the node to the root of the tree). Similarly,

�
� ���"��� M E��<����M

E��
��� M��%�
���NM�����@ ��� . So additional assignments in
	
�	�
� �	
�� do not move to new

nodes in
	 ��� ��� if the dual node contains extra ordinary variables. On the other hand,�

� �#�"���0M E��
��� MAE��
��� M E��
���NMAE�� @ ��� , while
�
� ���"�#� M E��
��� MAE��<��� M

E��
� � M2E��
� � M����C@ ��� . So an additional assignment can move down through many
nodes in

	 ��� ��� , as many as is needed to find the first descendant that assigns the new
variable. In this case we had to move down two levels to find a node assigning � � .

Lemma 4 The number of nodes in
	
�	�
� �	
 � that are mapped to the same node in

	 ��� ���

by the function
�
� � is at most � , the maximum arity of a constraint in the original

formulation.

Proof: Say that the nodes � � ���������
� D in
	
�	�
� �	
�� are all different and yet

�
� ���"� � �I@

������@ �
� ���"��D&� @ � � . By the definition of

�
� � , ��� � �"� �%� must be a super-sequence

of all of these nodes. Hence, they must in fact all be of different lengths, and we can
consider them to be arranged in increasing length. We also see that ��F must be a sub-
sequence of � � if �	� H . ��� � �"� �%� might be equal to � D , but it must be a proper super-
sequence of all of the other nodes. Furthermore, if
-� is � � ’s parent (in

	 ��� � �) then
6This is an important, albeit technical point. The number of tuples in the domain of a dual variable can be

exponential in � . So a node � � might have an exponential number of child nodes. However, in this procedure
we need never search the child nodes to find the correct extension of � � . In case (2) we always know the
tuple of assignments that must be the extension and we can test whether or not this extension exists with a
single constraint check. In case (3) we can compute the next variable to assign directly from the constraint’s
scheme without looking at the possible assignments to the constraint.

29

),(),(211 aaxxc =

),,(),,(4322 aaaxxxc =

),(),(323 aaxxc =

),(),(514 aaxxc =

),,(),,(4322 bbaxxxc =

),(),(514 baxxc =

),(),(514 aaxxc =

),(),(323 baxxc =),(),(323 baxxc =

),(),(514 baxxc =

1n

n3

n6n5

n8n7

n4

n2

n9 n10

Figure 6: A sample ordered search tree for FC-dual

1 ax =

2 ax =

3 ax =

3 bx =

4 ax =

5 ax =

5 bx =
4 bx =

5 ax =

5 bx =

1)(ndh =•→

1)(ndh =•→

2)(ndh =•→

2)(ndh =•→

8)(ndh =•→

7)(ndh =•→

3)(ndh =•→

5)(ndh =•→

6)(ndh =•→

3)(ndh =•→

Figure 7: The ordered search tree for FC-hidden that arises from Figure 6. The nodes
that are the values of the function

�
� � refer to the ordered search tree of Figure 6.

30

��� � �
��O� must be a proper sub-sequence of all of these nodes. (Otherwise,
�
� ���"�:���

would not be � � as
 � would have been a shallower node satisfying
�
� � ’s definition.)

Since � � instantiates only one more dual variable than
 � , ��� � �"� �%� can be at most
� assignments (to ordinary variables) longer than ��� � �
 �%� . Putting these constraints
together we see that the sequence of nodes �-�%���������
��D can only be at most � long.

The final component we need to prove that FC-hidden �
���� � FC-dual is to recall a
characterization of the nodes visited by FC that is due to Kondrak and van Beek [12].
Given a CSP

�
and a tuple of assignments � , we say that � is consistent with a variable

if � can be extended to a consistent assignment including that variable. It is easy to see
that if an assignment � is consistent with every variable, any subtuple � � % � is also
consistent with every variable.

Theorem 10 (Kondrak and van Beek [12]) FC visits a node � (in the ordered search
tree it is exploring) if and only if � is consistent and its parent is consistent with every
variable.

From this result it follows that if a node � is visited by FC and then FC subsequently
visits a child of � then � must be consistent with every variable. That is, all parent
nodes in the search tree explored by FC must be consistent with every variable.

Theorem 11 FC-hidden can be only polynomially worse than FC-dual; i.e., FC-hidden
�
���� � FC-dual.

Proof: Using the formalism just developed we must first show that the number of
nodes visited by FC-hidden (FC solving

��� ����;�� � � �) using �
�	�
� �	
�� is within a polyno-

mial of the number of nodes visited by FC-dual (FC solving � �'5�=�� � �) using � ��� ��� .
That FC-hidden uses �

�	�
� �	
�� means that it searches in the tree

	
�	�
� �	
�� , and simi-

larly FC-dual searches in the tree
	 ��� ��� . If � is a parent node in the sub-tree of

	
�	�
� �	
��

that is visited by FC, then by Theorem 10 � must be consistent with every variable.
We claim that for every such parent node

�
� ������� is defined, and that FC-dual visits�

� �#�"��� in
	 ��� ��� . We prove this claim by induction.

The base of the induction is when � is the root of
	
�	�
� �	
�� . In this case

�
� ���"� � is

the root of
	 ��� � � , and FC-dual visits it. Let � be a node that is consistent with every

variable, and let
 be � ’s parent.
 is also consistent with every variable, as we observed
above. Thus by induction

�
� ���
#� @
 � is defined, and FC-dual visits it. Note that all

of
 � ’s ancestors must map to proper sub-sequences of
 (and �) under ��� � , since
 �
is the shallowest node to map to a super-sequence of
 . We have two cases.

1. ��� � �
 �%� is a proper super-sequence of
 . � must next assign the ordinary vari-
able �

�	�
� ��
�� �
�� , which by construction must be the first ordinary variable not

assigned by
 in the sequence ��� � �
 ��� . Furthermore, all of
 � ’s siblings assign
values to the same dual variable. Thus they all assign the same sequence of new
ordinary variables as
�� , and in particular
�� and all of its siblings must assign
all of the ordinary variables assigned by � .

Let the last dual variable assigned by
 � be � . Since � is consistent with every
variable, there must be at least one tuple � in ���� !� � � that is consistent with � .

31

Furthermore, since
 � ’s parent makes fewer assignments to ordinary variables
than does � ,
 � ’s parent must also be consistent with � M � . (Remember that
the dual constraints only require agreement on the shared ordinary variables).
Hence,
 � ’s parent must have a child node making the assignment � M � , this
child node is itself consistent, and FC-dual must visit this child node. All such
child nodes (siblings of
��) yield super-sequences of � under the mapping ��� �
and they are the shallowest nodes to do so: their parent maps to a proper sub-
sequence of � . We may take the leftmost such child to be

�
� ���"��� , and we have

also shown that FC-dual visits
�
� ���"��� .

2. ��� � �
 �%�0@
 . In this case
 and thus � assigns every ordinary variable in the
dual variables of
 � . Starting at
 � we can descend in the tree

	 ��� ��� . At each
stage we examine the dual variable � assigned by the children of
 � . If � assigns
all of the variables of � , then there can be at most one tuple � in ���� !� � � that is
consistent with � . Furthermore, since � is consistent with every variable, includ-
ing � , such a tuple must exist. Since
 � makes fewer assignments to ordinary
variables than � it too must be consistent with every variable, with � M � , and no
other value in ���� !� � � . Thus since FC-dual visits
 � it will visit the child ��� of

 � making the assignment � M � and no other children. Now we set
 � to be � �
and repeat the argument until we set
 � to be a node that makes a super-set (or
the same set) of the assignments made by � . At this point, we are back to case
one above.

So we have that for each parent node � in the sub-tree visited by FC-hidden, there is
a corresponding node

�
� �#�"��� in the sub-tree visited by FC-dual. Furthermore, at most

� nodes can be mapped to the same node by
�
� � (by Lemma 4), so there are at most

� times as many parent nodes visited by FC-hidden as nodes visited by FC-dual. Now,
since each parent node in

	
�	�
� �	
�� can have at most � children (only ordinary variables

are instantiated by FC-hidden and � is the maximum number of values these variables
possess) the total number of nodes visited by FC-hidden is at most � times the number
of parent nodes visited, and at most � � times the number of nodes FC-dual visits. To
complete the proof, we note that both FC-dual and FC-hidden filter only dual variables
and at most 1 of them when forward checking at a node and that therefore the number
of consistency checks performed at each node are polynomially related.

We summarize the relations between FC on the different formulations in Figure 8.

4.3 Maintaining (generalized) arc consistency algorithm (MAC)

In this section, we compare the performance of an algorithm that maintains (general-
ized) arc consistency or really-full lookahead [8, 16, 20] on the three models. We refer
to the algorithm as MAC; namely, maintaining generalized arc consistency algorithm.

We begin by characterizing the nodes visited by MAC. The algorithm enforces arc
consistency on the CSP induced by the current assignment (see Definition 5). Given
a CSP and an assignment � , we say � is arc consistent if the CSP induced by � is not
empty after enforcing arc consistency. It is easy to see that if an assignment � is arc
consistent, any subtuple � � % � is also arc consistent.

32

Theorem 12 MAC will visit a node � (in the ordered search tree it is exploring) if and
only if � ’s parent is arc consistent and the value assigned to the current variable by �
has not been removed from its domain when enforcing arc consistency on � ’s parent.

Proof: We prove this by induction on the length of � . The claim is vacuously true
when � is the empty sequence of assignments. Say that � is of length L , and let
 be
� ’s parent. If � is visited then it is clear that
 must have yielded a non-empty CSP
after MAC enforced arc consistency on it; i.e.,
 must have been arc consistent, and the
new assignment made at � must have survived arc consistency. Conversely, suppose

was arc consistent and that � survives enforcing arc consistency at
 . Since
 is itself
arc consistent, it must have had an arc consistent parent, and it must have survived
the enforcement of arc consistency at its parent. Hence, by induction MAC will have
visited
 . But then once MAC visits
 and enforces arc consistency there, it will have
a non-empty CSP in which � survived. Thus it must continue on to visit � .

Note this also means that MAC will visit a node � (in the ordered search tree it is
exploring) if � is arc consistent (as then its parent would be arc consistent, and it would
have survived the enforcement of arc consistency at its parent).

Just as in the case of FC-hidden, MAC-hidden does not need to instantiate all the
variables in order to find a solution. A variable ordering for MAC-hidden that instanti-
ates all the ordinary variables first is at worst polynomially bounded compared to any
other variable ordering strategy.

Theorem 13 Given a CSP
�

and a variable ordering � for the hidden transformation� � ���>;�� � � � , we can construct (in polynomial time given polynomial time access to �)
a new variable ordering � � that instantiates all of the ordinary variables of

� � ����; � � � �
prior to instantiating any dual variable such that MAC-hidden using � � visits at most
�N����� times as many nodes as it visits when using � , where � is the arity of the largest
constraint scheme in

�
.

Proof: See [4].

Given the above, we can again assume that MAC-hidden only instantiates the ordi-
nary variables during its search.

We know from Theorem 1 that arc consistency on the hidden transformation is
equivalent to arc consistency on the original formulation. Because MAC-orig and
MAC-hidden explore the same search tree, we expect they should visit the same nodes.

Lemma 5 Given an assignment � of a CSP
�

, 5���� � + ��� is empty iff 5��8� � � ����;�� � � �*+ ��� is
empty. Furthermore, for each ordinary variable � , � has the same domain in 5��>� � + ���
and 5���� � � ����;��C� � � + ��� .
Proof: Since 5���� � + ��� is arc consistent, 5���� � + ��� is empty iff

� � �>��;�� �<5���� � + ���
� is empty
(by Lemma 2) iff 5 ��� � � ����;�� � � + �
�
� is empty (by Theorem 1). Furthermore, for each or-
dinary variable � we have that ���� �	��
 � � �
 �"��� @ ���� �	��
 �	�

� �	
��
 � � �

(by Corollary 1).

Now consider the two problems
��� ����;�� � � + ���
� and

� � ���>;�� � � � + � . In
� + � (Definition 5)

33

the domain of each ordinary variable �) 4�5�6(78���<� is reduced to the singleton value as-
signed to that variable by � , �*�! � "9� . The domains of the other variables are unaffected.
However, all of the constraints of

� + � have also been reduced so that they contain only
tuples over the reduced variable domains. Thus the hidden transformation

� � ����;��C� � + ���
will contain dual variables in which any tuple incompatible with � has been removed.
In

� � ����;�� � � �*+ � on the other hand, the dual variables will not be reduced, they will
contain the same set of tuples as the original constraints of

�
. However, every tu-

ple in the domain of a dual variable � in
� � ����; � � � � + � that is not in the domain of �

in
� � ����;��C� � + ��� must be arc inconsistent. It assigns an ordinary variable a value that

no longer exists in the domain of that variable. So enforcing arc consistency will re-
move all of these tuples. Clearly if we sequence arc consistency so that we remove
these values first, we will first transform

� � ����; � � � � + � to
� � ����;�� � � + ��� after which the

continuation of arc consistency enforcement must yield the same final CSP. That is,
5���� � � ����;�� � � + ���<�C@ 5���� � � ����; � � � � + �
� , and thus 5��>� � + ��� is empty iff 5���� � � �>��;�� � � � + �
�
is empty. Furthermore, for every variable ���� �	��
 �	�

� ��
��
 � � �

 @ �>�� �	��
 �	�
� �	
��
 ��
 � �

,
and thus for every ordinary variable ���� � ��
 � � �
 �"���C@ ���� �	��
 �	�

� �	
 �
 ��
 � �

.

Theorem 14 MAC-orig can be only polynomially worse than MAC-hidden, and vice
versa; i.e., MAC-orig �
���� � MAC-hidden and MAC-hidden �
���� � MAC-orig.

Proof: Since MAC-orig and MAC-hidden search over the same variables, the same
variable ordering can be used by both formulations. Let � be the variable ordering
used and let

	
� be the ordered search tree induced by � for a CSP

�
. Both MAC-

orig and MAC-hidden will search in
	
� . We show that they both visit the same nodes

in
	
� . The parent
 of node � is arc consistent in

�
iff 5���� � + �8� is not empty (by

definition) iff 5���� � � ����;��C� � � + �>� is not empty (by Lemma 5) iff
 is arc consistent in� � ���>;�� � � � . Furthermore, once we enforce arc consistency at
 in
�

the domains of all
of the uninstantiated (ordinary) variables will be the same as their domains in 5���� � +��>�
which will be the same as their domains in 5��>� � � ����;�� � � � + ��� (by Lemma 5). Thus
� will survive arc consistency enforcement at
 in

�
iff it survives arc consistency

enforcement at
 in
� � ����;�� � � � . Hence, by Theorem 12, MAC will visit � in

�
iff

MAC visits � in
� � ����;�� � � � .

To complete the proof, we note that arc consistency on a CSP
�

takes �N�"1 � ��� time
in the worst case and arc consistency on

��� ����;�� � � � takes � �"1 � � � � � � time [2], where
� , 1 , and � denote the size of the largest domain, the number of constraints, and the
arity of the largest constraint scheme in

�
, respectively.

The following example shows that MAC-orig and MAC-hidden can be exponen-
tially better than MAC-dual.

Example 13 Consider a CSP with � �*� �"� � J%� � � variables � �����������
��� , and
O� , ����� ,

 �
 � � �
�� � , each with domain �>J����������
� � J&� , and � ��� � J%� � � constraints,

,N�"���&�
���&�
���� @ ���#���@ ���&�>�
,N�"���&�
���&�
���� @ ���#���@ ���&�>�

�����

,N�"��� � �&�<�����
 �
 � � �
�� � � @ ����� � ���@ ����� �

34

It is a pigeon-hole problem with an extra variable
#F in each constraint. The pigeon-hole
problem is insoluble but highly locally consistent. MAC-orig and MAC-hidden have
to instantiate at least � � � variables before an induced CSP is empty after enforcing
arc consistency and they visit �N����� � nodes to conclude the problem is insoluble. It
can be seen that MAC-dual has the same pruning power as MAC-orig because each
pair of original constraints share at most one variable. However, at each node of the
dual search tree, MAC-dual has to additionally instantiate a variable
�F , which has no
influence on the failure. As a result, MAC-dual has to explore a factor of �N�"� � � more
nodes and is thus exponentially worse than MAC-orig and MAC-hidden.

The following example shows the converse: if two original constraints share more
than one variable, arc consistency on the dual is tighter than on the original formulation,
and MAC-dual can be super-polynomially better than MAC-orig and MAC-hidden.

Example 14 Consider a CSP with ����� � variables, � �%���������
���(� � � , each with domain
�>J��������$�
� � , and

� � � J constraints,

,N�"�#���
�����
���&�
���&� @ �8�"�#� � ��� � ��� � � �@ �"��� � ��� � ��� � �(�>�
,N�"�����
���>�
���&�
����� @ �8�"��� � ��� � ��� � � �@ �"��� � ��� � ��� � �(�>�

�����

,N�"���(� � ���
���(���
���(� � �%�
���(� � ��� @ �8�"���(� � � � ���(� � ��� � � �@ �"���(� � � � ���(� � � � ��� � �(�>�
,N�"���(� � ���
���(� � ���
���%�
����� @ �8�"���(� � � � ���(� � � � ��� � � �@ �"��� � ��� � ��� � �(�>�

�"��� � ��� � ��� � � @ � implies �"��� � ��� � ��� � � @ J implies �"��� � ��� � ��� � � @ � im-
plies ����� implies �"���(� � � �����$� � � � ��� � �C@ � . But then the last constraint also implies
�"��� �!��� � ��� � � @ J . Thus the problem is insoluble. When enforcing arc consistency
at a node in the original search tree, no values will be removed from the domain of an
ordinary variable unless the variable is the last uninstantiated variable in a constraint.
The best variable ordering strategy in the original formulation is to divide the prob-
lem in half by first branching on the variables � � , ��� , ���<� � � and � �<� � � . Then we can
branch on an insoluble subproblem consisting of �	�����������
���<� , or � �<� � �����������
���(� � � .
By this divide-and-conquer approach, the maximum depth of the original search tree
is �N� � �����"���<� and the number of nodes explored by MAC-orig and MAC-hidden is
�N�"� � ���
 �
 � . In the dual transformation, on the other hand, the dual constraints form
a cycle in the constraint graph. Once a dual variable is instantiated, the cycle is bro-
ken so that the induced CSP is empty after enforcing arc consistency. Thus MAC-dual
only needs to instantiate one variable to conclude the problem is insoluble and it visits
�N�"� � � nodes. MAC-dual is therefore super-polynomially better than MAC-orig and
MAC-hidden.

Theorem 15 MAC-dual can be super-polynomially worse than MAC-orig and MAC-
hidden; i.e., MAC-dual �� ��
����
�� � � MAC-orig and MAC-dual �� ��
����
���� � MAC-hidden.

Proof: See Example 13.

Theorem 16 MAC-orig and MAC-hidden can be super-polynomially worse than MAC-
dual; i.e., MAC-orig �� ��
����
���� � MAC-dual and MAC-hidden �� ��
����
���� � MAC-dual.

35

Proof: See Example 14.

MAC-dual can be super-polynomially better because it enforces a stronger consis-
tency on the dual transformation and MAC-hidden can be super-polynomially better
because it makes fewer instantiations at each stage during the backtracking search.

Figure 8 summarizes our results. For completeness, we summarize in the diagram
our results for the chronological backtracking algorithm (BT). However, for reasons of
length, we do not present the proofs of these results. Such proofs, using an alternative
formalization, can be found in [4]. As can be seen, BT-dual can be only polynomially
worse than BT-hidden, and vice versa. On the other hand, BT-dual and BT-hidden can
be super-polynomially worse than BT-orig, and vice versa.

Also included in the diagram are results due to Kondrak and van Beek [12] between
different algorithms applied to the same problem formulation. For example, consider
the relation FC-hidden �
���� � BT-hidden. Since the same problem is being solved, Kon-
drak and van Beek’s result that FC always visits the same or fewer nodes than BT, can
be directly applied.7 Then, since arc consistency is � �"1 � � � and forward checking is
�N�"1#�8� for binary problems with 1 constraints and domain size � , it follows that FC-
hidden �
���� � BT-hidden. Interestingly, although it is easily shown that MAC-orig always
visits the same or fewer nodes than FC-orig, we have that MAC-orig �� ��
����
���� � FC-orig,
since there exist problems where MAC-orig can perform exponentially more constraint
checks than FC-orig.

Furthermore, we can use properties of �
���� � to draw additional conclusions from the
diagram. Whenever we are comparing formulations that are all polynomially related in
size the relation �
���� � is transitive. Thus, for example, since the hidden and dual transfor-
mations (although exponentially larger than the original formulation) are polynomially
related in size, from MAC-hidden �
���� � FC-hidden and FC-hidden �
�� � � FC-dual, we can
conclude that MAC-hidden �
	��� � FC-dual. Similarly, from MAC-dual �
���� � FC-dual and
FC-dual �
���� � BT-dual, we can conclude that MAC-dual �
���� � BT-dual. Note that the

�� ��
����
���� � relation is not transitive. So, for example, we cannot conclude that since FC-
hidden �� ��
����
���� � FC-orig and FC-orig �� ��
����
	��� � FC-dual we have that FC-hidden �� ��
����
���� �
FC-dual. In fact, as shown in Theorem 11, FC-hidden �
���� � FC-dual.

5 Conclusion

We compared three possible models for a constraint satisfaction problem—the original
formulation, the dual transformation, and the hidden transformation—with respect to
the effectiveness of various local consistency properties and the performance of three
different backtracking algorithms. To our knowledge, this is the first comprehensive
attempt to evaluate constraint modeling techniques in a formal way.

We studied arc consistency on the original formulation, and its dual and hidden
transformations. We showed that arc consistency on the dual transformation is tighter

7Kondrak and van Beek prove their results for static variable orderings. However, their results also hold

when the algorithm searches a fixed ordered search tree, as is allowed by the definition of �
���� � .

36

���������
	�� �
���
dual

�
���
hidden

FC-orig FC-dual FC-hidden

MAC-orig MAC-dual MAC-hidden

A

A

B

B

pA B

pA B

poly

superpoly

Figure 8: Summary of the relations between the combinations of algorithms and for-
mulations. A solid directed edge from

�
- � to
 - � means

�
- � �
���� �
 - � and a dashed

directed edge means
�

- � �� ��
	���
���� �
 - � .

37

than arc consistency on the original formulation, which itself is equivalent to arc con-
sistency on the hidden transformation. We then considered local consistencies that are
defined over binary constraints. For example, we showed that singleton arc consistency
on the dual is tighter than singleton arc consistency on the hidden.

We then compared the performance of three different backtracking algorithms on a
non-binary CSP and on its dual and hidden transformations. Considering the forward
checking algorithm, FC-dual can be super-polynomially worse than FC-orig and FC-
hidden, and FC-orig can be super-polynomially worse than FC-dual and FC-hidden.
However, the cost to solve FC-hidden can be at most a polynomial factor worse than
the cost to solve FC-dual. Turning to the algorithm that maintains arc consistency,
MAC-orig and MAC-hidden visit the same nodes and have the same cost at each node,
while MAC-dual can be super-polynomially worse than MAC-orig and MAC-hidden
because it may have to make many more instantiations at each node of the search
tree. Furthermore, MAC-orig and MAC-hidden can be super-polynomially worse than
MAC-dual because MAC-dual enforces a stronger consistency property than MAC-
orig or MAC-hidden do.

Our results can be used by practitioners to help build efficient models for real-world
constraint satisfaction problems. Our objective is to provide some general guidelines as
to whether or not, or under which conditions, the dual or hidden transformation should
be applied to a non-binary CSP. For example, if the performance of formulation � is
bounded by a polynomial from formulation � but can be super-polynomially better
than � , then we are assured that the performance of � cannot be much worse than that
of � , and that furthermore � has the potential to provide a dramatic improvement over
� . Thus, � may be preferred in the hope that it can provide super-polynomial savings
over � and given that in the worst case, it cannot lose too much. On the other hand, if
two formulations are equivalent for a certain backtracking algorithm, there is little to
be gained from developing both models.

References

[1] F. Bacchus and P. van Beek. On the conversion between non-binary and binary
constraint satisfaction problems. In Proceedings of the Fifteenth National Con-
ference on Artificial Intelligence, pages 311–318, Madison, Wisconsin, 1998.

[2] C. Bessière and J.-C. Régin. Arc consistency for general constraint networks:
Preliminary results. In Proceedings of the Sixteenth International Joint Confer-
ence on Artificial Intelligence, pages 398–404, Nagoya, Japan, 1997.

[3] J. E. Borrett. Formulation Selection for Constraint Satisfaction Problems: A
Heuristic Approach. PhD thesis, University of Essex, United Kingdom, 1998.

[4] X. Chen. A Theoretical Comparison of Selected CSP Solving and Modeling Tech-
niques. PhD thesis, University of Alberta, Canada, 2000.

[5] R. Debruyne and C. Bessière. Domain filtering consistencies. J. Artificial Intelli-
gence Research, 14:205–230, 2001.

38

[6] R. Dechter. On the expressiveness of networks with hidden variables. In Proceed-
ings of the Eighth National Conference on Artificial Intelligence, pages 556–562,
Boston, Mass., 1990.

[7] R. Dechter and J. Pearl. Tree clustering for constraint networks. Artificial Intelli-
gence, 38:353–366, 1989.

[8] J. Gaschnig. Experimental case studies of backtrack vs. Waltz-type vs. new algo-
rithms for satisficing assignment problems. In Proceedings of the Second Cana-
dian Conference on Artificial Intelligence, pages 268–277, Toronto, Ont., 1978.

[9] L. Getoor, G. Ottosson, M. Fromherz, and B. Carlson. Effective redundant con-
straints for online scheduling. In Proceedings of the Fourteenth National Confer-
ence on Artificial Intelligence, pages 302–307, Providence, Rhode Island, 1997.

[10] R. M. Haralick and G. L. Elliott. Increasing tree search efficiency for constraint
satisfaction problems. Artificial Intelligence, 14:263–313, 1980.

[11] P. Jégou. Decomposition of domains based on the micro-structure of finite con-
straint satisfaction problems. In Proceedings of the Eleventh National Conference
on Artificial Intelligence, pages 731–736, Washington, DC, 1993.

[12] G. Kondrak and P. van Beek. A theoretical evaluation of selected backtracking
algorithms. Artificial Intelligence, 89:365–387, 1997.

[13] A. K. Mackworth. Consistency in networks of relations. Artificial Intelligence,
8:99–118, 1977.

[14] A. K. Mackworth. On reading sketch maps. In Proceedings of the Fifth Inter-
national Joint Conference on Artificial Intelligence, pages 598–606, Cambridge,
Mass., 1977.

[15] J. J. McGregor. Relational consistency algorithms and their application in finding
subgraph and graph isomorphisms. Inform. Sci., 19:229–250, 1979.

[16] B. A. Nadel. Constraint satisfaction algorithms. Computational Intelligence,
5:188–224, 1989.

[17] B. A. Nadel. Representation selection for constraint satisfaction: A case study
using � -queens. IEEE Expert, 5:16–23, 1990.

[18] C. S. Peirce. In C. Hartshorne and P. Weiss, editors, Collected Papers, Vol. III.
Harvard University Press, 1933. Cited in: F. Rossi, C. Petrie, and V. Dhar, 1989.

[19] F. Rossi, C. Petrie, and V. Dhar. On the equivalence of constraint satisfaction
problems. Technical Report ACT-AI-222-89, MCC, Austin, Texas, 1989. A
shorter version appears in ECAI-90, pages 550-556.

[20] D. Sabin and E. C. Freuder. Contradicting conventional wisdom in constraint
satisfaction. In Proceedings of the 11th European Conference on Artificial Intel-
ligence, pages 125–129, Amsterdam, 1994.

39

[21] H. Simonis. Standard models for finite domain constraint solving. Tutorial pre-
sented at PACT’97 Conference, London, UK, 1997.

[22] B. Smith, S. C Brailsford, P. M. Hubbard, and H. P. Williams. The progressive
party problem: Integer linear programming and constraint programming com-
pared. Constraints, 1:119–138, 1996.

[23] K. Stergiou and T. Walsh. Encodings of non-binary constraint satisfaction prob-
lems. In Proceedings of the Sixteenth National Conference on Artificial Intelli-
gence, pages 163–168, Orlando, Florida, 1999.

[24] P. van Beek and X. Chen. CPlan: A constraint programming approach to plan-
ning. In Proceedings of the Sixteenth National Conference on Artificial Intelli-
gence, pages 585–590, Orlando, Florida, 1999.

[25] P. Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press,
1989.

[26] R. Weigel, C. Bliek, and B. Faltings. On reformulation of constraint satisfaction
problems. In Proceedings of the 13th European Conference on Artificial Intelli-
gence, pages 254–258, Brighton, United Kingdom, 1998.

40

